Title
Configurable energy-efficient co-processors to scale the utilization wall

Permalink
https://escholarship.org/uc/item/3g99v4qd

Author
Venkatesh, Ganesh

Publication Date
2011

Peer reviewed|Thesis/dissertation
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Configurable Energy-efficient Co-processors to Scale the Utilization Wall

A dissertation submitted in partial satisfaction of the requirements for the degree
Doctor of Philosophy

in

Computer Science

by

Ganesh Venkatesh

Committee in charge:

Professor Steven Swanson, Co-Chair
Professor Michael Taylor, Co-Chair
Professor Pamela Cosman
Professor Rajesh Gupta
Professor Dean Tullsen

2011
The dissertation of Ganesh Venkatesh is approved, and it is acceptable in quality and form for publication on microfilm and electronically:

__

__

__

__

Co-Chair

Co-Chair

University of California, San Diego

2011
DEDICATION

To my dear parents and my loving wife.
The lurking suspicion that something could be simplified is the world’s richest source of rewarding challenges.

—Edsger Dijkstra
TABLE OF CONTENTS

Signature Page ... iii
Dedication ... iv
Epigraph ... v
Table of Contents ... vi
List of Figures ... ix
List of Tables ... xi
Acknowledgements ... xii
Vita and Publications .. xv
Abstract of the Dissertation .. xvii

Chapter 1 Introduction ... 1
 1.1 Utilization Wall .. 2
 1.2 Specialization for converting transistors into performance 4
 1.3 Patchable Conservation Cores: Energy efficient circuits with processor-like lifetimes ... 5
 1.4 Utilizing Conservation Cores to Design Mobile Application Processors .. 6
 1.5 Quasi-ASICs: Trading Area for Energy by Exploiting Similarity across Irregular Codes .. 7
 1.6 Organization .. 8

Chapter 2 Arsenal: Baseline Architecture and Tool Chain 9
 2.1 Arsenal: Massively Heterogeneous Multiprocessors 9
 2.1.1 Hardware Organization .. 10
 2.1.2 Arsenal Design Flow .. 11
 2.1.3 Execution Model .. 11
 2.2 System Overview .. 12
 2.2.1 Specialized Processor Hardware Design 13
 2.2.2 The CPU/Specialized-processor Interface 15
 2.2.3 The Runtime System ... 15
 2.3 Methodology .. 15
 2.3.1 Toolchain .. 17
 2.3.2 Simulation infrastructure 17

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3</td>
<td>Synthesis</td>
<td>18</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Power measurements</td>
<td>18</td>
</tr>
</tbody>
</table>

Chapter 3
Patchable Conservation Cores: Energy-efficient circuits with processor-like lifetimes
3.1 Case for Reconfigurability in Application Specific Circuits
3.2 Reconfigurability support in Conservation Cores
3.3 Patching Algorithm
3.3.1 Basic block mapping
3.3.2 Control flow mapping
3.3.3 Register mapping
3.3.4 Patch generation
3.3.5 Patched execution example
3.4 Methodology
3.4.1 Generation of Patchable Conservation Core Hardware
3.4.2 Generating Configuration Patch
3.5 Results
3.5.1 Energy savings
3.5.2 Longevity
3.6 Patching Overhead Analysis and Optimizations
3.6.1 Cost of Reconfigurability
3.6.2 Optimizations to Reduce the Patching Overheads
3.7 Backward Patching
3.7.1 Methodology
3.7.2 Results
3.8 Conclusion

Chapter 4
Utilizing Conservation Cores to Design Mobile Application Processors
4.1 Applicability of Conservation Cores to Android
4.1.1 Android Platform Analysis
4.1.2 Case for using c-cores to optimize mobile application processors
4.2 Android Software Stack
4.3 Designing Conservation Cores for Android
4.3.1 Profiling the Android System
4.3.2 Characterizing the hotspots in the Android system
4.4 Results
4.4.1 Area requirement
4.4.2 Energy-Area Tradeoff
LIST OF FIGURES

Figure 2.1: The high-level structure of an Arsenal system 10
Figure 2.2: The high-level design flow of an Arsenal system 11
Figure 2.3: The high-level structure of the baseline architecture 12
Figure 2.4: Specialized Core Design Example 14
Figure 2.5: The C-to-hardware toolchain 16

Figure 3.1: Observed changes in the source code across application versions 23
Figure 3.2: An example showing handling of changes in control flow across versions .. 26
Figure 3.3: Basic block matching example 27
Figure 3.4: Patching Algorithm Toolchain 30
Figure 3.5: Conservation Core versus MIPS Processor 35
Figure 3.6: System-level Efficiency of a c-core-enabled Tile Architecture . 36
Figure 3.7: Conservation core effectiveness over time 37
Figure 3.8: Area and power breakdown for patchable c-cores 39
Figure 3.9: Impact of patching optimizations on the area and energy requirements of patchable c-cores 44
Figure 3.10: Conservation Core design with improved backward compatibility support .. 45
Figure 3.11: The Backward Compatible Conservation Core Toolchain 46
Figure 3.12: Improvements in the backward compatibility of Conservation Cores .. 48
Figure 3.13: Effectiveness of Backward Compatible Conservation Core over time .. 49

Figure 4.1: Android Software Stack 55
Figure 4.2: Static Instruction Count vs Dynamic Instruction Count Coverage 60
Figure 4.3: Basic block count vs Application execution coverage 61
Figure 4.4: Breakdown of Application Runtime across Android Software Stack 62
Figure 4.5: Dynamic Execution Coverage vs Static Instructions Converted into Conservation cores .. 66
Figure 4.6: Android Execution Coverage vs Conservation core Area 68
Figure 4.7: Android Execution Coverage vs Conservation core Area 70

Figure 5.1: QASIC’s ability to trade off between area and energy efficiency . 75
Figure 5.2: Similar code patterns present across the hotspots of a Sat Solver tool .. 77
Figure 5.3: Similarity available across hotspots of diverse application set (Table 5.1) .. 79
Figure 5.4: Quantifying Similarity Present Within and Across Application Domains .. 80
Figure 5.5: QASIC Design Flow ... 82
Figure 5.6: QASIC Example .. 85
Figure 5.7: Expression Merging ... 88
Figure 5.8: Inferred Dependence Example 88
Figure 5.9: Greedy Clustering Algorithm for Designing QASICS 92
Figure 5.10: QASIC Toolchain .. 93
Figure 5.11: Micro-Benchmark Set: Eight simple loops 95
Figure 5.12: Coverage vs QASIC count 95
Figure 5.13: QASIC quality vs. QASIC Count 96
Figure 5.14: Impact of generalization on QASIC Area and Energy Efficiency for the Micro-benchmarks 96
Figure 5.15: Impact of generalization on the area and energy Efficiency of QASICS targeting commonly used data structures 99
Figure 5.16: Scalability of QASIC’s approach 100
Figure 5.17: Impact of generalization on QASIC Area and Energy Efficiency for the Benchmark Set 101
Figure 5.18: Impact of generalization on QASIC Performance for our Benchmark Set ... 101
Figure 5.19: Energy efficiency of a QASIC-enabled system 103
LIST OF TABLES

Table 1.1: The Utilization Wall ... 3
Table 3.1: Conservation core statistics 34
Table 3.2: Conservation core details ... 41
Table 3.3: Area costs of patchability ... 41
Table 5.1: A Diverse Application Set .. 78
ACKNOWLEDGEMENTS

This thesis would not have been possible without my advisors, Steven Swan-son and Michael Taylor. My work would not have been this successful without their constant feedback and forward-looking approach to research. They taught me the value of patience, especially when working on an ambitious, work-intensive project.

I also owe this thesis to my former advisor, Bradley Calder. His guidance during my initial Ph.D. years played a critical role in helping me mature as a researcher as well as value the importance of hard work and persistence.

I would like to thank my committee members for their helpful comments and feedback. I must also thank Julie Conner for being the most awesome and patient graduate student advisor.

I would like to thank my UCSD friends (Dian, Anshuman, Joel, Ravi, ...) for the random chats in the hallway, long ping pong/foosball/tennis sessions, dinners, movies, escaping reality, etc. I also would like to thank my project mates for helping me through the highs and lows of my work and for all the long discussions during the initial stages of this work. Thanks to Nathan for his help with proofreading and tasty guacamole. Thanks to Jack for the many interesting conversations about “stuff” and for sharing his interesting culinary experiments. Thanks to Wei and Satish for all the late night hacking and tennis/foosball lessons. Thanks to Jeff for all the encouraging discussions and ph.d. advice. Thanks to Jeremy for teaching me how to eat watermelon. Thanks to Robert for all the long tennis discussions. Thanks to ...

I must heartily thank my parents and my wife. The greatest thing to come out of my stay at UCSD was meeting my wife, Sravanthi. She is a great source of strength in my life and has helped me through the stressful times of job hunt and thesis defense. Finally, I would like to thank my parents for all their love, for being there for me all these years, for teaching me the value of education as a kid, for inspiring me to pursue post graduate education, and many many other things. Thank you!

Chapters 2 and 3 contains material from “Conservation cores: reducing the energy of mature computations”, by Ganesh Venkatesh, Jack Sampson, Nathan
Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson and Michael Bedford Taylor, which appears in ASPLOS ’10: Proceedings of the fifteenth edition of ASPLOS on Architectural support for programming languages and operating systems. The dissertation author was the primary investigator and author of this paper. The material in this chapter is copyright ©2010 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page in print or the first screen in digital media. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

Chapter 3 contains material from “Efficient complex operators for irregular code”, by Jack Sampson, Ganesh Venkatesh, Nathan Goulding, Saturnino Garcia, Steven Swanson and Michael Bedford Taylor, which appears in HPCA ’11: Proceedings of the International Symposium on High-Performance Computer Architecture (HPCA). The dissertation author was the secondary investigator and author of this paper. The material in this chapter is copyright ©2011 by the Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Chapter 4 contains material from “The GreenDroid mobile application processor: An architecture for silicons dark future”, by Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Aurricchio, Po-Chao Huang, Manish Arora, Siddharth Nath, Vikram Bhatt, Jonathan Babb, Steven Swanson and Michael Bedford Taylor, which appears in IEEE Micro, March 2011. The disser-
tation author was a significant contributor and author of this paper. The material in this chapter is copyright ©2011 by the Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
VITA AND PUBLICATIONS

2000
B. Tech. in Computer Science
Indian Institute of Technology, Madras

2004-2011
Research assistant
University of California, San Diego

2005
Internship
Intel Labs
Santa Clara, California

2006
Internship
HP Labs
Palo Alto, California

2006
M. S. in Computer Science
University of California, San Diego

2011
Ph. D. in Computer Science
University of California, San Diego

PUBLICATIONS

ABSTRACT OF THE DISSERTATION

Configurable Energy-efficient Co-processors to Scale the Utilization Wall

by

Ganesh Venkatesh

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Professor Steven Swanson, Co-Chair
Professor Michael Taylor, Co-Chair

Transistor density continues to increase exponentially, but the power dissipation per transistor improves only slightly with each generation of Moore’s law. Given constant chip-level power budgets, this exponentially decreases the fraction of the transistors that can be active simultaneously with each technology generation. Hence, while the area budget continues to increase exponentially, the power budget has become a first-order design constraint in current processors. In this regime, utilizing transistors to design specialized cores that optimize energy-per-computation becomes an effective approach to improve the system performance.

To pursue this goal, this thesis focuses on specialized processors that reduce energy and energy-delay product for general purpose computing. The focus on energy makes these specialized cores an excellent match for many of the commonly used programs that would be poor candidates for SIMD-style hardware acceleration (e.g. compression, scheduling). However, there are many challenges, such as lack of flexibility and limited computational power, that limit how effective these
specialized cores are at targeting general purpose computing. Without addressing these concerns, these specialized cores would be limited in the scope of applications that they can effectively target.

This thesis addresses these various challenges involved in making specialization a viable approach to optimize general-purpose computing. To this end, this thesis proposes Patchable Conservation Cores which are flexible, energy-efficient co-processors that contain the ability to be patched, enabling them to remain useful across versions of their target application. To demonstrate the effectiveness of these conservation cores in targeting a system workload, this thesis utilizes them to design a mobile application processor targeting the Android software stack. The results show that these specialized cores can cover a significant fraction of the system execution while staying within a modest area budget.

To further increase the fraction of the system execution that these specialized cores cover, this thesis proposes QASICs, specialized co-processors capable of executing multiple general-purpose computations. QASIC design flow exploits the similar code patterns present within and across applications to reduce redundancy across specialized cores as well as improve their computational power.
Chapter 1

Introduction

Transistor density continues to scale but per-transistor switching power is not scaling down anymore. As a result, given the fixed chip-level power budgets, the fraction of transistors that can be active at full frequency is decreasing exponentially with each generation of Moore’s Law. This phenomenon is termed as the Utilization Wall \cite{VSG+10}. The utilization wall results in a dramatic increase in the amount of *dark silicon* – silicon that is underclocked or underused because of power concerns.

The utilization wall phenomenon is making it harder for designers to convert transistors into performance. Traditionally, increases in transistor counts were used to increase the application performance by designing faster and more optimized superscalar pipelines. However, concerns about the microarchitectural scalability of these superscalar pipeline designs motivated transition towards multi-core processors. Multi-core designs continued the system performance scaling by allowing multiple computations to run in parallel. However, the utilization wall phenomenon limits the effectiveness of these multi-core designs by constraining the fraction of the chip, and hence the number of computations, that can be simultaneously active.

Since utilizing the entire die simultaneously at full frequency is not possible any more, many of the recent proposals have focussed on specialization to address the problem of scaling system performance with transistor density. Specialized circuits are generally faster, and almost always more energy-efficient than their
general-purpose counterparts. To date, however, few of the recent efforts focus on designing specialized circuits for the general-class of irregular integer programs. Also, most of the previous application-specific proposals design very narrowly defined co-processors that can only be used by their target application, and even for their target application, they cannot support changes across application versions. This thesis proposes mechanisms to provide reconfigurability and generality in application-specific circuits, that significantly enhances their longevity and enables them to support multiple applications with similar data/control flow.

1.1 Utilization Wall

This section examines the utilization wall in greater detail and demonstrates how the utilization wall is a consequence of CMOS scaling theory combined with modern technology constraints.

Scaling Theory Table 1.1 shows how the utilization wall emerges from the breakdown of classical CMOS scaling as set down by Dennard [DGR+74] in his 1974 paper. The equations in the “Classical Scaling” column governed scaling up until 130 nm, while the “Leakage Limited” equations govern scaling at 90 nm and below. CMOS scaling theory holds that transistor capacitances (and thus switching energy) decrease roughly by a factor of \(S \) (where \(S \) is the scaling factor, e.g., \(1.4 \times \)) with each process shrink. At the same time, transistor switching frequency improves by \(S \) and the number of transistors on the die increases by \(S^2 \).

In the Classical Scaling Regime, it has been possible to scale supply voltage by \(1/S \), leading to constant power consumption for a fixed-size chip running at full frequency, and consequently, no utilization wall. Scaling the supply voltage requires that we also scale the threshold voltage proportionally. However, this is not an issue because leakage, although increasing exponentially, is not significant in this regime.

In the Leakage Limited Regime, it is no longer possible to scale the threshold voltage because leakage rises to unacceptable levels. Without the corresponding supply voltage scaling, reduced transistor capacitance is the only remaining
Table 1.1: **The utilization wall** The utilization wall is a consequence of CMOS scaling theory and current-day technology constraints, assuming fixed power and chip area. The Classical Scaling column assumes that V_t can be lowered arbitrarily. In the Leakage Limited case, constraints on V_t, necessary to prevent unmanageable leakage currents, hinder scaling, and create the utilization wall.

<table>
<thead>
<tr>
<th>Param.</th>
<th>Description</th>
<th>Relation</th>
<th>Classical Scaling</th>
<th>Leakage Limited</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>power budget</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>chip size</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>V_t</td>
<td>threshold voltage</td>
<td>$1/S$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>V_{dd}</td>
<td>supply voltage</td>
<td>$\sim V_t \times 3$</td>
<td>$1/S$</td>
<td>1</td>
</tr>
<tr>
<td>t_{ox}</td>
<td>oxide thickness</td>
<td>$1/S$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W, L</td>
<td>transistor dimensions</td>
<td>$1/S$</td>
<td>$1/S$</td>
<td></td>
</tr>
<tr>
<td>I_{sat}</td>
<td>saturation current</td>
<td>$W V_{dd}/t_{ox}$</td>
<td>$1/S$</td>
<td>1</td>
</tr>
<tr>
<td>p</td>
<td>device power at full frequency</td>
<td>$I_{sat} V_{dd}$</td>
<td>$1/S^2$</td>
<td>1</td>
</tr>
<tr>
<td>C_{gate}</td>
<td>capacitance</td>
<td>$W L/t_{ox}$</td>
<td>$1/S$</td>
<td>$1/S$</td>
</tr>
<tr>
<td>F</td>
<td>device frequency</td>
<td>$I_{sat} V_{dd}/C_{gate} V_{dd}$</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>D</td>
<td>devices per chip</td>
<td>$A/(W L)$</td>
<td>S^2</td>
<td>S^2</td>
</tr>
<tr>
<td>P</td>
<td>full die, full frequency power</td>
<td>$D \times p$</td>
<td>1</td>
<td>S^2</td>
</tr>
<tr>
<td>U</td>
<td>utilization at fixed power</td>
<td>B/P</td>
<td>1</td>
<td>$1/S^2$</td>
</tr>
</tbody>
</table>
counterbalance to increased transistor frequencies and increasing transistor counts. Consequently, the net change in full chip, full frequency power is rising as S^2. This trend, combined with fixed power budgets, indicates that the fraction of a chip that can be run at full speed, or the utilization, is falling as $1/S^2$. Thus, the utilization wall is getting exponentially worse, increasing the fraction of dark silicon roughly by a factor of two, with each process generation.

1.2 Specialization for converting transistors into performance

One promising option to effectively utilize the dark silicon is to design a set of specialized processing elements tailored for specific applications. The specialized processors are more efficient than general-purpose processors (by several orders of magnitude for highly-specialized ASICs), and off-loading portions of a program to a specialized processor can realize large gains in energy-efficiency and performance. In this manner, the increases in transistor counts can be used to scale system performance by providing increased specialization as well as increasing the percentage of the system execution that runs on specialized processors.

Since the fraction of dark silicon continues to increase exponentially with each technology generation, the area available for specialized processors will increase accordingly. To utilize this increasing transistor budget effectively, designers must provide an ever increasing amount of specialization with each process generation. To accomplish this, these specialized processors must be designed automatically, enabling the designers to target a greater percentage of the workload execution with increases in transistor counts.

Existing approaches for automatically designing specialized processors primarily seek to build accelerators for regular, streaming loops with predictable control-flow and memory access patterns [YGBT09, FKDM09, CHM08]. While these applications are important, they are significantly different from the general class of irregular integer applications that are important on the desktop. The irregular integer programs are poor candidates for acceleration via specialized hardware
because they tend to have much larger hotspots with irregular, hard-to-predict control flow and memory-access patterns. This is the class of applications that this thesis focuses on and proposes specialized cores for them. These specialized cores provide significant energy-efficiency compared to general-purpose processors and greater configurability than fully-specialized logic. These energy-efficient specialized processors improve the system performance with increasing transistor counts by optimizing energy-per-computation, and hence allowing more computations to run in parallel.

Next, we introduce the three main parts of this thesis – 1) Patchable Conservation Cores (c-cores) [VSG+10, SVG+11], energy-efficient application-specific circuits with targeted reconfigurability to support changes in source code across application versions, 2) Application of the Conservation Cores in designing Mobile Application Processors [GSV+10, GSV+11], and 3) Qasics [VSG+11], energy-efficient circuits to make the area-energy tradeoff scalable by exploiting similar code patterns across irregular codes.

1.3 Patchable Conservation Cores: Energy efficient circuits with processor-like lifetimes

To effectively target the hotspots of general-purpose applications, specialized circuits must be able to support complex C constructs and must have lifetimes comparable to those of general-purpose processors. In order to have long lifetimes, the specialized circuits must remain useful across application versions by supporting code changes such as changes in the expression constants, memory layout and control flow.

Traditionally, application-specific circuits are very narrowly defined and cannot support any change in the target source code. This inability to support code changes make ASICs poor candidates for targeting any application that may have new version releases. This brittleness of ASICs is one of the main obstacles in their adoption by system designers to target even the mature and very commonly used applications.
The key contribution of the Patchable Conservation Core work is to provide application-specific circuits with reconfigurability mechanisms that would enable them to support the source code changes that are commonly seen across application versions. Conservation Cores support changes in the control-flow, expression constants, arithmetic operators, and memory layout of data structures. The conservation core tool chain automatically generates “configuration patches” for the new application versions and the conservation core is initialized at the runtime with the configuration patch corresponding to the application version that is going to execute on them. This ensures that these conservation cores do not bind the system users to any particular application version.

1.4 Utilizing Conservation Cores to Design Mobile Application Processors

Specialization has played a major role in the rapid advances in mobile device capabilities in the recent past. Specialized hardware enables the mobile devices to provide rich user experience, enabling the user to stay connected, stream multimedia, play games, and navigate using GPS-powered maps. As a result of this improved functionality, the market for smartphones and other portable devices is growing rapidly and these mobile devices are expected to outsell desktop PCs in the coming years [IDC]. To ensure that this growth continues, mobile devices will need to provide greater functionality with each generation without compromising on the battery life.

Traditionally, mobile platforms exploit manually-designed specialized hardware to address power concerns and achieve better performance by integrating specialized cores on an SoC. However, emergence of the new generation of mobile devices such as those based on Apple iOS and Google Android run an increasingly diverse collection of applications, straining the traditional model of manually designed specialized hardware. In order to support this increasing functionality, a new generation of mobile devices must rely on general-purpose application processors. However, the utilization wall threatens to limit the performance scaling of
application processors, impeding the evolution of what is becoming the dominant computing platform for much of the world.

This thesis explores the use of conservation cores to design these energy-efficient mobile application processors. In particular, this project analyzes the potential for using conservation cores to design application processors for Android-based mobile devices. This work demonstrates that our conservation core-based approach is a good match for the Android platform. The results show that c-cores were able to cover a significant fraction of system execution and provide significant energy savings without exceeding the modest area budgets.

1.5 **Quasi-ASICs: Trading Area for Energy by Exploiting Similarity across Irregular Codes**

Specialized circuits enable system designers to trade area for energy efficiency. However, for many applications in a system’s workload, it is not scalable to trade silicon for a specialized co-processor that can only execute a hotspot of an application. Hence, system designers need to decide on the amount of specialization required based on the available area budget and the relative importance of applications in the system’s workload.

Existing approaches for designing ASICs tend to design specialized processors that only target a specific piece of code. Hence, to fit within a given area budget, system designers would need to remove specialization corresponding to some of the computations used by the system workload. However, this reduction in the fraction of system execution covered by specialized processors can significantly decrease the system’s energy efficiency since the application specific circuits tend to be more energy-efficient than general-purpose processors by a few orders of magnitude.

This thesis proposes a new class of specialized circuits, *Quasi-ASICs* (QASICs), that enable the system designers to vary the amount of hardware generality based on the available area budget. The key contribution of the QASIC work is the insight that similar code patterns exist within and across applications and
these similar code segments can be exploited to reduce the area requirements without removing functionality. The QASIC tool chain mines for similar computations across the system workload and builds a configurable circuit that can execute all of them. As a result, our approach makes the area-energy tradeoff more scalable by designing specialized processors that support multiple general-purpose applications while providing energy efficiency comparable to fully specialized logic.

1.6 Organization

Chapter 2 presents the baseline architecture that this work builds on as well as the methodology to evaluate the performance and energy efficiency of the system. Chapter 3 describes Patchable Conservation Cores and shows how their flexibility enables them to support newer versions of their target application. This chapter also discusses optimizations to reduce the area and energy overheads of adding flexibility in specialized circuits as well as improve the backward compatibility of conservation cores. Chapter 4 demonstrates that these patchable conservation cores can significantly improve the energy efficiency of mobile application processors. Chapter 5 describes QASICs and discusses how they can trade area for energy efficiency in a scalable manner. Chapter 6 presents the previous work on designing heterogeneous architectures as well as work on high-level synthesis. Chapter 7 concludes.

Acknowledgments

Portions of this research were funded by the US National Science Foundation under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF Award 0811794.
Chapter 2

Arsenal: Baseline Architecture and Tool Chain

This thesis builds on the Arsenal processor, a massively heterogeneous multiprocessor [Ars]. This chapter provides a high level overview of the Arsenal system, the baseline heterogeneous tiled architecture used in this thesis for performance and energy analysis as well as the toolchain for automating the design of specialized hardware from C source code.

2.1 Arsenal: Massively Heterogeneous Multiprocessors

This section provides an overview of the Arsenal processor including their design goals, high-level hardware organization, and execution model.

The main goal of the Arsenal processor design is to ensure that the system performance scales with the increases in transistor counts in spite of the utilization wall. Arsenal designs are comprised of 10s to 100s to even 1000s of heterogeneous specialized processing elements (SPEs), ranging from specialized processors dedicated to particular loop nests, to 8-way issue DSPs, graphics accelerators, and to out-of-order superscalars. Although the utilization wall dictates that Arsenal systems may use only a small fraction of the die at once, it uses that fraction very
Figure 2.1: **The high-level structure of an Arsenal system** An Arsenal system is made up of multiple SPE “complexes” (i.e. tiles).

...efficiently. The Arsenal system achieves this efficiency by dynamically varying which fraction of the chip is active based on the applications that are executing on them.

2.1.1 Hardware Organization

Figure 2.1 depicts the high level design of an Arsenal processor comprised of twelve *SPE complexes* and four banks of shared L2 cache connected by a grid-based on chip interconnect. Together the complexes, cache banks, and network resemble recently proposed tiled processors such as Wavescalar [SMS03], RAW [TLM+04], or TRIPS [SNL+03]. Instead of uniform tiles, however, the complexes (i.e., the “tiles”) in an Arsenal processor contain many SPEs. The mix of SPEs in each complex is different. Arsenal systems organize SPEs into complexes (or tiles) based on related functions to allow pipeline-sequential style communication. SPEs
Arsenal system’s design is customized for the applications that commonly run on them. Codes likely to be used in sequence are placed in the same complex, so that they can efficiently communicate through the local L1 cache.

2.1.2 Arsenal Design Flow

Figure 2.2 depicts the generation of a many-core Arsenal processor. The process begins with the processor designer characterizing the workload by identifying codes that make up a significant fraction of the processors target workload. The toolchain extracts the most frequently used (or hot) code regions and uses a high-level synthesis tool to design specialized cores corresponding to these hot regions. Finally, these specialized cores are integrated with a general-purpose processor to design a heterogeneous many-core system.

2.1.3 Execution Model

A program executing on an Arsenal processor migrates between SPEs as its behavior changes. The Arsenal toolchain and run-time environment combine to create the mapping between different sections of the program and the available
Figure 2.3: The high-level structure of the baseline architecture. The baseline architecture (a) is made up of multiple individual tiles (b), each of which contains multiple application-specific circuits (S-cores) (c). These specialized circuits communicate with the rest of the system through a coherent memory system and a simple scan-chain-based interface. Not drawn to scale.

SPEs. Programmers and compilers can use a range of tools (e.g., library interfaces, code similarity measurement technology, and performance prediction models) to identify which code segments will run most efficiently on different SPEs. The run-time schedules code onto the available SPEs taking into account the physical location of the SPEs and other applications competing for the same SPEs. The mapping of programs to SPEs can also change at runtime to account for observed changes in program behavior.

2.2 System Overview

The particular instantiation of the Arsenal processor that this thesis studies as the baseline architecture is shown in Figure 2.3. It consists of an array of heterogeneous tiles. Each tile contains a general-purpose processor, I-Cache, D-Cache, set of specialized circuits, and interconnect logic.

A typical system includes 100s of specialized processors designed for key functions of the target workload set. On each tile, the specialized circuits are connected to the general-purpose processor via scan chains. The scan chain interface is slow but scales well enabling us to connect 10s of specialized circuits to
the general-purpose processor. The specialized circuits share the D-Cache with
the general-purpose processor, ensuring coherent memory between the two by con-
struction.

This architecture achieves much of its energy efficiency compared to a con-
ventional tiled architecture system by offloading computations onto these special-
ized circuits. These circuits are automatically designed using a C-to-hardware
compiler (Section 2.3) and achieves significant energy efficiency (up to $40\times$) com-
pared to a general-purpose processor.

2.2.1 Specialized Processor Hardware Design

This section describes in detail the architecture of the specialized circuits
including their datapath, control unit, cache interface, and scan chain interface to
the CPU.

Datapath and Control Unit By design, the datapath and control unit of the
specialized circuits very closely resembles the data and control flow of the target
source code in Single static assignment form [CFR+89]. The datapath contains
functional units (adders, shifters, etc.) for the arithmetic operations, muxes to
implement control decisions and phi [CFR+89] nodes, and registers to hold program
values across clock cycles.

The control unit implements a state machine that mimics the control flow
of the code. It tracks branch outcomes to determine which state to enter on each
cycle. The control unit sets the enable and select lines on the registers and muxes
so that the correct basic block is active each cycle.

The close correspondence between the program’s structure and the corre-
responding specialized circuit enables them to support almost arbitrary source code
including struct, union, pointers, and most control flow constructs. This design
model fits well with the higher level goals of this thesis to provide energy-efficient
execution for irregular, hard to parallelize integer applications.
Figure 2.4: **Specialized Core Design Example** An example showing the translation from C code (a), to the compiler’s internal representation (b), and finally to hardware (c). The hardware schematic and state machine correspond very closely to the data and control flow graphs of the C code.

Memory interface and ordering The specialized circuits execute the memory operations sequentially in the program order to ensure correctness. The specialized circuits contain a load/store unit for each memory operation in the target source code and these units connect to the processor’s L1 data cache, guaranteeing a coherent memory system between the specialized circuit and CPU by construction. For executing a memory operation, the load/store unit sends a “request” signal along with the memory address/value to the L1 data cache and stalls the execution of the specialized processor until it receives the “valid” signal from the cache signaling the completion of the memory operation.

Example Figure 2.4(a)-(c) shows a sample source code, its control flow graph, and the corresponding hardware design for it. The hardware corresponds very closely to the CFG of the sample code. The datapath has muxes corresponding to the phi operators in the CFG. Also, the control unit is almost identical to the CFG, with additional self-loops for memory operations (and other multi-cycle operations). The datapath has a load unit to access the memory hierarchy to read the array a.

```c
computeArraySum(
    sum = 0;
    for(i = 0; i < n; i++)
    {
        sum += a[i];
    }
    return(sum);
)
2.2.2 The CPU/Specialized-processor Interface

The specialized circuits are connected to the CPU via a set of scan chains. They receive the initial arguments as well as the “ready” signal from the CPU using these scan chains. The initial arguments are the live-in values for the computation being off-loaded to the specialized circuit and the ready signal signals the beginning of the execution. When the specialized circuits complete the off-loaded computation, they send a “done” signal to the CPU.

2.2.3 The Runtime System

When compiling an application containing functions that can be off-loaded to a specialized processor, the compiler will insert stubs that enable the application to choose between using the specialized processor or the CPU at runtime.

At runtime, when an application wants to run a function that has the corresponding specialized circuit available, it queries the runtime to get access to the specialized processor. If the specialized processor is available, the application uses the scan chain interface to pass the initial arguments, start it running, and then waits for execution to complete. When the done signal is raised by the specialized processor, control passes back to the stub code which extracts the return value and passes it back to the application.

If the specialized processor is not available, then the application uses the CPU version of the function code to continue execution on the general-purpose processor.

2.3 Methodology

This section presents the details of the toolchain for automatically generating the hardware for specialized cores from the application code as well as the methodology for the performance and power measurements of the baseline system.
Figure 2.5: The C-to-hardware toolchain The various stages of our toolchain involved in hardware generation, simulation, and power measurement are shown.
2.3.1 Toolchain

The toolchain for designing specialized cores takes C programs as input, splits them into datapath and control segments, and then uses a state-of-the-art EDA tool flow to generate a circuit fully realizable in silicon. The toolchain also generates a cycle-accurate system simulator for the new hardware. The simulator provides performance measurements as well as generates traces that drive Synopsys VCS and PrimeTime simulation of the placed-and-routed netlist.

Figure 2.5 depicts the various stages of the toolchain. The toolchain is based on the OpenIMPACT (1.0rc4) [Ope], CodeSurfer (2.1p1) [Cod], and LLVM (2.4) [LA04] compiler infrastructures and accepts a large subset of the C language, including arbitrary pointer references, switch statements, and loops with complex conditions.

In the hotspot identification stage, functions or subregions of functions (e.g., key loops) are tagged for conversion into specialized cores based on profile information. The toolchain uses outlining to isolate the region and then uses exhaustive inlining to remove function calls. Also, the global variables are passed by reference as additional input arguments.

The C-to-Verilog stage generates the control and dataflow graphs for the function in SSA [CFR+89] form. This stage then adds basic blocks and control states for each memory operation and multi-cycle instruction. The final step of the C-to-Verilog stage generates synthesizeable Verilog for the specialized core. This requires converting $\phi$ operators into muxes, inserting registers at the definition of each value, and adding self loops to the control flow graph for the multi-cycle operations. Then, it generates the control unit with a state machine that matches the control flow graph. This stage of the toolchain also generates a cycle-accurate module for our architectural simulator. The further details of this stage can be found in [VSG+10].

2.3.2 Simulation infrastructure

Our cycle-accurate simulation infrastructure is based on btl, the Raw simulator [TLM+04]. The btl simulator was modified to model a cache-coherent memory
among multiple processors, to include a scan chain interface between the CPU and all of the local specialized cores, and to simulate the specialized logic itself.

2.3.3 Synthesis

For synthesis, the toolchain targets a TSMC 45 nm GS process using Synopsys Design Compiler (C-2009.06-SP2) and IC Compiler (C-2009.06-SP2). Our toolchain generates synthesizeable Verilog and automatically processes the design in the Synopsys CAD tool flow, starting with netlist generation and continuing through placement, clock tree synthesis, and routing, before performing post-route optimizations.

2.3.4 Power measurements

In order to measure the power usage of specialized cores, the btl simulator periodically samples execution by storing traces of all inputs and outputs to the specialized logic. Each sample starts with a “snapshot” recording the entire register state of the specialized core and continues for 10,000 cycles. The current sampling policy is to sample 10,000 out of every 50,000 cycles, and we discard sampling periods corresponding to the initialization phase of the application.

The power measurement stage feeds each trace sample into the Synopsys VCS (C-2009.06) logic simulator. Along with the Verilog code our toolchain also automatically generates a Verilog testbench module, which initiates the simulation of each sample by scanning in the register values from each trace snapshot. The VCS simulation generates a VCD activity file, which we pipe as input into Synopsys PrimeTime (C-2009.06-SP2). PrimeTime computes both the static and dynamic power for each sampling period.

To model power for other system components, this stage uses processor and clock power values from specifications for a MIPS 24KE processor in TSMC 90 nm and 65 nm processes [MIP09], and component ratios for Raw reported in [KTMW03], scaled to a 45 nm process. For its measurements, this stage assumes a MIPS core frequency of 1.5 GHz with 0.077 mW/MHz for average CPU operation.
Finally, this stage uses CACTI 5.3 [TMAJ08] for I- and D-cache power.

Acknowledgments

Portions of this research were funded by the US National Science Foundation under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF Award 0811794.

This chapter contains material from “Conservation cores: reducing the energy of mature computations”, by Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson and Michael Bedford Taylor, which appears in ASPLOS ’10: Proceedings of the fifteenth edition of ASPLOS on Architectural support for programming languages and operating systems. The dissertation author was the primary investigator and author of this paper. The material in this chapter is copyright ©2010 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page in print or the first screen in digital media. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.
Chapter 3

Patchable Conservation Cores: Energy-efficient circuits with processor-like lifetimes

Chapter 1 explains the utilization wall phenomenon and the challenges it presents in effectively using the increasing transistor counts to scale performance. The previous chapter described the Arsenal system, a massively heterogeneous tiled architecture that seeks to scale performance in spite of the utilization wall by synthesizing application-specific circuits targeting the key functions of the system workload. These application-specific circuits provide energy-efficient execution of irregular integer codes and can improve the energy efficiency by up to 30X compared to an efficient in-order MIPS processor [TLM+04]. These specialized circuits enable the Arsenal system to optimize energy-per-computation, which translates into better system performance by allowing more computations to run in parallel.

However, these application-specific circuits are very tightly coupled to the source code they target and cannot support any change in the same. Hence, these circuits are tied to the version of the application they were designed for and cannot support older or newer application versions. This lack of flexibility makes these application-specific circuits poor candidates for many of the applications in a system’s workload. From a system designer’s standpoint, designing co-processors that can only target a particular version of an application can cause two main prob-
lems – these specialized circuits would become unusable as soon as the application version is upgraded and also, circuits targeting the latest version will provide little benefit to the users still using the older application versions.

To address these issues, this thesis proposes Patchable Conservation cores (C-cores), application-specific circuits that remain useful across application versions, providing them with lifetimes comparable to those of general-purpose processors. The main contribution of this work is the novel patching mechanism that provides these application-specific circuits with targeted reconfigurability to enable them to support multiple application versions. This work extends the toolchain presented in the previous section to generate configuration “patches” corresponding to different application versions. At runtime, the c-core utilizes the configuration patch to adapt to the application version that wants to run on it. In this manner, c-cores remain useful across application versions, providing them with lifetimes comparable to that of a general-purpose processor.

This chapter is organized as follows. Section 3.1 motivates the need for reconfigurability in application-specific circuits. Section 3.2 describes the reconfigurability mechanisms that this work proposes to improve the longevity of these specialized circuits. Section 3.3 explains that patching algorithm for mapping alternate application versions onto a patchable c-core. Section 3.4 presents the methodology for designing and configuring the patchable c-cores. Section 3.5 evaluates the energy efficiency and longevity of patchable c-cores. Section 3.6 analyzes the area and energy overheads of the reconfigurability mechanisms and proposes optimizations to mitigate them without affecting the c-core’s longevity. Section 3.7 proposes a mechanism to further improve the backward compatibility of the patchable c-cores. Section 3.8 concludes this chapter.

### 3.1 Case for Reconfigurability in Application Specific Circuits

This work seeks to provide energy-efficient execution for mature applications, applications that have a relatively stable set of core functions. While the code
base of these applications will change across versions, the source code corresponding to the core functionality changes very infrequently, and when it does change, the changes tend to be relatively minor. This section analyzes the changes in the core functions of mature applications across successive versions and uses that analysis to motivate the need for providing targeted reconfigurability in application-specific circuits.

To better understand how the core functions change in mature applications, this section analyzes the changes across successive versions of DJPEG, CJPEG, Libpng, Sat Solver, MCF, VPR, and Bzip2 and documents the code change patterns that were commonly seen. Figure 3.1 shows the commonly seen code change pattern. The analysis shows that supporting these changes would allow the application-specific circuits to adapt to multiple versions of the applications listed above, potentially enabling these configurable circuits to remain useful for eight years on average. These commonly seen source code change patterns are summarized below.

**Control flow changes** A commonly seen change in the key functions is the addition or removal of certain computations. Figure 3.1(a) shows the changes in the function `refresh_potential` across versions SPEC2000 and SPEC2006 of MCF. The main change across the two versions is the removal of a `for` loop in the beginning of the function, and the rest of the function code remains the same.

**Changes in datapath operators and constants** The second kind of common change patterns includes changes in expression constants and changes in datapath operators such as loop termination conditions (`<` replaced by `≤`). Figure 3.1(b) shows the changes in the function `sentMTFValues` across versions 1.0.2 and 1.0.3 of Bzip2. The only change across the two versions is in the constant value used to ensure that a program variable value lies within the valid range.

**Changes in the memory layout** Another form of commonly seen change is in the layout of the program data structures. These changes include addition, deletion or rearrangement of structure fields. Figure 3.1(c) shows the changes in the data
Figure 3.1: Commonly seen source code modification patterns across application versions. The figure shows changes across versions of a) MCF, b) Bzip2, and c) DJPEG. The changes are shown in bold.
structure `jpeg_decompress_struct` across versions 5.0 and 6.0 of DJPEG. The data structure’s member variables are reorganized and new variables are added (for ex. `buffered_image`). While the source of the hot spot functions in DJPEG does not change across versions, the change in the data structure layout changes the offsets used to calculate the memory addresses for load/store operations.

The above analysis shows that while the source code for the key functions might change across application versions, the majority of the code in a key function tends to remain the same. Hence, across application versions, hardware implementation is available for the majority of the code in a key function and the new version should ideally be able to reuse the available hardware, albeit at a lower level of performance/energy efficiency.

3.2 Reconfigurability support in Conservation Cores

The analysis of successive application versions, presented in the previous section, revealed a number of common change patterns, all of which were relatively minor changes in source code. As discussed in Section 2.2.1, the c-core control unit and datapath very closely correspond to the program structure. Hence, the changes in c-core hardware design would mirror the changes in the source code. Fortunately, c-cores can support many of these changes effectively with very modest amounts of reconfigurability. This thesis proposes the following three patching mechanisms for adjusting the c-core behavior after they have been fabricated.

**Configurable constants**  The first patching mechanism generalizes hard-coded immediate values into configurable registers. This mechanism supports changes to the values of compile-time constants and the insertion, deletion, or rearrangement of structure fields.

**Generalized single-cycle datapath operators**  To support the replacement of one operator with another, the second patching mechanism generalizes any
addition or subtraction to an adder-subtractor, any comparison operation to a generalized comparator, and any bitwise operation to a bitwise ALU. A small configuration register is then added for each such operator, determining which operation is currently active.

**Control flow changes** In order to handle changes in the CFG’s structure and changes to basic blocks that go beyond what the above mechanisms can handle, the third patching mechanism provides a flexible exception mechanism. The control path contains a bit for each state transition that determines whether the c-core should treat it as an exception.

When the state machine makes an exceptional transition, the c-core stops executing and transfers control to the general-purpose core. The exception handler extracts current variable values from the c-core via the scan-chain-based interface, performs a portion of the patched execution, transfers new values back into the c-core, and resumes execution. The exception handler can restart c-core execution at any point in the CFG, so exceptions can arbitrarily alter control flow and/or replace arbitrary portions of the CFG.

The next section describes the patch generation algorithm for mapping the newer application versions onto a patchable c-core. The patching algorithm utilizes this mapping to determine the reconfiguration state necessary to allow a c-core to continue to run code even after it has been changed from the version used to generate that c-core.

### 3.3 Patching Algorithm

This section describes the patching algorithm this thesis proposes. The patching algorithm works directly on the program’s dataflow and control flow graph, a representation that can be generated from either source code or a compiled binary. This enables the patch generation to happen at assembly level, allowing the new application versions to run on the specialized hardware without any source code modifications.
### Original Version
```
sumArray(int n, int*a)
{
 int i = 0;
 int sum = 0;
 for(;i<n;i++)
 {
 sum += a[i];
 }
 return(sum);
}
```

### New Version
```
sumArray(int n, int*a)
{
 int i = 0;
 int sum = 0;
 for(;i<n;i++)
 {
 sum += a[i];
 }
 sum = sum % 256;
 return(sum);
}
```

---

Figure 3.2: Handling changes in control flow across versions (a) The original and new source for `sumArray()` is shown. (b) The mapping between the new and the original version of sumArray’s CFG covers most of the target version in two hardware regions. (c) Transfers of control between the hardware and software regions require an exception.
3.3 Basic block mapping

The first stage of the algorithm identifies which hardware basic blocks in the original hardware can run each basic block in the target application. Since the original hardware includes generalized arithmetic operators and configurable constant registers, there is significant flexibility in what it means for two basic blocks to match. Two basic blocks match if the following conditions are true.
• The basic blocks have the same number of instructions, not including unconditional jumps (which only affect the control path and, therefore, have no effect on the generated hardware).

• The data flow graphs of the two basic blocks are isomorphic up to operators at the nodes and constant values.

• For each instruction in the target basic block, there is a corresponding instruction in the original that it is compatible with. That is, the original instruction is either identical to the target, or can be patched to turn it into the target instruction.

Figure 3.3 shows one original block, $B_1$ and two target blocks, $B_2$ and $B_3$. The mapping process will mark $B_3$ as a possible match for $B_1$, and $B_2$ as not matching $B_1$.

### 3.3.2 Control flow mapping

The next step of the patching algorithm is building a map between the control flow graphs of the original and target versions. This step identifies regions of the target control flow graph that map perfectly onto disjoint portions of the original hardware. These portions of the function are called *hardware regions*, and they will execute entirely in hardware under the patch. Ideally, all basic blocks in the target will map to basic blocks in the original, and there will be a single hardware region. In practice this will sometimes not be possible. The target version may have basic blocks inserted or deleted relative to the original, or one of the basic blocks may have changed enough that no matching basic block exists in the original. The exception mechanism executes the remaining, unmapped *software regions* on the general purpose processor.

To divide the control flow graph, the algorithm starts by matching the entry node of the target graph with the entry of the original graph. The algorithm proceeds with a breadth-first traversal of the target graph, greedily adding as many blocks to the hardware region as possible. When the hardware region can grow no larger, the region is complete.
A region stops growing for one of two reasons: It may reach the end of the function or run up against another hardware region. Alternatively, there may be no matching basic blocks available to add to the region because of a code modification. In that case, the patching algorithm marks the non-matching basic blocks as part of the software region and selects the lowest depth matching basic block available to seed the creation of a new hardware region. This stage of the algorithm terminates when the entire function has been partitioned into hardware regions and software regions.

Figure 3.2 illustrates this portion of the algorithm. Figure 3.2(a) shows the original software version of a function called `sumArray()` and its CFG. Figure 3.2(b) shows the target version of `sumArray()` which has an extra operation. Most of the new `sumArray()` is mapped onto the original c-core in two hardware regions, but the new operation is mapped to a separate software region because the hardware for it does not exist in the original c-core. Any transition to this region will be marked as an exception.

### 3.3.3 Register mapping

The next phase of the algorithm generates a consistent local mapping between registers in the original and target basic block for each matched basic block pair. In this mapping, the output of the first instruction in the original basic block corresponds to the output of the first instruction in the target basic block, and so on.

The next step is to combine these per-block maps to create a consistent register mapping for each hardware region. To construct the mapping, the patching algorithm analyzes the basic block mapping for each of the basic blocks in the region. This data yields a weighted bipartite graph, in which one set of nodes corresponds to the register names from the original code and the second set corresponds to register names from the target code. An edge exists between an original register, \( r_1 \), and a target register, \( r_2 \), if there exits a basic block pair that maps \( r_2 \) onto \( r_1 \). The weight of the edge is the number of basic block pairs that contain this register mapping.
Figure 3.4: The Patching Algorithm Toolchain The various stages of our toolchain involved in hardware generation, patching, simulation, and power measurement are shown. The bold box contains the patch generation infrastructure based on our patching enabled compiler.

Next, the algorithm performs a maximum cardinality, maximum weight matching on the graph. The resulting matching is the register map for that hardware region. Finally, each pair of corresponding basic blocks is examined to see if their register names are consistent with the newly created global map. If they are not, the target basic block is removed from the hardware region and placed it in its own software region.

3.3.4 Patch generation

At this point, the patching algorithm has all the information required to generate a patch that will let the target code run on the original hardware. The patch itself consists of three parts:
• the configuration bits for each of the configurable components including the datapath elements and the configurable constant registers

• exception bits for each of the control flow edges that pass from a hardware region into a software region

• code to implement each of the software regions

The software region code is subdivided into three sections. First, the prologue uses the scan chain interface to retrieve values from the c-core’s datapath into the processor core. Next, the patch code implements the software region. The region may have multiple exit points, each leading back to a different point in the datapath. At the exit, the epilogue uses the scan chain interface again to insert the results back into the datapath and return control to the c-core.

3.3.5 Patched execution example

Figure 3.2(c) shows how c-cores use the exception mechanism to patch around software regions generated during the control flow mapping stage. When the c-core execution reaches the false edge of the for loop condition, it makes an exceptional transition which freezes the c-core and transfers control to the CPU. The CPU retrieves the application’s software exception handler corresponding to the edge that raised the exception, and the handler executes the prologue, patch code, and epilogue before returning control to the c-core.

3.4 Methodology

This section describes the methodology for designing patchable c-cores and generating configuration patches corresponding to different application versions. The bold box in Figure 3.4 shows how the patching system fits into the toolchain explained in Section 2.3.
3.4.1 Generation of Patchable Conservation Core Hardware

The hardware generation compiler extends the C-to-Verilog compiler (Section 2.3.1) to provide support for the reconfigurability mechanisms. The hardware compiler instantiates the datapath operators in the program as generalized ALUs, stores the expression constants and memory offsets in 32-bit registers, and extends each state transition edge in the control unit with a 1-bit exception register.

Also, the hardware compiler adds two new groups of scan chains to c-cores. The first group of scan chains connects all of the reconfiguration state including the exception registers, registers for storing configurable constants and memory offsets, and the configuration registers in each of the generalized datapath operators. This scan chain group is used to initialize the c-core with the configuration patch before the application execution begins. The second group of scan chains connects the registers storing the datapath state. These datapath scan chains allow the CPU to manipulate arbitrary state during an exception. Since each c-core can contain hundreds of registers, the datapath state registers are divided amongst up to 32 scan chains to ensure that CPU can access the datapath state without significant overhead.

3.4.2 Generating Configuration Patch

The toolchain generates the application configuration patch to store the reconfiguration state. This includes the exception register values, expression constant and memory offset values, and operator index values in the ALU configuration registers. This stage stores the configuration patch in a binary file. At runtime, the application reads this configuration patch file to initialize the c-core using the scan chain interface explained in the previous section.

Figure 3.4 shows how the configuration patch is generated for new application releases. The toolchain generates the configuration patch by matching the new application version’s binary to the c-core hardware design based on the patching algorithm described in Section 3.3.
3.5 Results

This section describes the performance and efficiency of the patchable c-core architecture and its impact on application performance and energy consumption. Also, this section discusses the gains in longevity due to the patching mechanism.

3.5.1 Energy savings

This section presents the analysis of patchable c-cores for six versions of bzip2 (1.0.0–1.0.5), and two versions each of cjpeg (v1–v2), djpeg (v5–v6), mcf (2000–2006), and vpr (4.22–4.30). Table 3.1 summarizes the c-cores. The table shows that the hot spots of the above-mentioned benchmarks vary greatly in size as well as complexity. Also, the data shows that the same set of functions accounts for a sizable fraction of execution of different application versions, implying that the c-cores will remain useful across application version releases.

Figure 3.5 shows the relative energy efficiency, EDP improvement, and speedup of c-cores versus a MIPS processor executing the same code. For fairness, and to quantify the benefits of converting instructions into c-cores, we exclude cache power for both cases. The data show that patchable c-cores are up to 15.96× as energy-efficient as a MIPS core at executing the code they were built to execute. The data also shows that the c-cores are able to support multiple versions effectively. On average, the c-cores are 8.68× more energy-efficient than a MIPS core at executing alternate versions of the code they were designed to execute. The non-patchable c-cores are even more energy efficient, but their inability to adapt to software changes limits their useful lifetime.

Figure 3.6 shows the energy delay improvements provided by a c-core-enabled architecture at the application level. This is a full system evaluation including the runtime and CPU/c-core interface overheads and the energy consumed by the memory hierarchy and interconnect. The data shows that the c-core-enabled architecture improves the energy efficiency by 33% on average compared to the baseline tiled architecture. Moreover, in a c-core-enabled system, the dynamic energy of computation accounts for less than half of the total energy
Table 3.1: Conservation core statistics The c-cores we generated vary greatly in size and complexity. In the “Key” column, the letters correspond to application versions and the Roman numerals denote specific functions from the application that a c-core targets. “LOC” is lines of C source code, and “% Exe.” is the percentage of execution that each function comprises in the application.

<table>
<thead>
<tr>
<th>C-core</th>
<th>Ver.</th>
<th>Key</th>
<th>LOC</th>
<th>% Exe.</th>
<th>Area (mm²)</th>
<th>Freq. (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bzip2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fallbackSort</td>
<td>1.0.0</td>
<td>A i</td>
<td>231</td>
<td>71.1</td>
<td>0.128</td>
<td>0.275</td>
</tr>
<tr>
<td>fallbackSort</td>
<td>1.0.5</td>
<td>F i</td>
<td>231</td>
<td>71.1</td>
<td>0.128</td>
<td>0.275</td>
</tr>
<tr>
<td>jpeg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extract_MCUv1</td>
<td>v1</td>
<td>A i</td>
<td>266</td>
<td>49.3</td>
<td>0.108</td>
<td>0.205</td>
</tr>
<tr>
<td>get_rgb_ycc_rows</td>
<td>v1</td>
<td>A ii</td>
<td>39</td>
<td>5.1</td>
<td>0.020</td>
<td>0.044</td>
</tr>
<tr>
<td>subsample</td>
<td>v1</td>
<td>A iii</td>
<td>40</td>
<td>17.7</td>
<td>0.023</td>
<td>0.039</td>
</tr>
<tr>
<td>extract_MCUv2</td>
<td>v2</td>
<td>B i</td>
<td>277</td>
<td>49.5</td>
<td>0.108</td>
<td>0.205</td>
</tr>
<tr>
<td>get_rgb_ycc_rows</td>
<td>v2</td>
<td>B ii</td>
<td>37</td>
<td>5.1</td>
<td>0.020</td>
<td>0.044</td>
</tr>
<tr>
<td>subsample</td>
<td>v2</td>
<td>B iii</td>
<td>36</td>
<td>17.8</td>
<td>0.023</td>
<td>0.039</td>
</tr>
<tr>
<td>jpeg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jpeg_idct_islow</td>
<td>v5</td>
<td>A i</td>
<td>223</td>
<td>21.5</td>
<td>0.133</td>
<td>0.222</td>
</tr>
<tr>
<td>ycc_rgb_convert</td>
<td>v5</td>
<td>A ii</td>
<td>35</td>
<td>33.0</td>
<td>0.023</td>
<td>0.043</td>
</tr>
<tr>
<td>jpeg_idct_islow</td>
<td>v6</td>
<td>B i</td>
<td>236</td>
<td>21.7</td>
<td>0.135</td>
<td>0.222</td>
</tr>
<tr>
<td>ycc_rgb_convert</td>
<td>v6</td>
<td>B ii</td>
<td>35</td>
<td>33.7</td>
<td>0.024</td>
<td>0.043</td>
</tr>
<tr>
<td>mcf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>primal_bea_mpp</td>
<td>2000</td>
<td>A i</td>
<td>64</td>
<td>35.2</td>
<td>0.033</td>
<td>0.077</td>
</tr>
<tr>
<td>refresh_potential</td>
<td>2000</td>
<td>A ii</td>
<td>44</td>
<td>8.8</td>
<td>0.017</td>
<td>0.033</td>
</tr>
<tr>
<td>primal_bea_mpp</td>
<td>2006</td>
<td>B i</td>
<td>64</td>
<td>53.3</td>
<td>0.032</td>
<td>0.077</td>
</tr>
<tr>
<td>refresh_potential</td>
<td>2006</td>
<td>B ii</td>
<td>41</td>
<td>1.3</td>
<td>0.015</td>
<td>0.028</td>
</tr>
<tr>
<td>vpr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>try_swap</td>
<td>4.22</td>
<td>A i</td>
<td>858</td>
<td>61.1</td>
<td>0.181</td>
<td>0.326</td>
</tr>
<tr>
<td>try_swap</td>
<td>4.3</td>
<td>B i</td>
<td>861</td>
<td>27.0</td>
<td>0.181</td>
<td>0.326</td>
</tr>
</tbody>
</table>
Figure 3.5: **Conservation core energy efficiency** Our patchable c-cores provide up to 15.96× improvement in energy efficiency compared to a general-purpose MIPS core for the portions of the programs that they implement. The gains are even larger for non-patchable c-cores, but their lack of flexibility limits their useful lifetime (see Figure 3.7). Each subgroup of bars represents a specific version of an application (see Table 3.1). Results are normalized to running completely in software on an in-order, power-efficient MIPS core (“SW”). “unpatchable” denotes a c-core built for that version of the application but without patching support, while “patchable” includes patching facilities. Finally, “patched” bars represent alternate versions of an application running on a patched c-core. For all six versions of bzip2 (A-F), the c-core’s performance is identical.
at system level, the patchable c-cores reduce the application energy requirements by up to 2× compared to a general-purpose MIPS core. Each subgroup of bars represents a specific version of an application (see Table 3.1). Results are normalized to running completely in software on an in-order, power-efficient MIPS core (“SW”). “on HW.A” denotes a c-core built for that version of the application but without patching support, while “on HW.AP” includes patching facilities. Finally, “on HW.BP” bars represent alternate versions of an application running on a patched c-core. For all six versions of bzip2 (A-F), the c-core’s performance is identical.

Figure 3.6: **Full application system energy, EDP, and execution time for c-cores** At system level, the patchable c-cores reduce the application energy requirements by up to 2× compared to a general-purpose MIPS core. Each subgroup of bars represents a specific version of an application (see Table 3.1). Results are normalized to running completely in software on an in-order, power-efficient MIPS core (“SW”). “on HW.A” denotes a c-core built for that version of the application but without patching support, while “on HW.AP” includes patching facilities. Finally, “on HW.BP” bars represent alternate versions of an application running on a patched c-core. For all six versions of bzip2 (A-F), the c-core’s performance is identical.
Figure 3.7: Conservation core effectiveness over time The patchable c-cores are able to support changes in code across versions of stable applications, enabling them to deliver efficiency gains over a very long period of time.

consumption, making memory system and interconnect the dominant components of system energy consumption.

3.5.2 Longevity

Figure 3.7 quantifies the ability of the proposed patching mechanisms to extend the useful lifetime of c-cores. The horizontal axis measures time in years, and the vertical axis is energy efficiency normalized to software. The lines represent what the c-cores built for the earliest software version can deliver, both with and
without patching support. For instance, vpr 4.22 was released in 1999, but when a new version appears in 2000, the non-patchable hardware must default to software, reducing the energy efficiency factor from $6.2\times$ down to $1\times$. In contrast, patchable hardware built for 4.22 has a lower initial efficiency factor of $3.4\times$, but it remained there until March 2009. For djpeg and bzip2, the results are even more impressive: Those c-cores deliver $10\times$ and $6.4\times$ energy efficiency improvements for covered execution over 15 and 9 year periods, respectively.

The above discussion shows that the patchable c-cores can provide lifetimes comparable to that of general-purpose processors. These improved lifetimes combined with significant energy efficiency make c-cores ideal candidates for many commonly used applications.

### 3.6 Patching Overhead Analysis and Optimizations

The previous sections demonstrate that the reconfigurability mechanisms can provide processor-like lifetimes for application-specific circuits. This section analyzes the cost of these reconfigurability mechanisms in terms of their impact on area and energy consumption and proposes optimizations to reduce these overheads without significantly affecting the lifetimes of patchable c-cores.

#### 3.6.1 Cost of Reconfigurability

The patchable c-cores utilize reconfigurability to ensure longevity. Table 3.2 shows that the c-cores extensively use patching constructs. The data shows that more than half of the instructions use configurable registers, and 16% to 31% of instructions use configurable datapath operators. The impact of utilizing these patching mechanisms on area and energy consumption is examined in more detail below.

**Area overhead**  Patching area overhead comes in four forms. The first is the increase in area caused by replacing simple, fixed-function datapath elements (e.g.,
adders, comparators) with configurable ones. The second form comes from the conversion of hard-wired constant values to configurable registers. Third, there is extra area in the scan chains that allows us to insert, remove, and modify arbitrary values in the c-core. Finally, patchable c-cores require additional area in the control path to store edge exception information.

Table 3.3 compares the area requirements for patchable and non-patchable structures. The costs on a per-element basis vary from 160 $\mu$m$^2$ per configurable constant register to 365$\mu$m$^2$ per add/subtract unit. The standard cell libraries include scan chains in registers automatically, but they are not easily accessible in the tool flow. Instead, our toolchain implements the scan chains explicitly, which results in additional overhead that could be removed with proper support from the tool flow.

Figure 3.8(a) shows the breakdown of area for the patchable c-cores for the earliest version of each of our 5 target applications. Patching support increases the area requirements of c-cores by 89% on average.

Figure 3.8: **Area and power breakdown for patchable c-cores** Adding patchability approximately doubles a c-core’s area (a) and power (b) requirements.
**Power overhead**  Patching support also incurs additional power overhead. Figure 3.8(b) shows the impact of adding each of the three components described above. Overall, patching support approximately doubles the power consumption of the c-cores, with the majority of the overhead coming from the configurable registers.

**Performance overhead**  In the c-core toolchain, adding patchability does not change the structure of the datapath, but it does potentially increase the critical path length and, therefore, the achievable clock speed. On average, patchable systems achieve 90% of the application performance of non-patchable systems.

### 3.6.2 Optimizations to Reduce the Patching Overheads

This section presents a detailed analysis of how the patching constructs are utilized by stable workloads to achieve longevity. Using this analysis, this thesis proposes improvements to the reconfigurability mechanisms that trade a small amount of flexibility (in terms of what code changes are patchable) for greatly reduced overhead (area and power). The analysis is based on the workloads described in Section 3.5 as well as other irregular programs from SPEC 2000 [SPE00] (Twolf), Sat Solver [TH04], and Splash [WOT+95] (Radix).

**Reduced-width Configurable Constants**  Most programs use many compile-time constants such as program constants and structure offsets. To support changes in these across versions, the patching mechanism replaces every compile-time constant with a 32-bit register that is configurable at run-time.

This study analyzes the bit width requirements of the compile-time constants and how they change across versions. In our workloads, 87% of all compile-time constants can be represented by 8 or fewer bits. Moreover, even for compile-time constants longer than 8 bits, the software changes across versions only affected the low-order bits. In order to exploit this for reducing the patching overhead, 8-bit configurable registers were used to represent the lower bits of the program constants, leaving the original upper 24 bits fixed. In this manner, the reduced-
Table 3.2: **Conservation core details** “States” is the number of states in the control path, “Ops” is the number of assembly-level instructions, and “Patching Constructs” gives a breakdown of the different types of patching facilities used in each conservation core.

<table>
<thead>
<tr>
<th>C-core</th>
<th>Ver.</th>
<th>States</th>
<th>Ops</th>
<th>Loads/Stores</th>
<th>Patching Constructs</th>
<th>Add-Sub</th>
<th>Cmp, Bit.</th>
<th>Const.</th>
<th>Exc.</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>bzip2</td>
<td>1.0.0</td>
<td>285</td>
<td>647</td>
<td>66 / 38</td>
<td>138 /78</td>
<td>33</td>
<td>323</td>
<td>363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fallbackSort</td>
<td>1.0.5</td>
<td>285</td>
<td>647</td>
<td>66 / 38</td>
<td>138 /78</td>
<td>33</td>
<td>323</td>
<td>363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cjpeg</td>
<td></td>
</tr>
<tr>
<td>extract_MCUs</td>
<td>v1</td>
<td>116</td>
<td>406</td>
<td>41 / 25</td>
<td>152 /11</td>
<td>0</td>
<td>235</td>
<td>127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>get_rgb_ycc_rows</td>
<td>v1</td>
<td>23</td>
<td>68</td>
<td>14 / 3</td>
<td>16 / 2</td>
<td>0</td>
<td>39</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subsample</td>
<td>v1</td>
<td>32</td>
<td>85</td>
<td>9 / 1</td>
<td>16 / 8</td>
<td>1</td>
<td>34</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>extract_MCUs</td>
<td>v2</td>
<td>116</td>
<td>406</td>
<td>41 / 25</td>
<td>152 /11</td>
<td>0</td>
<td>235</td>
<td>127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>get_rgb_ycc_rows</td>
<td>v2</td>
<td>23</td>
<td>68</td>
<td>14 / 3</td>
<td>16 / 2</td>
<td>0</td>
<td>39</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subsample</td>
<td>v2</td>
<td>32</td>
<td>85</td>
<td>9 / 1</td>
<td>16 / 8</td>
<td>1</td>
<td>34</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>djjpeg</td>
<td></td>
</tr>
<tr>
<td>jpeg_idct_islow</td>
<td>v5</td>
<td>97</td>
<td>432</td>
<td>39 / 32</td>
<td>180 /4</td>
<td>21</td>
<td>238</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ycc_rgb_convert</td>
<td>v5</td>
<td>40</td>
<td>82</td>
<td>24 / 3</td>
<td>19 / 4</td>
<td>0</td>
<td>40</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jpeg_idct_islow</td>
<td>v6</td>
<td>97</td>
<td>432</td>
<td>39 / 32</td>
<td>180 /4</td>
<td>21</td>
<td>238</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ycc_rgb_convert</td>
<td>v6</td>
<td>40</td>
<td>82</td>
<td>24 / 3</td>
<td>19 / 4</td>
<td>0</td>
<td>40</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mcf</td>
<td></td>
</tr>
<tr>
<td>primal_bea_mpp</td>
<td>2000</td>
<td>101</td>
<td>144</td>
<td>36 / 16</td>
<td>22 /21</td>
<td>0</td>
<td>94</td>
<td>122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>refresh_potential</td>
<td>2000</td>
<td>44</td>
<td>70</td>
<td>17 / 5</td>
<td>6 /10</td>
<td>0</td>
<td>35</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>primal_bea_mpp</td>
<td>2006</td>
<td>101</td>
<td>144</td>
<td>36 / 16</td>
<td>22 /21</td>
<td>0</td>
<td>94</td>
<td>122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>refresh_potential</td>
<td>2006</td>
<td>39</td>
<td>60</td>
<td>16 / 4</td>
<td>3 /8</td>
<td>0</td>
<td>29</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vpr</td>
<td></td>
</tr>
<tr>
<td>try_swap</td>
<td>4.22</td>
<td>652</td>
<td>1095</td>
<td>123 / 86</td>
<td>108 / 149</td>
<td>0</td>
<td>367</td>
<td>801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>try_swap</td>
<td>4.3</td>
<td>652</td>
<td>1095</td>
<td>123 / 86</td>
<td>108 / 149</td>
<td>0</td>
<td>367</td>
<td>801</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.3: **Area costs of patchability** The AddSub unit can perform addition or subtraction. Similarly, Compare6 replaces any single comparator (e.g., ≥) with any of (=, ≠, ≥, >, ≤, <). Constant values in non-patchable hardware contribute little or even “negative” area because they can enable many optimizations.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Area (μm²)</th>
<th>Replaced by</th>
<th>Area (μm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adder</td>
<td>270</td>
<td>AddSub</td>
<td>365</td>
</tr>
<tr>
<td>subtractor</td>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>comparator (GE)</td>
<td>133</td>
<td>Compare6</td>
<td>216</td>
</tr>
<tr>
<td>bitwise AND, OR</td>
<td>34</td>
<td>Bitwise</td>
<td>191</td>
</tr>
<tr>
<td>bitwise XOR</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant value</td>
<td>~ 0</td>
<td>32-bit register</td>
<td>160</td>
</tr>
</tbody>
</table>
width configurable constants can still handle most software changes and reduces the energy and area overheads by 51% and 45%, respectively.

**Operation-specific Configurable Constants** The programs use compile-time constants to store expression constants as well as memory offsets. The patching mechanism replaces compile-time constants in all the arithmetic operations as well as memory offsets with configurable registers.

This study analyzes the operation classes whose expression constants might change across versions. The analysis of the workload set shows that, across versions, the compile-time constants representing the memory offsets change often across versions. Also, the expression constants in branch operations might change across versions. However, program constants in other arithmetic operations did not change across versions. To exploit this, the configurable constants target the memory offsets and branch operations and leave the program constants in other arithmetic operations fixed. This patching improvement still handles software changes in memory operations and branches in hardware, but if a value changes in other arithmetic operations, the c-core can use the exception mechanism to patch around the offending basic block. This operation-specific configurable constant optimization reduces the energy overhead by an additional 11% and area overhead by 18%.

**Configurable ALUs** The patching mechanism replaces specific fixed-function operators in the datapath with a more general equivalent. For example, an adder becomes an add/subtract unit, and a less-than comparator generalizes to a 6-function comparator unit able to compute all six (in)equalities. This mechanism could be used to fix application bugs such as less-than becoming less-than-or-equal in a loop condition.

The analysis of the workload set shows that these datapath operator changes are less common than changes to constants, so including configurable ALUs more judiciously and falling back on the exception mechanism when necessary can reduce area overhead by as much as additional 18%. Alternatively, multiple datapath operators can share a configurable ALU. This approach would reduce the area
overhead without sacrificing the reconfigurability of the c-cores.

**Impact of patching optimizations**

The patching mechanism optimizations reduce the overhead of patching by using reduced-width configurable constants and providing configurable constants for selective operations. The optimizations can further reduce the area overhead by multiplexing configurable ALUs across multiple datapath operators or eliminating the configurable ALUs and relying on the exception mechanism to support the software changes.

Figure 3.9 shows the impact of the patching optimizations on area and energy overheads. The bar labeled *c-core* includes the full patching mechanisms. The remaining bars show the energy improvements for the patching optimizations described above: *8b Const* uses 8-bit constant registers; *Op Sel* provides configurable constants only for selective operation classes; *ALU Opt.* reduces the number of configurable ALUs; and finally, *No Patch* removes all the patching support, making them unable to support any change in source across versions. All the bars are normalized to the last bar, and hence represent the overhead of the patching mechanisms.

### 3.7 Backward Patching

Section 3.2 presents reconfigurability mechanisms to improve a c-core’s longevity. These reconfigurability mechanisms were based on the commonly seen source code modification patterns and were effective at “future proofing” the c-cores. This section explains how to improve c-core’s support for the legacy “in-use” versions by exploiting the knowledge about the source code of older application versions. For exposition purposes, the patchable c-core with improved backward compatibility support is called *c-cores-bc* in this section. The c-cores-bc supports all the previously proposed patching mechanisms for supporting newer application releases. In addition, they also provide additional configurability in their control flow to support older “in-use” versions.
Figure 3.9: Impact of patching optimizations on the area and energy requirements of patchable c-cores The graph shows that the patching optimizations can significantly reduce the area and energy overheads of the reconfigurability mechanisms.
Figure 3.10: Conservation Core design with support for changes in control flow in older application versions The old and original source for `sumArray()` is shown (a). The changes between the old and the original version of `sumArray`’s CFG is shown in dashed lines (b). The conservation core design that can execute the old and original versions of `sumArray` without requiring an exception (c).

The patchable c-cores use the exception mechanism to handle changes in the control flow, as shown in Figure 3.2. However, the c-cores can incur high overhead for using the exception mechanism because of the slow CPU/c-core interface and execution of the patch code on the general-purpose processor. The c-cores can avoid this exception overhead for the older application versions by leveraging the fact that these changes in control flow are known at the time of c-core design. The c-core design flow can exploit this knowledge to design c-cores-bc that are better equipped to handle these control flow changes, as shown in Figure 3.10. In the figure, the control flow of the c-cores-bc can, at runtime, adapt to support the control flow of both the original application version as well as the older version. This allows the c-cores-bc to support multiple versions with different control-flows without requiring the exception mechanism.

The c-cores-bc design flow merges the source code changes from the older application versions to the current application version and uses this merged source to design the hardware. The rest of this section describes the methodology for designing c-cores-bc and analyzes their energy efficiency as well as lifetime.
Figure 3.11: The Backward Compatible Conservation Core Toolchain The various stages of our toolchain involved in hardware generation, patching, simulation, and power measurement are shown. The bold box contains the compiler for designing backward compatible c-cores based on the source code of current and older “in-use” versions.
3.7.1 Methodology

Figure 3.11 shows the toolchain for designing the c-cores-bc. The bold box in the figure shows how the backward patching mechanism fits into the toolchain explained in Section 3.4.

The c-cores-bc synthesis toolchain accepts the source code of current and older “in-use” application versions as input. The c-core identification stage profiles the application and tags the key functions for conversion into c-cores.

The backward patching compiler accepts the source code of key functions from the current and older application versions as input. The code merging stage merges the control flow changes from older application versions with the current version and generates the new source for the c-cores-bc. This new source implements the functionality of both the current and older versions and hence, can support all the involved versions without using the expensive exception mechanism at runtime. The details of this source code merging algorithm for designing c-cores-bc is presented in Chapter 5.

The configuration generator stage modifies the application source to pass the configuration state that the c-cores-bc utilizes to adapt to the corresponding application version at runtime. The current implementation passes the application version number as an additional function argument to the c-cores-bc. The c-cores-bc uses this version information to guard all the version-specific code segments, as shown in Figure 3.10(c).

The c-cores-bc’s source is then converted into hardware and integrated with the general-purpose processor using the methodology presented in Section 3.4. The next section analyzes the energy efficiency and longevity of the resultant c-cores-bc.

3.7.2 Results

Energy Savings Figure 3.12 presents c-cores-bc energy efficiency across application versions and compares it to that of c-cores. The results show that c-cores-bc provide significant energy-improvements compared to the baseline processor for all application versions and can be up to 7× more energy-efficient than c-cores for the older versions. Also, for the latest application version, c-cores-bc is almost as
Figure 3.12: **Improvements in the backward compatibility of Conservation Cores** The energy-efficiency of the older versions improves significantly (up to $7 \times$) with minimal impact on that of newer ones.

energy-efficient as the c-core (less than 10% difference on average).

**Longevity** Figure 3.13 demonstrates the effects of the backward patching technique on the longevity of the c-cores. The graphs plot the energy efficiency of c-core and c-cores-bc compared to that of a general-purpose processor over a period of time measured in years. The average energy improvements that c-core and c-cores-bc provide is shown by the *Average C-core* and *Average C-cores-bc* curve respectively. The graph shows that c-cores-bc can maintain their energy efficiency over longer periods of time by effectively supporting the older versions. For example, c-cores-bc provides $14 \times$ energy efficiency for MCF for a span of ten years, whereas the c-core can do so only for four years. This is because c-core’s energy efficiency for the legacy versions of MCF dips to $8 \times$. Moreover, these improvements in backward compatibility are obtained without significantly decreasing the energy efficiency of the c-cores-bc for the current and newer application versions (less than 10% difference on average).

The above results show that the backward compatibility of the c-cores can
Figure 3.13: Effectiveness of Backward Compatible Conservation Core over time. The graph on the left shows the energy efficiency provided by c-cores-bc over time in years. The graph on the right shows the same for c-core. The graphs show that, compared to c-cores, the c-cores-bc provides better energy efficiency over a longer period of time.
be significantly improved by designing compound circuits that can adapt to the control flow of different application versions at runtime. The results also show that this additional configurability comes at little expense to the energy efficiency of the c-cores. These results are in keeping with the working assumption of this work, which is that the key functions in mature applications do not change significantly across versions, and hence, it is possible and desirable to provide reconfigurability mechanisms in application-specific circuits, thus enabling these circuits to have lifetimes comparable to those of general-purpose processors.

3.8 Conclusion

This chapter proposes patchable conservation cores, energy-efficient circuits with targeted reconfigurability so that these circuits remain useful across application versions. The main contribution of this work is the patching mechanism that enables the newer application releases to be mapped onto the patchable c-core without any source code modifications. The patching mechanism can provide enough flexibility to ensure that c-cores will remain useful for up to 15 years, far beyond the lifetime of most processors. This work also analyzes the area and energy overheads of these patching mechanisms and proposes optimizations to reduce them without significantly affecting the c-core’s longevity. Also, this work proposes techniques to improve the backward compatibility of the c-cores, allowing them to run the legacy versions as efficiently as the latest version. Specialization has emerged as an effective approach to scale system performance in spite of the utilization wall phenomenon. However, lack of flexibility in application-specific circuits limits the scope of the applications that they can target. To address this applicability issue, this thesis proposes patching mechanisms that provide application-specific circuits with increased flexibility, making them a suitable candidate for targeting the mature applications in a system’s workload.
Acknowledgments

Portions of this research were funded by the US National Science Foundation under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF Award 0811794.

This chapter contains material from “Conservation cores: reducing the energy of mature computations”, by Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson and Michael Bedford Taylor, which appears in ASPLOS ’10: Proceedings of the fifteenth edition of ASPLOS on Architectural support for programming languages and operating systems. The dissertation author was the primary investigator and author of this paper. The material in this chapter is copyright ©2010 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page in print or the first screen in digital media. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

This chapter contains material from “Efficient complex operators for irregular code”, by Jack Sampson, Ganesh Venkatesh, Nathan Goulding, Saturnino Garcia, Steven Swanson and Michael Bedford Taylor, which appears in HPCA ’11: Proceedings of the International Symposium on High-Performance Computer Architecture (HPCA). The dissertation author was the secondary investigator and author of this paper. The material in this chapter is copyright ©2011 by the Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.
Chapter 4

Utilizing Conservation Cores to Design Mobile Application Processors

The market for smartphones and other portable devices continues to grow rapidly. These mobile devices provide a rich user experience, enabling people to stay connected, stream multimedia, play video games, and navigate using GPS-powered maps. Moreover, this trend of mobile devices providing greater functionality and supporting a more diverse application set is only expected to continue with the emergence of a new generation of mobile devices such as those based on Apple iOS [App] and Google Android [Gooc]. However, these increasingly diverse mobile applications strain the traditional model of manually designing specialized hardware to address the power concerns and achieve better performance. In order to provide this increasing functionality, new generations of mobile devices rely on general-purpose processors, called the application processors.

At the same time, as explained in Chapter 1, the utilization wall phenomenon is limiting the fraction of a chip that can be active simultaneously at full frequency. While the utilization wall phenomenon is applicable across all computational domains, it is especially limiting for mobile devices because of restricted power budgets. This threatens to limit the performance scaling of application processors, impeding the evolution of what is becoming the dominant computing
platform for much of the world.

This work explores the potential for designing energy-efficient mobile application processors by utilizing patchable conservation cores, explained in the previous chapter. In particular, the work primarily focuses on designing energy-efficient application processors for the Android-based mobile devices. The main contribution of this work is to analyze the software stack of Android and use this analysis to design conservation cores that can cover significant fraction of the Android execution while staying within modest area budgets. This work demonstrates that majority of the Android application execution time is spent in the Android libraries and the Dalvik virtual machine [Goob], and leverages this fact to design c-cores that can improve the energy efficiency and performance across a wide range of current Android applications and potentially, future applications as well.

This chapter is organized as follows. Section 4.1 explains the applicability of our c-core-based approach to the Android system. Section 4.2 presents the Android’s internal architecture. Section 4.3 explains our approach for designing c-cores targeting the hot code segments in the Android system. Section 4.4 examines the area requirements of the c-cores that our approach designs and the energy savings that these c-cores provide. Section 4.5 concludes this chapter.

4.1 Applicability of Conservation Cores to Android

This work proposes an energy-efficient application processor for Android-based mobile devices. This section first gives some background information about the Android platform and then uses this analysis to demonstrate that c-cores are a good fit for the Android system.

4.1.1 Android Platform Analysis

The Android software stack is shown in Figure 4.1. The core of the Android platform comprises a collection of native libraries written in C and C++ that imple-
Figure 4.1: **Android Software Stack** The various layers of the Android’s internal architecture [Gooc].

ment most of the widely used services such as compression, window compositing, 2-D and 3-D graphics, and HTML rendering. This software stack layer also contains the *Dalvik virtual machine* (DVM). The Dalvik virtual machine executes the user application code, compiled down to the byte code, and provides access to the native libraries via Java Native Interface calls.

Android architecture seeks to concentrate the performance-critical “hot” code in the native libraries, which the Android applications can utilize to implement their key functionality. The remainder of the application code, much of which will be relatively “cold,” runs on the Dalvik virtual machine, making the DVM code “hot” as well. In this manner, most of the “hot” code that runs on the application processor belongs to the Android software stack. The next section discusses how this “library-centric” design of Android is a good match for the c-core-based approach proposed in this thesis.
4.1.2 Case for using c-cores to optimize mobile application processors

Android’s internal architecture relies very heavily on a small number of shared software components, and there is a core set of commonly used applications (such as the web browser, video, music, and email programs) that represent common-case usage across a large number of users. Targeting these shared components will enable the c-cores to significantly reduce the system’s energy consumption. A c-core-based approach can exploit the Android’s internal architecture in the following two ways. First, the c-cores can target key portions of the native libraries and Dalvik in order to provide energy reduction across the general class of applications that run on the phone. These are termed as broad-based c-cores. In our studies, these broad-based c-cores can collectively cover an average of 72% of the execution of a typical Android mobile phone workload. Second, the c-cores can target specific applications that many Android users run. These targeted c-cores can, depending on the silicon area dedicated to them, cover from 80% to 90% to even 95% of the targeted workload. Although targeted c-cores may not achieve energy savings for new Android application releases, the rapid replacement cycle of smartphones suggests that it is reasonable to continually develop new c-cores for inclusion in future Android application processors as new applications achieve popularity.

The above discussion demonstrates that the c-cores can cover a significant fraction of the code execution on an application processor in Android-based mobile devices. Also, as more area becomes available for specialization with each technology generation, the c-core-based application processors can execute the Android system more efficiently and incorporate hardware support for an ever increasing number of desired functionalities.

4.2 Android Software Stack

This section describes the Android software platform including the Android applications, application framework, shared libraries, and the Android runtime.
Android applications  Android applications are written in Java. The application code has access to the application framework APIs that they can use to design their application user interface, access system resources such as the notification bar, as well as access data from other applications. This application model facilitates the reuse of components across applications.

Android shared libraries  Android shared libraries implement most of the widely used services such as system C library, window composting, and graphics libraries. These Android libraries consist of many of the performance-critical functions, are highly optimized for execution on mobile devices and are accessible to the application code via application framework APIs. These shared libraries enable the application code, written in Java, to implement much of their functionality in native C code. By design, these shared libraries would implement much of the “hot” code that executes in the Android system.

Dalvik virtual machine  The Dalvik virtual machine (DVM) executes the application code that is compiled down to the Dalvik executable format. The Dalvik virtual machine is optimized for running on a slow CPU with low main memory without draining too much of the battery power. However, given that it is a virtual machine executing the application code, executing a computation on the Dalvik virtual machine is not as energy-efficient as executing the computation directly on the CPU. Hence, given that all the application code written in Java executes on the Dalvik virtual machine, ensuring that the execution of virtual machine is energy-efficient is very critical as well.

The above discussion explains the high level design of the Android software stack and shows that as a result of this design, the shared libraries and the Android runtime account for much of the code that executes on the application processor. The next section profiles the Android system and provides further details about the hot code segments in the Android system.
4.3 Designing Conservation Cores for Android

The main goal of this section is to motivate the effectiveness of automatically generated application-specific circuits in optimizing the energy efficiency of application processors. Traditionally, mobile devices use hardware accelerators that were manually designed for very specific computations such as graphics operations. However, as the software stack of mobile devices becomes increasingly general-purpose, the fraction of the code that executes on the application processor increases considerably. This section demonstrates that a large fraction of this general-purpose code can be supported in hardware within very modest area budgets.

This section profiles the Android system executing many of the commonly used Android applications. Next, this profile is used to characterize the hot code segments in the Android system. Finally, based on this hot code analysis, this section presents our approach for designing the c-core-based mobile application processors.

4.3.1 Profiling the Android System

This section explains the profiler tool for profiling the execution of the Android system. The profiler traces every instruction that executes on the CPU including the kernel code. The next section post processes this instruction trace to collect information about the hot code segments.

Android emulator The profiling step uses a QEMU-based Android emulator [Gooa] to run the complete Android system including the Android shared libraries, the Dalvik virtual machine and the Linux kernel.

The tracing records every instruction from every process that runs on the CPU. This includes all the code in the native libraries, Dalvik virtual machine as well as the Linux kernel. This enables the analysis of the complete Android system so that the hot code segments can be accurately determined. The tracing also provides information about the memory system including the memory operations
executed and the cache hit/miss statistics. Moreover, this tracing does not need any modifications to the application and occurs completely inside the emulator. This enables the easy addition of more applications, as they become popular, to our workload.

**Android workload** The profiling is done on a workload consisting of commonly used Android applications in order to profile typical smartphone execution. The workload comprises a diverse set of user-level applications including the Web Browser, Google Mail, Google Maps, Google Music, Google Video, Pandora, Photoshop Mobile, and RoboDefense.

### 4.3.2 Characterizing the hotspots in the Android system

This section analyzes the hot code segments in the Android system that were found using the profiling methodology described in the previous section. The analysis first examines the amount of static code that the hardware would need to support in order to cover a significant fraction of the application execution. Then, the analysis looks into how to provide this hardware support in a scalable manner such that these specialized processors can provide energy improvements for a wide range of commonly used applications.

**Application Coverage**

The fraction of the application execution spent on a c-core, or coverage, is one of the key factors in determining how much benefit c-cores can provide. For c-cores to achieve high coverage in a reasonable amount of area, a relatively small fraction of the application’s instructions must account for a large fraction of the dynamically executed instructions as well as that of the application execution time. Figure 4.2 plots the fraction of the dynamically executed ARM instructions (y-axis) covered by the number of static ARM instructions (x-axis) for our Android application workload. In the figure, the top graph shows the average data across all the applications, while the graphs below plot it for each of the applications. The data shows that a relatively small number of static instructions account for a very
Figure 4.2: **Static Instruction Count vs Dynamic Instruction Count Coverage**

The graphs plot the dynamic instruction count coverage against the number of static instructions required to get that coverage. The results show that a small number of static instructions account for a large fraction of the dynamic instructions that execute on the CPU. The top graph plots the results averaged across all the applications, while the graphs below show the results for the Android applications - PhotoShop, Browser, Email, Gallery, Maps, Video, Pandora, and RoboDefense in that order.
Figure 4.3: **Basic block count vs Application execution coverage** The graphs plot the application execution coverage against the number of basic blocks required to get that coverage. The results show that a small number of basic blocks account for a large fraction of the application execution time. The top graph plots the results averaged across all the applications, while the graphs below show the results for the Android applications - PhotoShop, Browser, Email, Gallery, Maps, Video, Pandora, and RoboDefense in that order.
Figure 4.4: **Breakdown of Application Runtime across Android Software Stack** The graph plots the breakdown of application runtime across different layers of the Android software stack. The graph shows that majority of the application runtime is spent in the shared libraries.

A large fraction of the dynamically executed instructions. On an average, supporting 2000 static instructions was enough to cover 80% of the dynamic instructions.

Figure 4.3 plots the application execution coverage (y-axis) versus the number of basic blocks required (x-axis) for our Android application workload. This graph focuses on the fraction of total application execution time that the c-cores can support. The graph shows that the c-cores can cover a significant fraction of the application execution by supporting a relatively small number of basic blocks. In particular, the c-cores can cover 90% of application execution on an average by supporting 2000 basic blocks in the hardware, and this execution coverage can be as high as 98% for certain applications.
Code Reuse Across Applications

The above analysis shows that the c-cores can cover a significant fraction of an application execution by supporting a relatively small number of basic blocks. In order to provide good end user experience, the c-cores should be able to cover significant execution fraction across a wide range of commonly used applications. However, providing specialization specific to each application can limit the number of features that can be supported in hardware. The analysis below addresses this scalability issue by demonstrating that a majority of the application execution time is spent in the Android shared libraries, not in the application code itself. Moreover, the analysis shows that, across our workload set, there is significant code reuse across the code that executes for each application. This suggests that supporting a small fraction of the shared library in the hardware can provide benefits for a large number of applications.

Figure 4.4 presents the breakdown of the application execution time across the application native code (shown as .text), the different shared libraries in the Android system (shown as Non-prelinked Libraries, Prelinked App Libraries, Prelinked System Libraries), the linker, and finally the linux kernel (shown as Kernel). The graph shows that the majority of the application execution time is spent in the shared libraries. The applications on an average spend 78% of the execution time in the shared libraries. This implies that the c-cores targeting these shared libraries can potentially optimize the execution of many applications and also, these c-cores would be easily accessible to the newer applications that use these libraries.

The next experiment quantifies the code reuse across our application set and proposes an approach for exploiting this code reuse to maximize the benefits that the c-cores provide. To measure the code reuse, the analysis identifies identical basic blocks across the execution traces of different applications. The results show that, across our applications, 72% of the dynamic execution occurs in the code that is shared across more than one application. Such a high level of code reuse drives down the amount of static code that the c-cores need to cover in order to achieve good overall coverage of dynamic execution. The next section discusses how the code reuse data is incorporated into the algorithm for selecting the code segments
that when converted into c-cores provide the maximum execution coverage.

**Conservation core Identification**

This section presents the algorithm for selecting the code segments from the Android system and the application code that should be converted into c-cores. The main goal of this algorithm is to maximize the energy efficiency of the mobile application processor while minimizing the area requirement of the c-cores. The algorithm approximates the energy efficiency as the coverage that the c-cores provide and approximates the c-core’s area requirement as the number of static instructions supported by them. This energy approximation holds because, as shown in the previous chapter, the c-cores are significantly more energy-efficient than general-purpose processors, and offloading execution onto the c-cores improves the mobile application processor’s energy efficiency. The area approximation is less precise because the area requirements of different instructions might vary. However, this first order approximation allows the algorithm to explore a wide range of energy-area tradeoff scenarios for designing the mobile application processors. Also, a more accurate area approximation model is proposed in the next section that addresses the inaccuracies.

The algorithm accepts as input the profile information of the Android workload set. For each application in the workload set, the algorithm processes the profile information to find the hot basic blocks that account for much of the execution. At this point, for each application, the algorithm has a breakdown of the time it spends in various basic blocks. The next step involves determining the code reuse across applications and using that to quantify each basic block’s *global coverage*, the coverage that the basic block provides for the Android system as a whole. The algorithm calculates the global coverage of each basic block as an arithmetic mean of the coverage that the basic block provides across all the applications. Since the global coverage metric is the coverage that the basic block provides for the Android system, the algorithm can use this metric to compare the relative importance of each basic block. The algorithm defines the quality metric of each basic block $b$ as $\frac{\text{globalCoverage}_b}{\text{area}_b}$, where $\text{globalCoverage}_b$ is the global coverage of the basic
block and \(\text{area}_b\) is its area requirement. The algorithm sorts all the basic block in descending order of their quality metric and tags the basic blocks for conversion to c-cores until the target coverage is achieved or the area budget runs out. In this manner, the c-core-identification algorithm explores the energy-area tradeoff space and selects a number of pareto optimal design points.

Next, this section analyzes how effective the code regions selected by the c-core identification algorithm are at covering significant portions of the Android system execution while staying within modest area budgets. Figure 4.5 shows a cumulative distribution of the percentage of dynamic coverage vs. the number of static instructions converted into c-cores. In the figure, the top graph plots the coverage that c-cores provide for the Android system. The dark-gray curve represents coverage for the broad-based c-cores, and the light-gray curve above it shows the coverage for the targeted c-cores. The results show that the c-cores can support 90% of the system execution across our workload by implementing approximately 20000 static instructions. The majority of the execution coverage that the c-cores provide belongs to the broad-based c-cores (64% coverage) implying that the majority of these c-cores would be useful across many of the existing applications and even future applications that utilize the shared components. Moreover, as the area available for specialization increases, the coverage that the c-cores provide can be as high as 95%.

In Figure 4.5, the bottom eight graphs show the coverage that the c-cores provide for each of the individual applications. The data shows that the c-cores provide significant execution coverage across all these applications. The c-cores can support at least 80% of the execution for each application if they support 20,000 static instructions. This implies that the broad-based c-cores and targeted c-cores designed above are effective at supporting significant fraction of the execution across all the applications in our workload.

The above analysis shows that small amount of static code accounts for a large fraction of execution across many applications. By supporting these hot code segments in hardware, the c-cores can optimize the execution of many of the commonly used Android applications. The analysis also shows that the majority
Figure 4.5: Android Execution Coverage vs Static Instructions Converted into Conservation cores The graph plots the Android execution coverage against the number of static instructions required to get that coverage. The results shows that supporting a small number of static instructions in hardware can provide coverage for a large fraction of the Android execution. The top graph plots the coverage provided by broad-based c-cores and targeted c-cores for the Android system, while the graphs below shows the coverage that these c-cores provide for each of the Android applications.
of these c-cores would target shared code segments that are used across many of the existing applications and hence, can potentially provide benefits for future applications as well. Moreover, with each generation, the c-cores would be able to provide higher execution coverage, which enables the mobile application processors to continuously improve their support for the Android system.

4.4 Results

The previous section analyzes the Android system execution and proposes a methodology for designing c-cores targeting a significant fraction of the Android execution. This section examines the amount of area that c-cores would need to provide this coverage and the possible energy efficiency improvements they can provide. Based on the results presented in [VSG+10], this section builds an analytical model to approximate the area requirements of the c-cores for these Android hotspots. Also, this section analyzes how the average dynamic energy per instruction metric varies with the area available for specialization.

4.4.1 Area requirement

In order to estimate the area requirements of the c-cores, this section first builds an area model based on the instruction mix and the area requirements of the c-cores presented in Chapter 3. The designing of the area model was aided by the fact that c-core’s design very closely resembles the structure of the code it targets and has generalized datapath operators and constant values to support the patching mechanisms. The resultant area model was able to estimate the area within 10% of the actual area on average with a standard deviation of 14.7%. Based on our area model, conservatively, 1 \( mm^2 \) area can implement approximately 3000 static instructions. With more aggressive area optimization techniques such as those presented in [SVG+11], c-cores can implement approximately 6000 static instructions in 1 \( mm^2 \). This chapter uses the conservative area model for all the analysis presented below.

Figure 4.6 plots the c-core’s coverage of the Android execution as the area
Figure 4.6: Android Execution Coverage vs Conservation core Area The graph plots the Android execution coverage against the c-core’s area requirement. The results show that majority of the Android execution can be covered by c-cores within very most area budgets. The top graph plots the coverage provided by broad-based c-cores and targeted c-cores for the Android system, while the graphs below show the coverage that these c-cores provide for each of the Android applications.
available for specialization increases. The graph shows that if 2.75 mm$^2$ area is allocated for c-cores, they can cover 80% of the execution across all the applications. To put this area requirement in perspective, the die size of the NVIDIA’s latest mobile application processor, called Tegra 2 [Ana], is 49 mm$^2$. Hence, allocating a little less than 6% of this mobile application processor for c-cores would enable them to provide hardware support for the majority of the Android execution. Moreover, the graph shows that allocating 2.75 mm$^2$ area for c-cores would support majority of the execution (greater than 70%) for all the applications in the workload set, implying that this c-core-based approach for designing mobile application processors can be effective across a wide range of Android applications.

4.4.2 Energy-Area Tradeoff

The above analysis explains how the area available for the c-cores effects the fraction of the Android execution that executes on them. In this section, the analysis focusses on the improvements in the energy efficiency that the c-cores provide.

To estimate the energy savings, this work uses the energy model that the work in [GSV+10] proposes. According to their model, considering dynamic power, on an average the c-cores consume 8 pJ/instruction compared to the 91 pJ/instruction for the baseline MIPS processor, an improvement of $11 \times$. These values include data cache access energy which is shared between the c-cores and the MIPS processor; for non-D-cache operations, c-cores reduce dynamic energy by over $34 \times$. This large gap in the execution efficiency demonstrates the importance of achieving high c-core coverage; any code running on the MIPS processor is $11 \times$ more expensive.

Figure 4.7 shows the average dynamic energy per instruction vs. area dedicated to the c-cores. The graph shows that with mere 2.75 mm$^2$ for c-cores, the dynamic energy requirement for the Android system goes down by 73% over an already power-efficient MIPS processor. Also, these c-cores reduce the energy requirements for all the applications in the workload, with the benefits ranging between 63% – 83%. Furthermore, if the area budget is increased to around 6
Figure 4.7: Dynamic energy per instruction (pJ) vs Conservation core Area The graph plots the average dynamic energy per instruction against the c-core’s area requirement. The results shows that energy requirements can be reduced by over 70% with just an area budget of 2.75 mm$^2$. 
$mm^2$, then the dynamic energy savings increase to $5.5 \times$ and this trend continues as the area budget increases.

This section has shown that our c-core-based approach provides significant energy savings and scalable amounts of specialization within a tight area budget, in an automated fashion. Thus, our approach for designing mobile application processors is an ideal fit for the Android system.

4.5 Conclusion

This chapter proposes a c-core-based approach for designing mobile application processors, where the application processor comprises of c-cores targeting hotspots across a wide range of common mobile applications. This approach enables increased specialization with each generation of mobile devices without requiring any software application re-implementations. The results show that a mobile application processor system consisting of a selection of targeted and broad-based c-cores can reduce the processor energy consumption of a rich Android workload by 73% and these improvements continue to increase as the area budget available for c-cores increases.

The traditional approach of manually designing specialized hardware components and optimizing mobile applications for the hardware system design is no longer scalable. The approach presented in this chapter enables the mobile devices to become increasingly powerful and run a more diverse set of applications with each technology generation.

Acknowledgments

This chapter contains material from “The GreenDroid mobile application processor: An architecture for silicons dark future”, by Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Aurricchio, Po-Chao Huang, Manish Arora, Siddharth Nath, Vikram Bhatt, Jonathan Babb, Steven Swanson and Michael Bedford Taylor, which appears in IEEE Micro, March 2011. The
dissertation author was a significant contributor and author of this paper. The material in this chapter is copyright ©2011 by the Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Chapter 5

Quasi-ASICs: Trading Area for Energy by Exploiting Similarity across Irregular Codes

Chapter 1 explained the technological trends behind the current utilization wall phenomenon, and used it to motivate specialization as an effective solution to achieve Moore’s law style performance scaling. Chapter 1 also presented the two critical challenges — lack of flexibility, and lack of generality — that system designers need to address in order to ensure that specialized cores can effectively target a wide range of commonly used general-purpose programs. Chapter 3 presented our approach for addressing the first challenge, namely the lack of flexibility in application-specific circuits. This rigidity of application-specific circuits limits how long they remain useful because these circuits cannot support any change in the source code they target, but most of the commonly used general-purpose programs are routinely updated with newer versions containing new features, additional optimizations or essential bug fixes. To make application-specific circuits a suitable candidate for general-purpose programs, our approach proposed Patchable Conservation Cores (C-cores), energy-efficient co-processors that target a single task and contain targeted reconfigurability to support changes in the target program’s control-flow, datapath operators and memory layout. In this manner, our approach allows the energy-efficient co-processors to remain useful for up to 15
years, and improve the application’s energy delay product by up to $20 \times$ compared to a general-purpose processor.

This chapter addresses the second challenge that limits the wide applicability of application-specific circuits, namely their lack of generality. The lack of generality results in very narrowly defined specialized cores that can only target a very specific task. This makes these specialized cores a poor candidate for providing hardware support for a significant fraction of execution of a varied application set. From a system designer’s point of view, designing co-processors that can support only one specific task can cause two main problems. Firstly, for many applications in a system’s workload, it is not profitable to trade silicon for specialized co-processors that can only support that application. Secondly, supporting a large number of tasks in hardware would necessitate designing a large number of specialized cores, which in turn would make it difficult to place all of them close to the general-purpose processor. This results in the increase of the overhead involved in offloading a computation from a CPU to a specialized core, hence limiting the benefits that these specialized cores can provide for short running computations.

To address the lack of generality challenge, this chapter proposes Quasi-ASICs, specialized cores that unlike the traditional ASICs which target one specific task, can support multiple general-purpose computations. These QASICs allow a system designer to trade between area and energy efficiency in a fine-grained manner. The QASIC design flow accomplishes this by varying the required number of QASICs as well as their computational power based on the relative importance of the applications and the area budget available to optimize these applications. While the increase in QASIC’s computational power comes with marginal decrease in their energy efficiency, these QASICs are still an order of magnitude more energy-efficient than general-purpose processors. In this manner, our approach can significantly reduce the number of specialized processors as well the area budget required compared to that of fully-specialized logic, without compromising on the fraction of system execution that the specialized logic supports.

QASICs achieve energy- and area-efficiency by leveraging code similarity within and across applications. The QASIC tool chain mines for similar computa-
Figure 5.1: **Trade offs between area and energy efficiency** The x-axis varies the area budget available for specialization, normalized to the area budget required to implement all our application hotspots (Table 5.1) using fully-specialized logic. The y-axis measures energy consumption relative to an in-order MIPS processor. As area budgets decrease, QASICs energy efficiency declines much more slowly than it does for fully-specialized logic, because QASICs can save area by increasing the QASIC’s computational power rather than removing functionality.

This chapter addresses many of the challenges involved in designing a QASIC-enabled system. The first challenge lies in identifying similar code patterns across a wide range of general-purpose applications. The hotspots of a typical general-purpose application tend to have many hundreds of instructions, com-
plex control-flow and irregular memory-access patterns, making the task of finding similarity both algorithmically challenging and computationally intensive. The second challenge lies in exploiting the similar code patterns to reduce hardware redundancy by designing generalized code-structures that can execute these code patterns. The third challenge involves making the area-energy tradeoffs to ensure that these co-processors fit within the area budget. Addressing this challenge entails finding efficient heuristics that approximate an exhaustive search of the design space but avoid the exponential cost of that search. The final challenge involves modifying the application code/binary appropriately to enable the applications to offload computations on to the QASICs at runtime.

This chapter evaluates the proposed toolchain by designing QASICs for the find, insert, delete operations of the commonly used data structures, namely link-list, binary tree, AA tree, and hash table. The results show that designing just four QASICs can support all these data structure operations and can provide $13.5\times$ energy savings over a general-purpose processor. On a more diverse general-purpose workload consisting of twelve applications selected from different application domains (including SPECINT, Sat Solver, Vision, EEMBC, among others), the results show that QASICs reduce the required number of application-specific circuits by over 50% and the area requirement by 23% compared to the fully-specialized logic while providing energy-efficiency within 1.27X of that of fully-specialized logic.

The rest of this chapter is organized as follows. Section 5.1 motivates the QASIC approach in the context of other proposals. Section 5.2, 5.3, and 5.4.2 describes the QASIC design and hardware generation flow. Section 5.5 evaluates the QASIC approach. Section 5.6 concludes.

### 5.1 Motivation

To effectively utilize the available transistor budget, this chapter proposes a design methodology that varies the QASIC’s computational power based on the area budget available for specialization. The QASIC design methodology is based
Figure 5.2: Similar code patterns present across the hotspots of a Sat Solver tool. Figure highlights the similar code patterns that are present across the hotspots in UBC Sat Solver tool.
Table 5.1: A Diverse Application Set The table lists applications that this chapter uses to evaluate the QASIC design flow.

<table>
<thead>
<tr>
<th>Benchmark Type</th>
<th>Application</th>
<th>HotSpots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec CPU 2000-2006</td>
<td>Twolf</td>
<td>new_dbox, new_dbox_a, newpos_a, newpos_b</td>
</tr>
<tr>
<td></td>
<td>Mcf</td>
<td>refresh_potential, primal_bea_mpp</td>
</tr>
<tr>
<td></td>
<td>Bzip2</td>
<td>fullGtU</td>
</tr>
<tr>
<td></td>
<td>LibQuantum</td>
<td>cnot, toffoli</td>
</tr>
<tr>
<td>EEMBC Consumer</td>
<td>RGB/CMYK</td>
<td>CMYfunction</td>
</tr>
<tr>
<td></td>
<td>RGB/YIQ</td>
<td>YIQfunction</td>
</tr>
<tr>
<td>Image Compression</td>
<td>CJPEG</td>
<td>ycc_rgb_extractMCU</td>
</tr>
<tr>
<td></td>
<td>DJPEG</td>
<td>jpeg_idct, rgb_ycc</td>
</tr>
<tr>
<td>Sat Solver</td>
<td>UBC Sat</td>
<td>BestLookAheadScore, FlipTrackChangesFCL</td>
</tr>
<tr>
<td>Splash</td>
<td>Radix</td>
<td>slave_sort</td>
</tr>
<tr>
<td>SD VBS</td>
<td>Image pre-processing</td>
<td>calc_dX, calc_dY, imageBlur</td>
</tr>
<tr>
<td></td>
<td>Disparity</td>
<td>finalSAD, findDisparity, integralImage2D</td>
</tr>
</tbody>
</table>

on the insight that similar code patterns exist within and across applications. This section quantifies the available similarity and uses this to motivate the QASIC design methodology.

To begin with, this section examines the hotspots in the Novelty+p SAT solver from the UBC project [TH04] to give some insight on the kinds of similarity available. Figure 5.2 shows the source code for the two hotspots and highlights the similar code segments. The example shows that while the two hotspots as a whole do not have similar control-flow, there are similar code patterns present across them. The QASIC design methodology seeks to exploit these similar code patterns to effectively tradeoff between energy efficiency and area efficiency (Figure 5.1).

Next, this section quantifies the similarity across a diverse set of applications selected from SPEC 2000 [SPE00], Splash [WOT+95], EEMBC-consumer [Emb], UBC Sat [TH04], and SD-VBS [VAJ+09] benchmark suites (described in Table 5.1). This section measures the available similarity across these application hotspots as follows. The first step is to profile the applications to find the “hotspots” where the application spends most of their time (listed in Table 5.1). The second step builds
Figure 5.3: Similarity available across hotspots of diverse application set (Table 5.1) The X plots shows the amount of similarity present and Y axis shows the percentage of pairs that have certain merge percentage shown on the X axis.

The final step finds the similar code segments across these hotspots by searching for isomorphic subgraphs across their PDGs (Section 5.2.2 discusses the similarity algorithm). The similarity between the hotspots is quantified as the fraction of matching nodes between their PDGs.

The results, shown in Figures 5.3 & 5.4, demonstrate that significant similarity exists within and across applications. Figure 5.3 bins the hotspot pairs based on the amount of similarity present between them. The X axis shows the similarity bins and the Y axis shows number of hotspot pairs present in the bins. The data shows that most of the hotspot pairs (> 90%) had some similar code patterns (50% node matched) and more importantly, at least 50% of the hotspot pairs had significant similarity (> 80% nodes matched). Also, Figure 5.4 shows
Figure 5.4: **Quantifying Similarity Present Within and Across Application Domains.** The graph quantifies similarity present across different classes of applications.
that significant similarity exists within and across application domains as well.

To exploit the available similarity, the QASIC toolchain merges application hotspots with similar code structure and builds one QASIC for them. This design methodology provides the following benefits:

1. **Fewer number of specialized circuits and reduced area requirements:** This chapter realizes these reductions by designing QASICs that can support multiple similar computations. The QASIC toolchain found these similar computations across hotspots of the same application (such as term_newpos_a and term_newpos_b from Twolf), across different applications in the same application domain (such as different image conversion algorithms), and even across applications from different application domains (such as Bzip2 and Disparity).

2. **Generality:** The QASICs tend to have more flexible control and data flow compared to fully specialized hardware because they are designed to target multiple code segments. As a result, QASIC’s computational power can extend beyond the code segments for which they were designed. For example, in our benchmark set, the imageBlur kernel uses a 5-stage filter [VAJ+09] and the edgeCharacteristics kernel uses a 3-stage filter. However, the QASIC formed by merging imageBlur and edgeCharacteristics can execute both the kernels with either image-filter, providing this QASIC with additional computational power.

3. **Better backward compatibility for application-specific hardware:** In order to remain useful across software versions, application-specific hardware must be able to adapt to changes in the code it supports. The design methodology that this section proposes can be utilized to improve the application-specific circuit’s support for the legacy “in-use” versions, as shown in Section 3.7.
Figure 5.5: **Qasic Design Flow** The design flow from application hotspots to QASIC generation is shown.

### 5.2 Quasi-ASIC Design Flow

This section presents the details of the QASIC design flow (shown in Figure 5.5). The design flow accepts the target application set and the area budget as input and generates as output a set of QASICs that fit within the available area budget and can support a significant fraction of the execution of target applications.

The design flow starts with a set of dependence graph for each of the application hotspots. At each stage, the toolchain selects the dependence graph pair with similar code patterns, merges the dependence graph pair to build a new dependence graph, and replaces the dependence graph pair with the new merged graph. This process continues until the toolchain is unable to find similar code segments across the dependence graphs or the area goals are met. These steps are described in greater detail below.

Figure 5.6(a)-(d) shows the process of merging similar hotspots, `computeSum` and `computePower`, to form a QASIC.
5.2.1 Dependence Graph Generation

The QASIC toolchain internally represents the application hotspots as Program Dependence Graphs (PDG) [FOW87], where nodes represent statements and edges represent control and data dependencies. The PDG representation of the hotspots is better suited for finding matching code regions than control flow graphs or program text because it enables the code pattern matching to be based on the program semantics rather than the program code text. Using PDG, the toolchain gets rid of all the false dependencies, preserving only the “real” control and data dependences. Figure 5.6(a) shows the PDG for a simple loop that computes sum of first $n$ numbers. The solid edges represent control dependence and dashed ones represent data dependence. Unlike a control flow graph, there is no edge between the nodes $sum = 0$ and $i = 0$ because these statements are independent of each other.

The QASIC design flow uses CodeSurfer tool [Cod] to create PDGs for the input code segments. The output of this stage is a pool of PDGs of the application hotspots. The subsequent steps of the design flow increase the generality of these PDGs and reduce hardware redundancy in this PDG pool until the area budget is met.

5.2.2 Mining for Similar Code Patterns

This step seeks to find dependence graph pairs from the QASIC PDG pool that are similar to each other. The problem of finding similar code patterns across application hotspots can be reduced to finding similar subgraphs (subgraph-isomorphism) across their PDGs. The subgraph-isomorphism is a well studied [Epp95, FK98, HWP03] problem in the field of graph algorithms. Our algorithm for mining similar code patterns is based on the FFSM algorithm proposed by Huan et al. [HWP03]. This section presents a brief description of the FFSM algorithm and the optimizations that were made to tailor this algorithm to the problem of finding similar code fragments.

The graph matching algorithm (FFSM) takes as input two graphs, $G_1, G_2$, where every node in both the graphs have a unique ID as well as type label. The
algorithm considers two nodes for matching only if they have the same type label. The algorithm begins by selecting a node \( n_1 \) randomly in \( G_1 \) and finds a matching node \( n_2 \) for \( n_1 \) in \( G_2 \). Then, it tries to grow the matched subgraph by comparing the neighbors of \( n_1 \) and \( n_2 \) as well as performing other join operations on the matched subgraphs (refer to [HWP03] for details). The algorithm returns when it cannot grow the subgraph any further.

The QASIC toolchain extends the FFSM matching algorithm in several ways to tailor it to the problem of finding similar code patterns in PDGs. First, instead of picking and matching nodes in a random order, our matching algorithm focuses on finding similar loop bodies. This behavior is desirable since most of the application execution time is spent in loops. Secondly, the PDG node type encodes the program structure so as to prune “illegal” matches and reduce the search space. For example, all the nodes within a loop body should have “similar” node type and different from the node type of any nested loop nodes within that loop. This node type definition ensures that two nodes would match only if they perform similar arithmetic operations (for example addition and branch operations are not similar), similar memory operations (such as array/pointer access), and the control/data edges associated with these two nodes match.

For example, when trying to find similar code patterns across computeSum and computePower, shown in Figure 5.6(a), this stage would map the \( \text{sum} += \text{i} \) node in computeSum to \( \text{sum} *= \text{sum} \) of computePower, among others. All the node mappings that this stage produces are shown in Figure 5.6(b).

The output of this stage is a list of dependence graph pairs that have similar code patterns present across them. For each of these similar dependence graph pairs, this stage also produces a mapping of the similar code patterns across them.

5.2.3 Merging Program Dependence Graphs with similar code structure

This stage of the QASIC design flow accepts as input the similar dependence graph pairs that the previous stage produces. For each dependence graph pair, this stage merges their mapped nodes to form a new QASIC dependence graph that is
Figure 5.6: **Quasi-Architecture Example** An example showing the different stages involved in conversion of source code segments, `computeSum` and `computePower` (a) to QASIC hardware (f). The resultant QASIC can perform the functionality of the two input code segments as well as other functions like $n!$, $c^{2n}$. The solid lines represent the control dependence and the dashed lines represent the data dependence for the program dependence graphs ((a), (b),(c)).
capable of supporting all the computations that either of its input dependence graph can support.

The main challenge in this step is to ensure that the Qasic PDGs it produces are linearizable, in that there is a sequential ordering of the PDG nodes that respects all the data and control dependences. To preserve this linearizable property, the Qasic’s PDG must be reducible and have no circular data/control dependence. A PDG is reducible if each of its loop body has a single entry point.

As the first step, this stage ensures that there are no circular dependence in the merged PDG using control, data, and inferred (explained later) dependence edges. This stage eliminate the circular dependences by removing the least number of node matches that would break all the dependence cycles. The next step is to merge the loop entry nodes and in the process, ensure that each loop body has only one entry point. During this step, for each code region with multiple entry points, the toolchain adds dummy control nodes as entry points to maintain a reducible control dependence graph. Next, this stage builds a one-to-one map between variables of the two PDGs based on the nodes that got matched. The toolchain uses this variable map to match the declaration and phi nodes that were ignored in the Section 5.2.2 to reduce subgraph matching time. At this point, this stage merges the two PDGs to form a new PDG of the Qasic that can execute computation corresponding to both the merging pdgs.

Figure 5.6(b) shows the PDG of the Qasic that our toolchain designs by merging the dependence graphs of computeSum and computePower, shown in Figure 5.6(a).

The Qasic PDG contains additional node and edge attributes to enable PDG linearization (Section 5.2.4).

1. **Node Attributes**: Each node in the PDG contains a list of variables defined and used by that node. This node attribute is extended to contain a list of conditionally defined and used variables. For example, in Figure 5.6(b) sum +=i; sum*sum node conditionally consumes variable i because only one of its input code segments (computeSum) consumes i.

2. **Edge Attributes**: The PDG is augmented with conditional data depen-
dences. The conditional edges result from edges present in only one of the two PDGs being merged. For example, `computeSum` in Figure 5.6(b) has data dependence between `i++` and `sum +=i` but there is no data dependence between `i++` and `sum*=sum`. This leads to a conditional dependence from `i++` to `sum+=i; sum*=sum` in the QASIC’s PDG.

At this point, this stage has designed a QASIC PDG corresponding to each similar dependence graph pair that the previous stage produced. Each of these newly designed QASICs have greater computational power than the two dependence graphs they were formed from because they can support the computations that either of their input dependence graph can support. Moreover, these QASICs requires lesser area compared to its input dependence graphs because they eliminate hardware redundancy across the input dependence graphs by merging similar computations.

The final step of this stage is to select the QASIC that, when compared to the dependence graph pair they were formed from, will provide the maximum benefits in terms of the area saved and increase in the computational power. Section 5.3 explains in detail our heuristic for performing this QASIC selection. Once the best QASIC candidate is chosen, this stage replaces the two input PDGs with the chosen QASIC’s PDG in the PDG pool.

At the end of this stage, the toolchain loops back to the second stage (Section 5.2.2) to find other potential PDG pairs for merging. Eventually, the QASIC set becomes distinct enough that no substantial similarity can be found across them. At that point, the toolchain proceeds to generate the QASIC specifications explained in the next section.

5.2.4 QASIC Generation

The fourth stage of the toolchain sequentializes the PDGs of the QASIC set to produce the QASIC specification in C, which is used to generate Verilog code by the backend of our toolchain. The two steps involved in this stage are merging the matched expressions present in each QASIC PDG node and sequentializing the QASIC’s data and control dependences.
Figure 5.7: **Expression Merging** An example showing merging of the expression trees of the two input expressions to build the new merged expression tree and the corresponding expression.

```c
while(i<n) {
 if(...) {
 a = 5;
 b = a + 6;
 }
 if(...) {
 a = 5;
 c = a + 6;
 }
 if(...) {
 d = a;
 e = b;
 }
}
```

Figure 5.8: **Inferred Dependence Example** The solid and dashed lines show true and inferred dependences. There is an inferred dependence edge from P to Q because no valid ordering of P, Q, R orders Q before P (Section 5.2.4).
**Merging Expressions** This step generates a valid C-expression corresponding to each node of a QASIC. The QASIC PDGs that the previous step designs consist of multiple C-expressions in each of its nodes. For example, in Figure 5.6(b), a QASIC PDG node contains the expressions `sum += i` (from `computeSum` PDG) and `sum *= sum` (from `computePower` PDG). To design this merged C-expression, this stage builds expression trees using ANTLR [Ter], which are then merged into a single expression tree. This merged tree directly translates to a valid C-expression. This process is shown in Figure 5.7. This step achieves much of the area reduction seen in our results by reusing datapath operands and operators. For example, in Figure 5.6(c), the QASIC eliminates hardware redundancy by merging `i < n` expression used in both `computeSum` and `computePower`. Figure 5.6(c) shows the result of merging expressions for the PDG shown in Figure 5.6(b).

**Linearizing Qasic PDGs** The PDGs are inherently parallel representation of a program. However, in order to produce QASIC specification in C, this stage would need a valid ordering of nodes consistent with the control and data dependence edges. The ordering of control edges in a QASIC PDG is straightforward and the previously proposed techniques for reducible graphs [FOW87] work in our case as well. Sequentializing the data dependence is more challenging because of the conditional data flow edges as well as conditionally defined-used variables in the PDG nodes. This stage uses the following technique to sequentialize data dependences including the conditional node and edge attributes of QASIC PDG nodes.

The main goal of our technique is to order the nodes in the presence of conditional data dependence without employing backtracking (computation time for backtracking-based techniques can get very expensive, exponential in the worst case, as the PDG’s size and complexity increases). Our technique uses the data dependence edges and use/def analysis to build inferred dependences between children of same control node. The inferred dependence is defined as follows: Let us say that parent node A has child nodes P and Q. The child P has inferred dependence on child Q if there exists a child R of parent node A such that child P produces some value $b$ that child R consumes, child Q produces some value $a$ that
child R consumes, and child P also produces the value $a$. This implies that only valid ordering among them is for child P to execute before child Q. An example of this is shown in Figure 5.8. The subgraph $P$ produces values $a$ and $b$, subgraph $Q$ produces values $a$ and $c$. There is no dependence between $P$ and $Q$. The subgraph $R$ consumes value $a$ from $Q$ and $b$ from $P$ causing an implicit ordering between $P$ and $Q$. This stage uses the data dependence, inferred dependence and use/def analysis to linearize the data dependence. To handle additional node and edge attributes of the QASIC PDG, the data structures used in data dependence serialization algorithm are extended with these attributes as well. Our linearization algorithm, based on inferred dependence, lends itself to easily support conditional data dependence and the algorithm’s computation time scales well w.r.t. the size and complexity of the QASIC PDG.

The QASIC formed by merging computeSum and computePower is presented in Figure 5.6(d). Based on the value of the CONTROL_SIGNALS, this QASIC can be configured to support the computations performed by computeSum as well as computePower. In addition, this QASIC can also be configured to perform other operations such as factorial, $c^{2^n}$, besides computeSum and computePower by configuring the control lines to the mux, ALU and init value of sum.

### 5.2.5 Modifying Application Code to utilize Qasics

The QASIC toolchain also modifies the application code to allow it to offload the computations on to the QASIC at the runtime. The toolchain does this by determining a valid setting of the QASIC’s CONTROL_SIGNAL input that would allow the QASIC to execute the computation desired by the calling application. For example, Figure 5.6(d) shows how the application code is modified to use the QASIC. In this example, the computeSum function sends the function argument values as well as an additional argument that would configure the ALU in the QASIC to perform addition. Moreover, the toolchain also inserts stubs in the application code to query the runtime for the availability of a matching QASIC(not shown in the figure for simplicity). In case no matching QASIC is present or available at runtime, then the application defaults to running the software version of the
function on the general-purpose processor.

5.3 Qasic-selection heuristic

The previous section describes the design methodology for merging application hotspots and building the appropriate QASIC set for them. Section 5.2.3 described the methodology for merging two hotspots with similar code structures. However, a hotspot can match well with multiple other hotspots. For example, \texttt{integralImage2D} hotspot in Disparity matches well with multiple hot spots (\texttt{slave\_sort} in Radix, \texttt{findDisparity} in Disparity) belonging to different application classes and having different code sizes. In general, there are exponentially different alternatives for merging the application hotspots to form the final QASIC set. This section presents the QASIC-selection heuristic to decide which hotspots to merge to make the best area-energy tradeoffs.

Our tool chain’s goal is to find the set of QASICs that will most significantly reduce the power consumption while fitting within the available area budget. The reduction in power consumption that a QASIC can deliver is a combination of its power efficiency and fraction of programs that it executes. Formally, a QASIC $b$ occupies area $A_b$, consumes power $P_b$, has speedup $S_b$, and has coverage $C_b$ (relative application importance determined by system-level profiling).

To evaluate $b$, this section defines a quality metric $Q_b = \frac{C_b S_b}{A_b P_b}$. To select a good set of QASICs to build, the QASIC toolchain will need to compute $Q_b$ for an enormous number of candidate QASICs. Computing precise values for $S_b$ and $P_b$ in each case is not tractable since it requires full-fledged synthesis and simulation. To avoid this overhead, this stage makes the following approximations.

First, this stage conservatively assumes that the speedup, $S_b$, is always 1. As shown in Chapter 3, the specialized cores for integer programs are typically no more than twice as fast as a general purpose processor. This stage estimates $A_b$ based on the datapath operators and register counts. Next, the QASIC-selection heuristic assumes that power consumption is proportional to area. This approximation is valid if we assume constant activity factors, constant clock frequencies, and circuit
constant clock frequencies, and circuit capacitance that grows linearly with circuit area. This approximation is valid if we assume constant activity factors, for each application.

In the previous section, we described our design methodology for QASICs, which create specialized ASICs, one for each fragment of programs that it executes. Formally, a QASIC is initially the set of fully-specialized ASICs, one for each of the fragments selected by the profiler.

Our toolchain also modifies the application code to allow it to offload the computations on to the QASICs that will most efficiently utilize them. In this example, the QASIC can deliver is a combination of its power efficiency and energy-efficiency, the computation of the data-selector’s inputs are predicated on the data-selector’s control signal. Hence, based on the control signal, only one of the inputs is computed.

Algorithm 5.9 contains the pseudo-code for our QASIC-selection heuristic that starts with a fully specialized ASIC for each fragment and merges them to create QASICs. It iteratively selects QASIC pairs that maximize \( Q_B' \) and merges them to form a more general QASIC that has a greater computational power than either of its input QASIC pair.

\[
1: \textbf{while } |B| > 1 \textbf{ do} \\
2: \quad (b_1, b_2) = \text{varmax}(b_1 \in B, b_2 \in B) \quad \frac{C_{b_1 \rightarrow b_2}}{A_{b_1 \rightarrow b_2}^b} - \frac{C_{b_1}}{A_{b_1}^b} - \frac{C_{b_2}}{A_{b_2}^b} \\
3: \quad B = B \setminus \{b_1, b_2\} \\
4: \quad B = B \cup \{b_1 \oplus b_2\} \\
5: \quad \text{Record the merging of } b_1 \text{ and } b_2 \text{ and the resulting values of } Q_B' \text{ and } \sum_{b \in B} A_b. \\
6: \textbf{end while}
\]

Figure 5.9: **Greedy Clustering Algorithm** The algorithm for deciding which QASICs to build. \( B \) is initially the set of fully-specialized ASICs, one for each of the fragments selected by the profiler.

With these assumptions this stage approximates \( Q_b \) as
\[
Q_b' = \frac{C_b}{A_b^b}.
\]

In this section, for expository purposes, \( X \cong Y \) denotes a QASIC that results from merging the QASICs for \( X \) and \( Y \) (Section 5.2). While estimating \( A_{X\cong Y} \) is straightforward, estimating \( C_{X\cong Y} \) is more challenging because \( X \cong Y \) can implement other code segments beyond \( X \) and \( Y \). Currently, this stage sets
\[
C_{X\cong Y} = C_X + C_Y
\]
as a conservative estimate.

To evaluate the quality of a set of QASICs, \( B \), this stage sums the value of \( Q' \) for each QASIC. The goal of the QASIC design flow is to maximize
\[
Q_B' = \sum_{b \in B} Q_b' = \sum_{b \in B} \frac{C_b}{A_b^b} \quad \text{subject to } \sum_{b \in B} A_b < A_{\text{budget}}. \quad (5.1)
\]

Algorithm 5.9 contains the pseudo-code for our QASIC-selection heuristic that starts with a fully specialized ASIC for each fragment and merges them to create QASICs. It iteratively selects QASIC pairs that maximize \( Q_B' \) and merges them to form a more general QASIC that has a greater computational power than either of its input QASIC pair.

### 5.4 Methodology

The QASIC toolchain is built around the OpenIMPACT (1.0rc4) [Ope], CodeSurfer (2.1p1) [Cod], and ANTLRWORKS (1.3.1) [Ter] compiler infrastructures and accepts a large subset of the C language, including arbitrary pointer

---

4. In this example, the QASIC can deliver is a combination of its power efficiency and energy-efficiency, the computation of the data-selector’s inputs are predicated on the data-selector’s control signal. Hence, based on the control signal, only one of the inputs is computed.

5. Algorithm 5.9 contains the pseudo-code for our QASIC-selection heuristic that starts with a fully specialized ASIC for each fragment and merges them to create QASICs. It iteratively selects QASIC pairs that maximize \( Q_B' \) and merges them to form a more general QASIC that has a greater computational power than either of its input QASIC pair.

---

5.4 Methodology

The QASIC toolchain is built around the OpenIMPACT (1.0rc4) [Ope], CodeSurfer (2.1p1) [Cod], and ANTLRWORKS (1.3.1) [Ter] compiler infrastructures and accepts a large subset of the C language, including arbitrary pointer
Figure 5.10: **Qasic Toolchain** The various stages of the toolchain involved in designing QASICS, generating the hardware for QASICS, as well as measuring QASIC’s performance and power efficiency are shown.
references, switch statements, and loops with complex conditions. Figure 5.10 shows how the QASIC design flow fits into the toolchain explained in Section 2.3.

5.4.1 Designing Qasics for the target application set

This section presents the different stages involved in designing QASICS that can execute the hotspots of the target application set. The first step profiles the target application set and identifies the code regions that account for a significant fraction of the application execution. Next, the QASIC design flow (Section 5.2) accepts these code regions as input and designs a set of QASICS that are expected to fit within a modest area budget and support most of the code regions that the profiling stage identified. The next section explains the generation of the QASIC hardware.

5.4.2 QASIC Hardware Design

The QASIC hardware compiler extends the C-to-Verilog compiler that Section 3.4 presents to provide support for QASIC specific operations, namely ALU and data-selector (shown as mux in Figure 5.6 (d)). The generalized arithmetic operations, ALUs, in a QASIC’s dataflow graph are instantiated as functional units in the hardware’s datapath. The data-selectors in a QASIC’s dataflow graph are instantiated as a mux operator. To optimize the QASIC’s energy-efficiency, the computation of the data-selector’s inputs are predicated on the data-selector’s control signal. Hence, based on the control signal, only one of the inputs is computed.

Figure 5.6(f) shows the hardware architecture of the QASIC shown in Figure 5.6 (d). The datapath and control state machine of the QASIC hardware closely resembles the control/dataflow graph of the QASIC source code (Figure 5.6(e)).

The synthesis flow to generate placed and routed QASICS as well as the methodology for measuring the performance and energy efficiency of these QASICS is similar to the flow explained in Section 2.3. The next section evaluates the QASICS that this section generates.
Figure 5.11: **Micro-Benchmark Set: Eight simple loops** We use these eight loops to compare our design methodology against the optimal exponential solution.

```c
/*l1: sum 1..n */
sum=0;
for(i=0;i<n;i++)
 sum += i;

/*l2: n! */
sum=1;
for(i=i;i<=n;i++)
 sum *= i;

/*l3: 2^n */
sum=1;
for(i=0;i<n;i++)
 sum += sum;

/*l4: a2^n */
sum=a;
for(i=1;i<n;i++)
 sum *= sum;

/*l5: sum array "a" */
sum=0;
for(i=0;i<n;i++)
 sum += a[i];

/*l6: product of values in "a" */
sum=1;
for(i=0;i<n;i++)
 sum *= a[i];

/*l7: sum of abs value in "a" */
sum=0;
for(i=0;i<n;i++)
{
 if(a[i]<0)
 sum -= a[i];
 else
 sum += a[i];
}

/*l8: Count powers of 2 in "a" */
sum=0;
for(i=0;i<n;i++)
 if(a[i] & (a[i]-1) == 0)
 sum += 1;
```

Figure 5.12: **Coverage vs Qasic count** As the number of QASICS drops, their combined coverage increases to include programs beyond those in Figure 5.11.
Figure 5.13: **Qasic quality vs. Qasic Count** As the number of QASICS drops, the computational power of each QASIC increases, but their power efficiency drops. As a result, $Q$ declines.

Figure 5.14: **Impact of generalization on Qasic Area and Energy Efficiency for the Micro-benchmarks** The labels on the area and power curves show the ratio of area and energy requirements of the QASIC set compared to that of fully-specialized circuits. The total area decreases with minimal impact on the energy for the first 6 merges.
5.5 Results

This section firstly evaluates our QASIC selection heuristic by comparing it to the optimal solution found via exhaustive search. The next experiment demonstrates that relatively few QASICS can support the commonly used operations on multiple data structures. Moreover, these QASICS provide an order-of-magnitude more energy efficiency than general-purpose processors. In addition, for a more diverse application set (Table 5.1), the data shows that our methodology can significantly reduce the required number of specialized circuits as well as the area requirements compared to fully-specialized logic while continuing to provide ASIC-like energy efficiency.

5.5.1 Evaluating the Qasic-selection Heuristic

This section evaluates the QASIC-selection heuristic by comparing the QASICs it designs to those that the exhaustive optimal algorithm designs, with the micro-benchmark set shown in Figure 5.11 as the target application set. Given the area budget and coverage for individual loops, knowledge of the optimal QASIC set is required to establish the upperbounds for energy efficiency and area efficiency. To this end, the first step of this experiment was to manually synthesize all the possible QASIC sets that the exhaustive search finds. The next step measures, for each of these QASIC sets, their additional computational power beyond the loops for which they were designed. The final step is to select the best (as measured by Equation 5.1) set of QASICS that, combined, can execute all eight loops and fit within the area budget.

The next step is to run Algorithm 5.9 on the loops in Figure 5.11 to find the QASIC sets that our toolchain would design. This experiment uses these QASIC sets to compare the QASIC-selection heuristic to the optimal solution under different system design constraints. These design constraints include varying the area budget available for QASICS as well as different coverage scenarios where random weights are assigned to each loop. In all cases, the heuristic found the optimal solution, demonstrating that our heuristic performs well.
Figure 5.12 shows the increase in the computational power of the QASIC set as our toolchain reduces the number of QASICS required to support the target application set. The results show that reducing the QASIC count by 40%-50% improves the computational power significantly. This indicates that as the number of computations that a QASIC is designed to support increases, so does the ability of that QASIC to support other computations that are a slight variation of its target computations.

Figure 5.13 shows the effect of increases in the computational power and area efficiency of QASICS on its quality metric, $Q$. The figure shows that while the improvements in area efficiency and computational power are able to offset any increases in the QASIC’s power consumption initially (until 50%-60% decrease in the QASIC count), the metric value starts to degrade as the area budget, and hence the QASIC count, decreases significantly. This ability of the QASICS to trade off between different system resources in a fine-grained manner is crucial from a system designer’s perspective when they are trying to design processor architectures.

The low computational complexity and near optimality of our heuristic algorithm allows it to scale to handle large target application sets. This ability is critical because a system’s target workload set tends to be very large in general.

### 5.5.2 Evaluating Qasic’s Area and Energy Efficiency

This section evaluates the ability of our toolchain to support a significant fraction of the target system execution in hardware using a relatively small number of QASICS that fit within a limited area budget.

Figure 5.14 presents area and power efficiency graphs of the QASICS for our micro-benchmarks (Figure 5.11). The X-axis plots the number of hotspots pairs that got merged to form QASICS. The results show that QASICS reduces the required number of specialized cores by 87.5% and reduces the area requirement by 56% compared to that of fully-specialized hardware. Moreover, the QASIC’s energy efficiency is within $1.26 \times$ of that of fully-specialized logic. These results are in keeping with the area savings that were achieved for the hand-designed QASICS used in the previous section. For the micro-benchmarks, the QASIC design flow
Figure 5.15: **Impact of generalization on the area and energy Efficiency of Qasics targeting commonly used data structures** The labels on the area and power curves show the ratio of area and energy requirements of the QASIC set compared to that of fully-specialized circuits.

and the QASIC-selection heuristic performs almost as well as our hand-designed QASICS and the optimal exponential solution.

**Evaluating Qasic’s ability to target an application domain**

This section designs QASICS for the **find, insert, delete** operations for the commonly used data structures, namely link-list, binary tree, AA tree, and hash table. Figure 5.15 shows how the toolchain varies the QASIC design based on the area budget available for specialization. The X-axis plots the number of QASICS that the toolchain designs to fit within the available area budget. The left and right Y-axes show how our toolchain trades between area and energy efficiency. The results show that relatively few QASICS can support all these 12 data structure operations while improving the energy efficiency by more than 13.5× compared to our baseline general-purpose processor.

Next, this section demonstrates that our toolchain can provide hardware support for an increasing number of the commonly used tasks in a system’s workload by designing a relatively few number of specialized cores. Figure 5.16 plots the number of features supported in hardware against the required number of distinct
Figure 5.16: **Scalability of Qasic’s approach** The graph shows that relatively few QASICS can support multiple commonly used data structures, while c-cores need a new specialized processor for every distinct functionality.

QASICS. The data shows that just four QASICS can support all these operations, while the c-cores approach would need to design eleven specialized cores. This 63% decrease in the required number of specialized cores allow us to closely integrate hardware support for greater number of features with a processor pipeline. For example, for our scan chain based interconnect design, QASICS reduce the interconnect overhead (measured as the number of connections between the CPU and the specialized cores) by 54% compared to c-cores.

**Evaluating Qasic’s ability to target a diverse workload**

This section evaluates the ability of the QASIC design flow to support the hotspots belonging to a diverse workload listed in Table 5.1. The results are shown in Figure 5.17. The X-axis plots the number of QASICS required to cover all the application hotspots. The left-most point on the X-axis corresponds to fully-specialized logic, and hardware generality (i.e., the average number of computations that a QASIC supports) increases from left to right. The results show that our toolchain can reduce the number of specialized co-processors required to cover all application hotspots by over 50% (which in turn reduces the interconnect overhead by 1.57×). Also, QASICS reduce the total area requirements by 22%
Figure 5.17: Impact of generalization on Qasic Area and Energy Efficiency for the Benchmark Set  The labels on the area and energy curves show the ratio of area and energy requirements of the QASIC set compared to that of fully-specialized circuits.

Figure 5.18: Impact of generalization on Qasic Performance for our Benchmark Set Y axis shows the ratio of execution time of QASICS compared to that of fully-specialized circuits while X axis plots the QASIC count.
compared to that of fully-specialized hardware, while incurring a 27% increase in energy consumption. The first few merges result in area reduction without any impact on power consumption. This is because leakage energy goes down as the area is reduced and that offsets any increase in dynamic energy. For the subsequent merges, our approach ensures that energy-efficiency degrades gracefully with decreases in the total area budget. These results show that our toolchain can effectively reduce hardware redundancy while providing ASIC-like energy-efficiency.

Figure 5.17 also demonstrates how increase in the transistor budget can be translated to improvements in energy-efficiency by our toolchain. The area-energy tradeoff performed by our toolchain varies with the area budget. For example, if the area budget is increased by 10%, then the energy-efficiency of the QASICs improves by 28%. Hence, with each process generation, our toolchain will effectively utilize the additional transistors to design more energy-efficient co-processors.

Generality As discussed in the previous section, for the micro-benchmarks, the computational power of the QASICs increases considerably (40% of the optimal QASIC design) within the first few iterations of Algorithm 5.9 without any effect on their energy efficiency. For the full-size benchmarks, the QASICs were able to support more general forms of image-filters beyond the ones used in the original applications [VAJ+09]. In the future, this work can be extended to promote the QASIC’s computational power more aggressively by exploring ways to accurately determine a QASIC’s computational power. The biggest challenge here would be to automatically find interesting variants of the input code segments that can be used to evaluate the computational power of the QASICs.

Application-level energy savings Figure 5.19 shows that, compared to the baseline tiled system, a QASIC-enabled system consisting of just thirteen QASICs can provide significant energy efficiency improvements for a diverse system workload. This experiment models the complete system including the overheads involved in accessing the runtime system as well the overheads for offloading computations on to the QASICs. The data show that, at the application level, QASICs save 45% of energy on average compared to a MIPS processor, and the savings can
Figure 5.19: **Quasi-ASIC enabled System Energy Efficiency** The graphs show the energy and EDP reductions that Qasics provide compared to an in-order, power efficient MIPS core (“SW”). Results are normalized to running on the MIPS core (lower is better). The Qasics can reduce the application energy consumption and energy-delay product by up to 79% and 83% respectively.
be as high as 79%. Also, QASICS reduce application energy-delay product by 46% on average. The energy savings for these QASIC-enabled systems are significant, and as shown in the previous section, the energy-efficiency will only improve as the transistor budget increases.

5.6 Conclusion

Technology scaling trends will continue to increase the number of available transistors while reducing the fraction that can be used simultaneously. To effectively utilize the increasing transistor budgets, this chapter presents QASICS, specialized co-processors that can support multiple general-purpose computations and can provide significant energy efficiency compared to a general-purpose processor. This chapter also presents the toolchain that designs these QASICS by leveraging the insight that similar code patterns exist within and across applications. Given a target application set and an area budget, the toolchain varies the computational power of these QASICS such that a significant fraction of the execution is supported in hardware without exceeding the area budget. The results show that designing just four QASICS can support operator functions of multiple commonly used data structures and moreover, these QASICS provide $13.5 \times$ more energy efficiency than our general-purpose processor. On a more diverse workload, our approach reduces the required number of specialized cores by over 50% and occupies 23% less area compared to fully-specialized circuits while providing ASIC-like energy efficiency (within 1.27X on average).

Specialization has emerged as an effective approach to combat the dark silicon phenomenon and enable Moore’s Law-style system performance scaling without exceeding the power budget. QASICS enable a system designer to provide this specialization in a scalable manner because a relatively few of them, combined, can support a significant fraction of the execution of an application domain in hardware.
Acknowledgments

Portions of this research were funded by the US National Science Foundation under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF Award 0811794.
Chapter 6

Related Work

This thesis seeks to address the power wall phenomenon by designing massively heterogeneous architectures. To provide this heterogeneity in a scalable manner for a wide range of general-purpose domains, this thesis proposes techniques for automatically designing configurable and flexible specialized cores targeting irregular integer codes. This section presents a detailed discussion of the prior approaches for designing heterogeneous architectures as well as prior techniques for automatically designing specialized cores.

6.1 Heterogeneous Architectures

Heterogeneous architectures allow a computation model that takes advantage of technology regimes where only a portion of the chip can be fully used at a time. The idea is that these chips are composed of “specialists” which can maximize the computation that can be performed given a fixed energy budget but a relatively large area.

This section provides a two-dimensional taxonomy for heterogeneous multiprocessors based on their architectural and microarchitectural heterogeneity. A four letter mnemonic, $aAmM$, identifies each processor class where $a$ is the number of instruction sets or programming models the processor supports and $m$ is the number of microarchitectures present. In this taxonomy, “*” denotes “more than one.”
These are conventional, homogeneous chip multi-processors. They are commercially available and have received extensive attention from research and industry. Their uniformity prevents them from addressing the utilization wall.

Recent work on single-ISA, heterogeneous multiprocessors demonstrates that machines can provide both power savings [KFJ+03, GRSW04] and performance improvements [KTR+04, KTJ06]. In these systems, all the cores in a processor support the same ISA but these cores differ from each other in terms of the energy-performance tradeoff they provide. These processors realize their benefits by exploiting the fact that different applications and even different phases of the same application have different characteristics. They differ in how performance-critical they are, how CPU intensive or memory bound they are, and also, how much exploitable parallelism they contain. By ably exploiting these differences, these single-ISA heterogeneous machines provide some relief from the utilization wall by varying the types of cores in use at any one time.

However, the use of a single ISA limits the level of heterogeneity they can exploit. This is because supporting the same ISA requires all the cores in a processor to perform, beyond the arithmetic operations and data manipulations that an application requires, additional transformations and state maintenance. This introduces significant “overheads” even for the most efficient of the processor designs, making them few orders-of-magnitude less efficient than fully-specialized logic [HQW+10]. This thesis seeks to design processors with much greater degree of heterogeneity, where the specialized cores can potentially provide ASIC-like efficiency by avoiding fetch, decode, and register file access for individual instructions.

Researchers have proposed several multi-ISA, single micro-architecture processors [HW97, DGB+03, MPJ+00, HW97, YMB00, RS94, CBC+05]. Smart Memories [MPJ+00] is an array of configurable tiles that can emulate a range of different architectures. However, supporting multiple styles of computation comes at a cost. For instance, Smart Memories can emulate a CMP and a streaming processor, but running time increases by between 10% and 80% relative to actual implementations of the same designs [MPJ+00]. Similarly, Transmeta [DGB+03]
focuses on decoupling the underlying hardware ISA from the external ISA that is visible to the users and proposes several optimizations to reduce the overheads of this translation from external to internal ISA. In the current regime, the area budget is less of a concern than power budget, and hence it might be more profitable to provide hardware support for the different styles of computations to ensure that each class of computation executes as efficiently as possible. However, much can be learnt from these prior approaches going forward. The approaches presented in these prior proposals can be adapted and extended by the future heterogeneous architectures in order to present an uniform, easy-to-program abstraction to the programmer.

Chimaera [YMHB00], GARP [HW97], Tartan [MCC+06], and the work in [CBC+05] augment a general-purpose processor with reconfigurable logic to provide extensible ISAs. Tensilica’s Xtensa [WKMR01] is an extensible processor that the system designer can extend with custom instructions and datapath units. Chimaera [YMHB00] and the work in [CBC+05] extends a general-purpose processor pipeline with configurable functional units. These configurable functional units execute the commonly occurring acyclic computation patterns that can be successfully mapped onto them. In this manner, these approaches improve the pipeline performance. However, since these approaches focus on short data computations (10s of cycles at best), they need the processor pipeline to remain active. This thesis focuses on computations that take hundreds of cycles or more, and switches off the processor pipeline (clock gating or power gating) when the computation is running on the specialized cores. This approach significantly reduces the number of transistors that need to be active in order to execute applications.

GARP [HW97] and Tartan [MCC+06] extends a general-purpose processor with reconfigurable fabric. These approaches seeks to support much of an application execution on the reconfigurable logic and uses the general-purpose processor only for control-intensive codes and for programming constructs that are not supported on the reconfigurable fabric. These approaches also re-architect the reconfigurable logic to improve its performance. This is because traditionally the reconfigurable fabric tends to execute at much slower frequencies than a
general-purpose processor, and hence, they cannot provide the same performance as general-purpose processors for applications with limited parallelism. These prior proposals differ significantly from the work presented in this thesis, both in their approach as well as the challenges they address. While the previous work focused on specializing reconfigurable logic, this thesis focuses on providing targeted flexibility and configurability in fully-specialized logic. The reconfigurable logic is typically an order-of-magnitude less energy-efficient than fully-specialized logic, limiting the energy benefits these approaches can realize. On the other hand, their approach retains greater amount of flexibility post-fabrication compared to our approach. There is much that these prior approaches as well as the work presented in this thesis can learn from each other. Moreover, the future heterogeneous processors can benefit from exploiting both the approaches when trying to tradeoff between reconfigurability and efficiency for different styles of computations.

Multi-ISA, multi-microarchitecture machines are the most aggressively heterogeneous multiprocessors, and they raise the most serious challenges. A range of commercial Multi-ISA processors and research prototypes are available or have been proposed. These include Sony’s Cell [Kah05], IRAM [PAC+97], and the hardware used in [WCC+07]. These machines augment a general purpose core with vector co-processors to accelerate multimedia applications. In addition to the hardware design challenges, these aggressively heterogeneous multiprocessors also introduce challenges on the programmability front. To address some of these challenges, EXOCHI [WCC+07] and Merge [LCWM08] provide general frameworks for programming heterogeneous systems. However, these approaches provide heterogeneity targeting few specific application domains such as computer graphics and SIMD computations. Also, these approaches rely on the programmer to maximally utilize the underlying hardware by writing heterogeneity aware programs. Arsenal system in general, and this thesis in particular focuses on designing heterogeneous systems that provide benefits for general purpose computing. The goal is to increase efficiency and performance for the vast majority of commonly used programs.

In addition to these heterogeneous designs, a vast number of specialized
processors have been proposed. Specialized designs exist for applications and do-
mins such as cryptography [WWA01], network protocols [Wil04], network se-
curity [TS05], signal processing [ECF96, GSM+99], vector processing [ADK+04, 
DLD+03], physical simulation [Age], and computer graphics [nVi, ATI, OLG+05].
Recent years have seen on-chip integration of an increasing number of these fixed 
function units [HZH+11, Gwe10]. This thesis seeks to extend and accelerate this
trend by automating the design of specialized processors as well as their integration 
with a general-purpose processor. The next section discusses the prior proposals 
on designing specialized co-processors.

6.2 Automatically-designed Specialized Cores

As explained previously, dark silicon is the portion of a chip that is under-
clocked and under-utilized because of power concerns. This thesis utilizes the dark 
silicon to build specialized cores. The fraction of dark silicon is increasing with 
each technology generation and hence, can be utilized to support an increasing 
number of functionalities in hardware. For example, based on the c-core’s area 
requirements, many 100s to 1000s of them can fit within one-quarter to one-eighth 
of a 400mm² die. However, it is not scalable to design these large number of 
specialized cores by hand. This section discusses the prior work on automatically 
designing specialized cores and compares their approach as well as their design 
goals to the work presented in this thesis.

The prior work in automatically designing specialized cores has primarily 
focused on regular loops with predictable control-flow and memory access pat-
terns [CHM08, FKDM09, YGBT09]. VEAL [CHM08] seeks to accelerate inner 
loops by designing loop-accelerators that exploit the available parallelism in these 
loops. These loop-accelerators are best suited for computation intensive loops in 
media and signal processor domains. While VEAL focused on designing loop-
accelerators that can be widely used, the work presented in [FKDM09, YGBT09] 
focus on customizing these loop-accelerators to more closely fit the applications 
they target. Yehia et al. [YGBT09] demonstrate techniques for automatically
designing compound circuits that can support multiple regular loops. Fan et al. [FKDM09] seek to design loop-accelerators that target inner loops of a particular application and contain limited programmability to ensure that they remain useful across application versions.

However, these previous approaches have limited applicability in general-purpose domain because the control-flow and memory access patterns tends to be less predictable in these applications [CHM08]. This thesis focuses on supporting a much wider range of applications by being parallelism agnostic and executing the memory operations in the program order. While this enables our approach to be more widely applicable than the previous work, it also limits the performance benefits that can be attained. There is much scope for the work presented in this thesis to be extended using the optimizations presented in these prior proposals to achieve much greater performance efficiency.

Many industrial high-level synthesis tools exist, such as AutoESL’s AutoPilot [Aut], Cadence’s C-to-Silicon Compiler [C-t], and Synopsys’ Symphony [Syn] (Coussy and Morawiec survey recent advances in this area [CM08]). These tools seek to provide significant performance improvements compared to a general-purpose core by inferring parallel execution from serial code. However, as a result, these tools suffer from the same limitations that parallelizing compiler suffer from, namely the difficulties of analyzing pointers in free-form code, extracting memory parallelism, and extracting and formulating efficient parallel schedules for the operations in critical loops. To address the parallelization challenges, these tools either limit the input language (for example, no pointers, no dynamic memory allocation, or no goto) or rely on user-transformed code or pragmas for guiding the tool in generating hardware that provides good speedups.

The work presented in this thesis has different underlying goals compared to these tools. This thesis seeks to reduce the energy requirement for a wide range of commonly used programs. The focus is on covering a significant fraction of the system execution in hardware rather than providing speedups for certain class of applications. To this end, this thesis focuses on improving the flexibility and computational power of fully-specialized logic to make them a suitable candidate
for general-purpose applications. Moreover, the focus is on near complete automation since this work seeks to cover a large fraction of a system’s workload, and it would significantly stretch the development time if manual input or intervention is required to design these specialized cores.
Chapter 7

Summary

This thesis addresses the various challenges involved in making specialization a viable approach to optimize general purpose computing. To address these challenges, it proposes mechanisms to provide flexibility and generality in the application-specific circuits, significantly enhancing their longevity and enabling them to support multiple computations with similar data/control flow. Firstly, this thesis proposes Patchable Conservation Cores, flexible application-specific circuits that are capable of adapting to changes in the applications they target. In addition, this thesis presents the related software tools to appropriately modify the application code/binary to allow them to offload computations onto the patchable c-cores at runtime. The results show that these c-cores improve the energy efficiency by up to 16× compared to a general-purpose processor and are able to support their target applications for 10 years on average.

Next, this thesis demonstrates that these patchable c-cores are effective at covering significant fraction of a system’s execution while staying within a modest area budget. For this study, the thesis focuses on the Android software stack and designs a mobile application processor containing c-cores that target the hotspots in the Android system. The results showed that these c-cores provide significant energy efficiency across a wide range of commonly used Android applications while staying within modest area budgets.

To further improve the system execution coverage that the specialized cores provide, this thesis proposes QASICs, specialized co-processors capable of executing...
multiple general-purpose computations. These specialized cores exploit the similar code patterns present within and across applications to reduce redundancy across specialized cores as well as improve their computational power. The results show that Qasics reduce the required number of specialized cores by over 50% and the required area by over 23% compared to c-cores without compromising on the computations that are supported in hardware.

Power budget has become a first-order design constraint and will continue to shape the processor design field. In this regime, area becomes the relatively cheaper resource compared to the power budget, making it feasible to trade area to achieve energy-per-computation. This thesis proposes techniques to perform this area-energy tradeoff in a manner that is scalable and effective at providing benefits for general purpose computing. Our methodology ensures that, as dark silicon increases, so does the fraction of the system execution that is supported by specialized cores, enabling the system performance to scale with increases in the transistor count while staying within the power budget.

Acknowledgments

Portions of this research were funded by the US National Science Foundation under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF Award 0811794.
Bibliography


[KTMW03] Jason Sungtae Kim, Michael B Taylor, Jason Miller, and David Wentzloff. Energy characterization of a tiled architecture processor with


