Polygenic risk of Alzheimer disease is associated with early- and late-life processes

ABSTRACT

Objective: To examine associations between aggregate genetic risk and Alzheimer disease (AD) markers in stages preceding the clinical symptoms of dementia using data from 2 large observational cohort studies.

Methods: We computed polygenic risk scores (PGRS) using summary statistics from the International Genomics of Alzheimer’s Project genome-wide association study of AD. Associations between PGRS and AD markers (cognitive decline, clinical progression, hippocampus volume, and β-amyloid) were assessed within older participants with dementia. Associations between PGRS and hippocampus volume were additionally examined within younger healthy participants (age 18–35 years).

Results: Within participants without dementia, elevated PGRS was associated with worse memory (p = 0.002) and smaller hippocampus (p = 0.002) at baseline, as well as greater longitudinal cognitive decline (memory: p = 0.0005, executive function: p = 0.01) and clinical progression (p < 0.00001). High PGRS was associated with AD-like levels of β-amyloid burden as measured with florbetapir PET (p = 0.03) but did not reach statistical significance for CSF β-amyloid (p = 0.11). Within the younger group, higher PGRS was associated with smaller hippocampus volume (p = 0.05). This pattern was evident when examining a PGRS that included many loci below the genome-wide association study (GWAS)-level significance threshold (16,123 single nucleotide polymorphisms), but not when PGRS was restricted to GWAS-level significant loci (18 single nucleotide polymorphisms).

Conclusions: Effects related to common genetic risk loci distributed throughout the genome are detectable among individuals without dementia. The influence of this genetic risk may begin in early life and make an individual more susceptible to cognitive impairment in late life. Future refinement of polygenic risk scores may help identify individuals at risk for AD dementia.

Neurology® 2016;87:481-488

GLOSSARY

AJ = β-amyloid; AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; CDR = Clinical Dementia Rating; CN = clinically normal; GSP = Brain Genomics Superstruct Project; GWAS = genome-wide association study; HV = hippocampus volume; IGAP = International Genomics of Alzheimer’s Project; LD = linkage disequilibrium; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; PGRS = polygenic risk score; SNP = single nucleotide polymorphism.

The asymptomatic stage of Alzheimer disease (AD) is thought to last over a decade, during which the pathophysiologic processes are under way in the absence of clinical symptoms.1 Given that current clinical trials are testing whether antiamyloid therapies slow cognitive decline among clinically normal individuals at risk for AD dementia,2,3 it is critical to understand the influence of risk factors before overt symptoms of dementia are present.

From the Departments of Neurology (E.C.M., R.A.S.) and Radiology (R.A.S.), Massachusetts General Hospital, Harvard Medical School, Charlestown; Center for Alzheimer Research and Treatment, Department of Neurology (R.A.S.), and Program in Translational Neuropsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry (P.L.D.), Brigham and Women’s Hospital, Harvard Medical School (P.L.D.), Boston, MA; Department of Psychology (A.J.H.), Yale University, New Haven, CT; Department of Psychiatry (A.J.H.), Massachusetts General Hospital, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.J.H.) and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research (J.W.S.), Massachusetts General Hospital, Boston; Department of Psychology and Center for Brain Science (R.L.B.), Harvard University, Cambridge; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (R.L.B., M.R.S.), Massachusetts General Hospital, Charlestown; Program in Medical and Population Genetics (P.L.D.), Broad Institute; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard (J.W.S.); and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge.

Coinvestigators are listed at Neurology.org.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Genetic variants have a large influence in sporadic AD dementia, with heritability estimates exceeding 60%. In addition to the APOE gene, to date 21 common genetic variants have been associated with AD in large genome-wide association study (GWAS) meta-analyses. However, the effect sizes of these variants are small (odds ratios <1.22), and recent work suggests that numerous additional loci distributed throughout the genome explain a much larger portion of the variance than the select few that surpass GWAS-level significance thresholds. For instance, GWAS-confirmed loci account for 2% of the variance in discriminating patients with AD dementia and controls, beyond the 6% accounted for by APOE, whereas examination across the remaining 2 million common genetic variants explains an additional 25% of the variance. Thus, aggregation across a large number of loci is likely a more sensitive method to establish underlying genetic risk to AD dementia than solely examining loci surpassing stringent GWAS-level significance thresholds. Although the accumulation of the β-amyloid (Aβ) protein is likely a central event in AD development, mechanistic pathways not directly linked to Aβ have been increasingly implicated in common genetic risk loci of AD, such as processes related to the immune system and cytoskeletal function. Given the involvement of nonamyloid pathways in common AD genetic risk loci, it is possible that genetic variants influence AD markers early in the lifespan, before amyloid accumulation has begun. We sought to derive measures of polygenic risk based on the results from the recent large meta-analysis of AD dementia from the International Genomics of Alzheimer’s Project (IGAP) and determine whether these polygenic risk scores (PGRS) were associated with AD-relevant markers during the stages preceding dementia among older participants, but also early in the lifespan among younger participants. Understanding the early influence of genetic risk will provide important insights into mechanisms of AD development throughout the lifespan as well as improve detection of at-risk individuals before clinical symptoms and widespread neuronal damage has ensued.

METHODS Participants. Our analyses included older clinically normal (CN) participants, patients with mild cognitive impairment (MCI), and patients with AD dementia from the Alzheimer’s Disease Neuroimaging Initiative study (ADNI),13 as well as younger CN participants from the Brain Genomics Superstruct Project (GSP) (table 1). Enrollment began in 2004 for ADNI phase 1 and in 2011 for ADNI phase 2. Enrollment for the GSP occurred between 2008 and 2012. In brief, older CN participants from ADNI had Mini-Mental State Examination (MMSE) score ≥24, Clinical Dementia Rating (CDR) 0, and fell below education-adjusted logical memory delayed recall cutoffs. ADNI MCI had MMSE ≥24, CDR 0.5, and for AD dementia meet the National Institute of Neurologic and Communicative Disorders and Stroke–Alzheimer’s Disease and Related Disorders Association criteria for probable AD, had memory complaints, MMSE 20–26, and CDR ≥0.5. Diagnoses were determined using each participant’s baseline visit (clinical progression from baseline was not considered). ADNI1 participants were included in the current analysis if they had genotyping data available and were of European ancestry (n = 166 AD, 332 MCI, and 194 CN). ADNI2 participants were included if they had genotyping data available, were of European ancestry, underwent florbetapir PET, and were not included in ADNI1 analyses (n = 332 MCI and 173 CN). GSP participants were healthy volunteers in a Boston area imaging study and between 18 and 35 years old. GSP participants were included if they had genotyping data available, were of European ancestry, and had structural MRI data available (n = 1,132).

Standard protocol approvals, registrations, and patient consents. Institutional review boards approved study procedures across participating institutions. Written informed consent was obtained from all participants.

GWAS processing. Genotyping procedures are described elsewhere for the ADNI18 and GSP.17 Genotyping data from the Illumina Human610-Quad BeadChip was used for ADNI1, Illumina Omni 2.5 M platform for ADNI2, and Illumina Infinium Human OmniExpress for GSP. All analyses were restricted to participants with non-Hispanic European ancestry, as identified with multidimensional scaling analysis performed in combination with the 1000 Genomes project28 and performed within each genotyping platform separately.

Standard quality control procedures were applied to GWAS data using PLINK v1.9 (http://www.cog-genomics.org.plink2). Individuals were excluded for missing genotype rates >5% and sex inconsistency. Single nucleotide polymorphisms (SNPs) were excluded if minor allele frequency was <0.01, genotype call rate was <95%, Hardy-Weinberg Equilibrium deviation (p < 1 × 10^-5), and ambiguous strand information. Nongenotyped SNPs were imputed using MiniMac35, with the 1000 Genomes European participants as the reference sample and following the Minimac cookbook instructions.

Computation of PGRS. We computed PGRS using PLINK’s profile function, which computes the sum of reference allele counts at each SNP weighted by the log odds ratio from the stage 1 analysis of the IGAP GWAS, which contrasted 17,008 patients with AD dementia with 37,154 CN controls. Critically, the summation was constrained to independent loci with an IGAP stage 1 p value below a threshold. The independent loci were identified using PLINK’s linkage disequilibrium (LD) clumping procedure (with 0.5 as the LD threshold), which reveals correlated sets of SNPs. LD clumping ensures that large blocks of correlated SNP sets do not overwhelm the PGRS computation.
To determine the appropriate \(p \) value threshold, we iterated over a range of values (the GWAS-level significance threshold of \(p = 5 \times 10^{-8} \), \(p = 0.001 \), \(p = 0.01 \), \(p = 0.02 \), \(p = 0.05 \), \(p = 0.10 \), \(p = 0.20 \), \(p = 0.30 \), \(p = 0.40 \), and \(p = 0.50 \)). Conservative \(p \) value thresholds (e.g., \(p = 5 \times 10^{-8} \)) result in fewer SNPs contributing to the PGRS, while liberal \(p \) value thresholds (e.g., \(p = 0.5 \)) result in a large number of contributing SNPs (table e-1 on the Neurology® Web site at Neurology.org). For all primary analyses, chromosome 19 SNPs were excluded to preclude any influence of the \(APOE \) gene. However, we also repeated analyses using PGRS calculations that included chromosome 19. Importantly, the ADNI participants used in the current analysis were not included in the IGAP stage 1 analysis that generated the summary statistics file. To select a PGRS for subsequent analyses within CN and MCI, we examined the \(p \) value threshold that best differentiated patients with AD dementia from older CN participants within the ADNI1 sample. PGRS were \(z \)-transformed based on the distribution of values within CN.

A\(B \) markers. Associations with \(A\)\(B \) were examined in 2 independent groups without dementia from ADNI. First, we examined this association within a subset of ADNI1 participants with CSF data\(^{26} \) (\(n = 272 \)). Given the small sample size of this subset, we additionally explored associations with \(A\)\(B \) within 505 participants without dementia who underwent florbetapir scanning at ADNI2 (these participants were not used in the analysis relating CSF \(A\)\(\beta \) to PGRS). Within the ADNI1 sample, 26/526 participants were missing hippocampus volume data. The GSP cohort was used to examine the association between baseline hippocampus volume and PGRS in a sample of young CN participants.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Participant demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADNI1, AD dementia</td>
</tr>
<tr>
<td>No.</td>
<td>166</td>
</tr>
<tr>
<td>% Female</td>
<td>44.6</td>
</tr>
<tr>
<td>Age, y, mean (SD)</td>
<td>75.8 (7.4)</td>
</tr>
<tr>
<td>Education, y, mean (SD)</td>
<td>14.9 (3.0)</td>
</tr>
<tr>
<td>% (APOE4^+)</td>
<td>66.3</td>
</tr>
</tbody>
</table>

Abbreviations: AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; CN = clinically normal; GSP = Brain Genomics Superstruct Project; MCI = mild cognitive impairment.

Baseline and longitudinal change in cognition and hippocampus volume was examined within ADNI1 participants without dementia. A subset analysis was performed within the ADNI1 participants without dementia to examine associations between polygenic risk score (PGRS) and \(\beta \)-amyloid (\(A\)\(\beta \)) status in the subset of this group that had CSF data available (\(n = 272 \)). Additional analyses examining PGRS vs \(A\)\(\beta \) status was performed in an independent sample of participants without dementia who underwent florbetapir scanning at ADNI2 (these participants were not used in the analysis relating CSF \(A\)\(\beta \) to PGRS). Within the ADNI1 sample, 26/526 participants were missing hippocampus volume data. The GSP cohort was used to examine the association between baseline hippocampus volume and PGRS in a sample of young CN participants. \(APOE4^+ \) participants carry at least 1 \(e4 \) allele.

RESULTS Participant demographics are listed in table 1. Given that the number of SNPs used to calculate a PGRS is arbitrary (table e-1), we first examined the ability of different PGRS iterations to discriminate between 166 patients with AD dementia and 194 older CN from ADNI1. Interestingly, discrimination between patients with AD dementia and older CN participants from ADNI1 dramatically increased between very stringent \(p \) values and \(p = 0.01 \), and reached a plateau after \(p = 0.01 \) (figure 1). Based on this pattern, we examined a liberally defined PGRS threshold in follow-up analyses.

Within the ADNI1 group without dementia (older CN and MCI combined, \(n = 526 \)), linear mixed models were conducted to assess associations with baseline and longitudinal change in memory, executive function, and HV (table 2). There was a main effect of PGRS on memory (\(p = 0.002 \)), such that elevated PGRS was associated with worse baseline memory performance (figure 2A). The main effect of PGRS on baseline executive function was not significant (\(p = 0.32 \); figure 2B). Finally, there was a main effect on HV, such that higher PGRS was associated with smaller baseline HV (\(p = 0.002 \), figure 2C). PGRS accounted for 5.2% of the variance in baseline HV (model adjusted \(R^2 = 0.052 \); figure 2C).

Neurology. © 2016 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
Among older participants without dementia, PGRS were associated with multiple AD markers. Specifically, higher PGRS was associated with worse memory, smaller HV, and AD-like levels of Aβ at baseline. We also found that higher PGRS was associated with greater longitudinal change in both memory and executive function, as well as elevated risk of clinical progression. Within a large sample of young clinically normal adults under age 35 years, we found that higher PGRS was associated with smaller HV, suggesting that an effect of aggregate genetic risk is not specific to processes occurring in late life. Importantly, this pattern of results was only present when PGRS calculations incorporated many loci below GWAS-level significance. Overall, these analyses provide evidence that aggregate genetic risk of AD dementia exerts effects that are detectable before the clinical symptoms of dementia are present, even among young adults.

The added sensitivity gained in our analyses by summing across a large number of genetic loci is

DISCUSSION Among older participants without dementia, PGRS were associated with multiple AD markers. Specifically, higher PGRS was associated with worse memory, smaller HV, and AD-like levels of Aβ at baseline. We also found that higher PGRS was associated with greater longitudinal change in both memory and executive function, as well as elevated risk of clinical progression. Within a large sample of young clinically normal adults under age 35 years, we found that higher PGRS was associated with smaller HV, suggesting that an effect of aggregate genetic risk is not specific to processes occurring in late life. Importantly, this pattern of results was only present when PGRS calculations incorporated many loci below GWAS-level significance. Overall, these analyses provide evidence that aggregate genetic risk of AD dementia exerts effects that are detectable before the clinical symptoms of dementia are present, even among young adults.

The added sensitivity gained in our analyses by summing across a large number of genetic loci is
consistent with work examining heritability within AD27–30 as well as studies investigating highly heritable psychiatric disorders that are associated with risk loci that individually exert small effects.27,28 This pattern implies that restricting analyses to a small number of risk loci provides a weak signal of underlying genetic risk that is improved by aggregating effects across many loci. Our results might further explain discrepancies reported across exploratory GWAS studies of AD markers. For instance, the top genome-wide significant loci that emerged from an exploratory GWAS analysis of AD pathologies (A\textsubscript{\textbeta} plaques and neurofibrillary tangles) were not significant at a liberal statistical significance threshold of $p < 0.05$ in the IGAP GWAS contrasting AD dementia to CN.6,29 Highlighting that the top loci surpassing GWAS level significance thresholds in analyses examining different AD phenotypes are likely to differ. Thus, although it is necessary to apply stringent criteria in discovery style GWAS analyses to reduce the incidence of false-positives, it is highly likely that relevant signal exists below these stringent criteria.7

Within older participants without dementia, PGRS was associated with cognitive decline, highlighting that elevated genetic risk influences longitudinal trajectories even among individuals without dementia. This finding is consistent with work across multiple laboratories linking early cognitive decline to established AD risk factors, such as elevated amyloid30 and the A\textit{POE}I genotype,31 as well as work showing an association between cortical thickness and polygenic risk within CN participants (even among A\textsubscript{\textbeta}– CN participants).32 However, our findings are at odds with a previous study that did not find an association between a liberal polygenic risk score (PGRS) and cognitive decline among a large sample of CN participants from the Cognitive Aging Genetics in England and Scotland consortium.33 It is noteworthy that PGRS from that study was computed using an older GWAS of AD dementia with a much smaller discovery sample than the recent IGAP GWAS used in our analysis (3,941 patients with AD dementia vs 17,008 patients with AD dementia).34

The power of PGRS analyses is known to increase as discovery sample size increases. Nevertheless, it will be important to replicate the association between PGRS and cognitive decline in cohorts beyond ADNI.

We also found that liberal PGRS was associated with baseline HV within older adults without dementia. Although the association between PGRS and A\textsubscript{\textbeta} in the subset of ADNI1 participants who had CSF data available ($n = 272$) did not reach statistical significance ($p = 0.11$), an independent analysis using ADNI2 florbetapir data in a much larger sample of participants without dementia ($n = 505$) did reveal a significant association between PGRS and A\textsubscript{\textbeta}. Importantly, the magnitude and direction of the effect was identical across the 2 independent samples, providing strong support for an association between PGRS and A\textsubscript{\textbeta} among individuals without dementia and highlights the importance of large samples when performing analyses linking genetics with biomarkers. Although an association between A\textsubscript{\textbeta} and PGRS was

Table 2

Main findings as well as repeated analyses using a conservative polygenic risk score (PGRS)

<table>
<thead>
<tr>
<th>Analyses within older participants without dementia (ADNI)</th>
<th>Liberal PGRS (threshold = 0.01)</th>
<th>Conservative PGRS (IGAP loci only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline memory</td>
<td>$-0.077 (0.025); p = 0.002^{*}$</td>
<td>$-0.069 (0.027); p = 0.01^{*}$</td>
</tr>
<tr>
<td>Longitudinal memory</td>
<td>$-0.021 (0.006); p = 0.0005^{*}$</td>
<td>$-0.002 (0.007); p = 0.71$</td>
</tr>
<tr>
<td>Baseline executive function</td>
<td>$-0.030 (0.030); p = 0.32$</td>
<td>$-0.029 (0.033); p = 0.37$</td>
</tr>
<tr>
<td>Longitudinal executive function</td>
<td>$-0.018 (0.007); p = 0.01^{*}$</td>
<td>$0.005 (0.008); p = 0.53$</td>
</tr>
<tr>
<td>Baseline hippocampus volume</td>
<td>$-108.98 (34.86); p = 0.002^{*}$</td>
<td>$7.94 (38.13); p = 0.84$</td>
</tr>
<tr>
<td>Longitudinal hippocampus volume</td>
<td>$-7.02 (3.70); p = 0.06^{b}$</td>
<td>$-4.73 (3.99); p = 0.24$</td>
</tr>
<tr>
<td>Progression to MCI/AD</td>
<td>$0.49 (0.11); p = 0.00001^{*}$</td>
<td>$0.10 (0.11); p = 0.39$</td>
</tr>
<tr>
<td>CSF A\textsubscript{\textbeta}</td>
<td>$-4.75 (2.96); p = 0.11$</td>
<td>$-3.13 (3.07); p = 0.31$</td>
</tr>
<tr>
<td>Florbetapir A\textsubscript{\textbeta}</td>
<td>$0.021 (0.010); p = 0.03^{a}$</td>
<td>$0.009 (0.009); p = 0.30$</td>
</tr>
<tr>
<td>Analyses within younger CN participants (GSP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline hippocampus</td>
<td>$-33.20 (17.15); p = 0.05^{*}$</td>
<td>$-14.32 (17.10); p = 0.40$</td>
</tr>
</tbody>
</table>

Abbreviations: AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; CN = clinically normal; GSP = Brain Genomics Superstruct Project; IGAP = International Genomics of Alzheimer’s Project; MCI = mild cognitive impairment.

Unstandardized β values, standard errors, and p values are listed for each model covariate.

*Significant effect ($p < 0.05$).

Marginaly significant effect ($p < 0.10$).
identified in older participants, we also found that elevated PGRS was modestly associated with HV in healthy individuals under age 35 years, an age at which Aβ accumulation is very unlikely.35,36 Thus, PGRS may also have an effect via non-Aβ pathways. It has become increasingly clear that additional factors beyond Aβ influence the emergence of clinical symptoms of AD dementia, which may include developmental factors, the spread of tau into neocortex, or inflammatory responses.37–39 The involvement of non-Aβ processes in AD risk may explain why a portion of older individuals are able to function normally

Figure 2 Polygenic risk score (PGRS) vs cognition and hippocampus volume in older participants without dementia

PGRS vs baseline and longitudinal change in memory (A, D), executive function (EF) (B, E), and hippocampus volume (C, F). Baseline associations are shown in A–C, while longitudinal effects are shown in D–F. Plotted values are residualized by model covariates. aHV = adjusted hippocampus volume.

Figure 3 Polygenic risk score (PGRS) (residuals) vs β-amyloid (Aβ) in older participants without dementia

The association between PGRS and Aβ was examined across 2 independent samples of older individuals without dementia: (A) ADNI1 with CSF (n = 272) and (B) ADNI2 with florbetapir PET imaging (n = 505). Plotted values are adjusted for model covariates.
despite high quantities of Aβ, which has important implications for mechanisms of disease resilience.

Our study has several limitations. Given the relatively small sample size, it will be important to replicate these findings in independent samples. The associations identified between PGRS and AD markers were small, accounting for 1.0%–3.2% of the variance among the older group without dementia, and only 0.2% of the variance in HV within the younger group. However, these effect sizes are consistent with other biomarker studies assessing common genetic variants among older and younger participants.31 The smaller sample size within ADNI may have provided insufficient power to detect a statistically significant effect on Aβ in the ADNI1 CSF sample. However, examination of the larger flotbeta-pir ADNI dataset provided support for an association between PGRS and Aβ among individuals without dementia.

AUTHOR CONTRIBUTIONS
E.C.M.: conception and design of the study, analysis of data, statistical analysis, drafting the manuscript. R.A.: conception and design of the study, analysis of data. P.L.D.: conception and design of the study. J.W.S.: conception and design of the study. M.R.S.: conception and design of the study, analysis of data, statistical analysis, drafting the manuscript.

STUDY FUNDING
This work was funded by NIH grants F32AG044054 (E.C.M.), P01AG036694 (R.A.), R01MH099232 (J.W.S.), R01AG034836 (P.L.D.), K24MH094614 (J.W.S.), and K23EB013649 (M.R.S.). Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (NIH grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-

DISCLOSURE
E. Mormino received funding from NIH grant F32AG044054 and P01 AG036694. R. Spelling has served as a paid consultant for Abbvie, Biogen, Brucker, Genentech, Lundbeck, Roche, and Sanofi. She has served as a coinvestigator for Avond, Eli Lilly, and Jansen Alzheimer Immunotherapy clinical trials. She has spoken at symposia sponsored by Eli Lilly, Biogen, and Jansen. R. Spelling receives research support from Janssen Pharmaceuticals and Eli Lilly and Co. These relationships are not related to the content in the manuscript. She also receives research support from the following grants: P01 AG036694, U01 AG023438, U01 AG024904, R01 AG037497, R01 AG034556, K24 AG035007, PS0 AG005134, U19 AG10483, R01 AG027435, Fidelity Biosciences, Harvard NeuroDiscovery Center, and the Alzheimer’s Association. A. Holmes received funding from K01MH099232. R. Buckner reports personal fees from Pfizer that are not related to the content in the manuscript. P. De Jager received funding from R01AG036686. J. Snook received funding from K24MH094614. M. Sabuncu received funding from K25EB013649. Go to Neurology.org for full disclosures.

Received December 24, 2015. Accepted in final form April 22, 2016.

REFERENCES
15. Aisen PS, Petersen RC, Donohue M, Weiner MW; Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s