DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SYNCHROTRON LIGHT FACILITY - WIGGLER/BEAMLINE VI

WIGGLER - MAGNETIC DESIGN

PARTIAL SUMMARY OF COMPUTER ANALYSIS
THIS NOTE CONSTITUTES A PARTIAL SUMMARY OF COMPUTER ANALYSIS OF THE BEAMLINE VI WIGGLER MAGNET. THE MAGNET WAS OPTIMIZED FOR λ/GAP OF 7/8. THE OPTIMIZED GEOMETRY WAS THEN CHANGED TO SIMULATE AN INCREASE IN GAP FROM 0.8 CM. TO 1.2 CM. POLE TO POLE.

THE POLE MATERIAL USED IN THESE MODELS WAS VANADIUM PERMENDUR. AN H_c VALUE OF 9.0 KG. WAS USED FOR THE PERMANENT MAGNET MATERIAL.

AS A LOW PERFORMANCE COMPARISON THE λ/GAP = 7/8 GEOMETRY WAS RERUN WITH IRON INSTEAD OF VANADIUM PERMENDUR AS THE POLE MATERIAL AND WITH AN H_c VALUE OF 7.95 KG. INSTEAD OF 9.0 KG.

THE RESULTS OF THESE RUNS ARE SUMMARIZED IN THE TABLE BELOW. GEOMETRY INFORMATION AND FIELD PLOTS ARE ON THE FOLLOWING PAGES. THE OPTIMIZED RUN WITH λ/GAP = 7/8 IS DESIGNATED REC201 AND THE LOW PERFORMANCE RUN IS REC201A. THE RUN WITH GAP INCREASED TO 1.2 CM IS DESIGNATED REC203.

<table>
<thead>
<tr>
<th>RUN</th>
<th>B_0</th>
<th>H_c</th>
<th>B_p</th>
<th>λ</th>
<th>GAP</th>
<th>POLE MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC201</td>
<td>17503</td>
<td>9000</td>
<td>1.8</td>
<td>7.0</td>
<td>0.8</td>
<td>VANADIUM PERMENDUR</td>
</tr>
<tr>
<td>REC201A</td>
<td>15576</td>
<td>7950</td>
<td>1.6</td>
<td>7.0</td>
<td>0.8</td>
<td>IRON</td>
</tr>
<tr>
<td>REC203</td>
<td>12990</td>
<td>9000</td>
<td>1.7</td>
<td>7.0</td>
<td>1.2</td>
<td>VANADIUM PERMENDUR</td>
</tr>
</tbody>
</table>

B_0 = MAX. FIELD IN GAP
B_p = UNIFORM FIELD IN PERM. MAG. MATERIAL
$\gamma_C = 7/8$
$B_r = 9000 \text{ G}$.
$B_p = 1.8 \text{ kG}$.
$B_0 = 17503 \text{ G}$.

POLE MAT'L:
VANADIUM PERMENDUR

S. F. = 1.8
\[\gamma_{\text{cap}} = 71.2 \]
\[B_r = 9000 \text{ G} \]
\[B_p = 1.7 \text{ kG} \]
\[B_0 = 12970 \text{ G} \]

Pole Mat'l:
Vanadium Permendur

S. F. = 1.8
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.