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* GLIMM'S METHOD FOR GAS DYNAMICS 

** Phinip Colella 

Lawrence Livermore National Laboratory 
University of California 

Livermore, California 94550 

Abstract 

We investigate Glimm's method, a method for constructing approximate solu-

tions to systems of hyperbolic conservation laws in one space variable by sam-

pl·ing explicit wave solutions. It is extended to several space val'iables by 

operator splitting. We consider two functional problems. 1) lrJe propose a 

highly accurate form of the sampling procedure, in one space variable, based 

on the van der Corput sampling sequence. We test the improved sampling proce-

dure numerically in the case of inviscid compressible flow in one space dimen-

sion and find that it gives high resolution results both in the smooth parts 

of the solution, as well as the discontinuities. 2) lrJe investigate the opera­

tor splitting procedure by means of which the multidimensional method is con­

structed. An 0(1) error stemming from the use of this procedure near shocks 

oblique to the spatial grid is analyzed numerically in the case of the equa-

tions for inviscid compressible flow in two space dimensions. We present a 

hybrid method which eliminates this error, consisting of Glimm 1 s method, used 

in continuous parts of the flow, and the nonlinear Godunov's method, used in 

regions where large pressure jumps are generated. The resulting method is 

seen to be a substantial improvement over either of the component methods for 

multidimensional calcul ons. 

* Work performed under the auspices of the Engineering, Mathematical, and 
Geosciences Division of the U.S. Department of Energy by the Lawrence 
Livermore National Laboratory and by the Lawrence Berkeley Laboratory under 
contract No. W-7405-ENG-48. 

** Current address: Lawrence Berkeley Laboratory, University of California, 
Berkeley, California 94720. 
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L INTRODUCTION 

The problem which motivates this study is the numerical calculation of 

time-dependent, discontinuous solutions to compressible fluid flow problems in 

one or more space variables. There are three criteria which such approximate 

solutions must simultaneously satisfy. 

1) The approximate solution must be reasonably accurate in regions where 

the flow is smooth. Continuous waves should move at the correct speed, have 

the correct shape, steepen or spread at the correct rate. 

2) Discontinuities which are transported along characteristics should be 

modelled in the approximate solution by sharp jumps which are transported at 

the correct speed. Examples of such discontinuities are: contact discontin­

uities (across which the density and temperature have jump discontinuities 

while the pressure and velocity remain continuous); the interface between two 

different materials, or between two different thermodynamic phases of the same 

material; lines or surfaces across which the solution is continuous, but some 

derivative of the solution is not. 

3) Nonlinear discontinuities should be computed stably and accurately. 

Such discontinuities occur, for example, when there is mass transported across 

the discontinuity, as in the case of shock fronts in an ideal gas. 

The main method used for computing such solutions has been to solve a set 

of finite difference equations which approximate the differential equations of 

motion. However, it is difficult to construct difference methods which 

satisfy all three of the above criteria simultaneously. For example, it is 

well-known that a high order difference method may generate oscillations 

behind a shock. A first order method will generally treat the same shock 



correctly, but numerical diffusion will cause it to give low-resolution 

results in continuous parts of the flow. 

We will be examining an alternative approach to computing discontinuous 

flows, known variously as Glimm 0 s method, the Random Choice Method, or the 

Piecewise Sampling Method. This method was first used by Glimm [10] as part 

of a constructive existence proof of existence of solutions to systems of non­

linear hyperbolic conservation laws. It was developed by Chorin [3,4] into an 

effective numerical method in the case of gas dynamics. In the first refer­

ence Chorin also introduced a multi-dimensional version of the scheme; in the 

second, he applied the method of reacting gas flow in one space variable. 

Since that time, the method had been used to compute compressible flow in 

cylindrical or spherical geometry (Sod [20,22]), and in applications to some 

problems in petroleum engineering (Concus and Proskurowski [7], Albright, 

Concus and Proskurowski [ 1], Glimm, Marchesin, and McBryan [ 10], Glimm, 

Marchesin, Isaacson, and McBryan [11]). 

Although one computes solutions on a grid with Glimm 0 s method, it is not a 

difference method. Rather than computing a weighted sum to arrive at the 

value of the solution at a grid point 9 one samples values from an explicit 

wave solution. Thus, the method has built into it an approximate form of wave 

transport and interaction, without the smoothing of such information inherent 

in averaging. The introduction of such a sampling technique as a numerical 

method is quite recent, compared to the length of time difference methods have 

been in u and not been subject to the extensive scrutinyandapp-t+r'--A--

tion from which the latter has benefitted. One of the purposes of this study 

is to indicate some of the features of Glimm 1 s method which might make 
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developing it worth the effort, as well as a few of the directions in which 

the development might go. 

We consider in this study two fundamental problems. 

1) We introduce a more accurate form of the sampling procedure for the 

one dimensional method than that used in [3], based on the van der Corput sam­

pling sequence. We compare the performance of the van der Corput sampling and 

the previously used random sampling schemes. 

~) We investigate the operator splitting procedure by which Chorin con­

structs a multi-dimensional scheme from the one dimensional method, A source 

of error stemming from this procedure, not noticed in [ 3] is analyzed here and 

a method for eliminating it is proposed and tested. 

In one-dimension, Glimm 1 s method; with the appropriate sampling, is seen 

to be superior to any difference method in meeting the three criteria given 

above. The final method obtained for multidimensional calculations, although 

it does not share the special properties of the one dimensional method, has a 

number of interesting features, and is worthy of further investigation for its 

own sake. 

This paper is divided into three sections. In Section 2 we discuss 

Glimm 1 s method as applied to gas dynamics in one space variable. We define 

the van der Corput sampling sequences, and compare the van der Corput and ran­

dom sampling strategies. In Section 3 we describe the operator splitting 

technique. In Section 4 we compare Glimm 1 s method to some difference methods 

and give some conclusions, and suggestions for future work. 
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2. GAS DYNAMICS IN ONE SPACE VARIABLE 

We want to construct approximate solutions to the initial value problem 

for Euler 1 S equations for the motion of a one-dimensional, compressible, 

inviscid gas with a polytropic equation of state: 

EQ + aF( U) "" O 
at ax 

U(x,t) ~ U:R x [O,T] ~ R3 ( 1.1) 

U(x,O) ~ u(x) given 

F(U) 

where P is the density, m is the momentum, and E is the total energy per unit 

volume of the gas. We can express in terms of these variables the more 

familiar quantities v the velocity, and c, the internal energy of the gas: 

The pressure p which appears in the equation is a function p,c: 
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where the constant Y > 1 is the ratio of specific heats for the gas, Another 

quantity of interest is the entropy, S, defined (up to an additive and a 

multiplicative constant) 

The system (1.1) is a first-order, hyperbolic system of conservation laws, 

i.e., the 3 x 3 matrix A(U) the Jacobian ofF, has three real eigenvalues, 

where 

is the adiabatic sound speed. ~., i = 1, 2, 3 are the characteristic 

velocities associated with the three modes of wave propagation for (1.1). 

Since we are dealing with piecewise smooth solutions we interpret (1.1) in 

the sense of distributions. That is, if U(x,t) is discontinuous along a 

piecewise smooth curve (£(t),t) then d /dt = s(t) must satisfy 



where 

~ lim U(i(t) + E,t) 
E t 0, E t 0 
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The discontinuity must also satisfy the entropy conditions (Courant and 

Friedrichs [8]). Discontinuities calculated using any of the numerical 

methods discussed in this paper satisfy the entropy conditions if they satisfy 

(1.2). 

The simplest initial value problem for which discontinuities appear is one 

for which the initial data is constant on either side of the origin, where it 

has a jump discontinuity: 

UL X < 0 

~(x) ~ UL, u e R3 

UR X > 0 R 

where we denote by 

PL R 
' 

PL R 
9 

UL R = = PL R UL R ,R 9 ' 9 

EL R 
9 9 

R/(y - 1) + ~ PL RUC 
' ' 

This problem is known as the Riemann problem; its solution is a funda­

mental component of Glimm 1 s method. The special case of the Riemann problem 

in which UL = UR = 0 is often referred to as the shock tube problem. The 

solution of the Riemann problem is discussed extensively in Chorin [3], 

Courant and Friedrichs [8], Godunov [12] and Sod [21] and van Leer. [23] In 

[3] and [21] detailed instructions for constructing solutions numerically are 

given; thus we will describe only qualitatively the structure of the solution. 
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Two general properties of the solution to a Riemann problem are that it is 

self-similar, i.e. U(x,t) = h(x/t) for some piecewise continuous h:R ~ R3 

and that it has the following additivity property: if U(~,t~) = UMeR 3 for 

some R then the function 

= U(x,t) 

::: u 
M 

is the solution to the Riemann problem with left and right states UL' UM. 

Similarly, the function 

= U(x,t) 

is the solution to the Riemann problem with left and right states UM, UR. 

Geometrically, this says that the solutions u1, u2 fit together to form U. 

One can divide the (x,t) plane into four regions I, II, III, IV where 

U(x,t) is constant (figure 1). These four regions are connected by three 

waves, each associated with one of the characteristic speeds. These are: a 

backwards facing sonic wave (associated with u-c = A1(U), between t 1 band 
9 

t 2,b; a contact discontinuity (associated with u = A2(U), occurring across 

the line ts; and a forward facing sonic wave (associated with u+c = "-3(U) 

between t 1 f and 22 f• The pressure and velocity are continuous across 
' ' 
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the line ts so they are equal to some fixed values p*, u* in II and III. 

* * Only the density changes across ts(t) = u*t, from PL to PR. 

As is discussed,in [8], the hydrodynamic waves are uniquely determined by 

knowing the state of the gas on one side of the wave, and only the pressure on 

the other. For the backwards facing wave, for example, there are two possi-

* bilities. If p* >pl then u* < ul' pl > pl' t 1,b "'t2,b and the 

wave is a shock associated with the characteristic velocity u-c. If p* < pl' 

then we have a backwards facing centered rarefaction wave: t < t · 1,b 2,b' 

p(x,t) and u(x,t) are continuous strictly monotone decreasing functions of 

x/t. and u(x,t) a continuous strictly monotone increasing function of x/t, for 

(x,t) between t 1,b and t 2,b. The description of the forward facing wave 

is the same, replacing UL by UR, u by -u, and u+c by u-c. 

In figure 2 we show the solution at a fixed time to the shock tube problem 

R = 0.125 ( l . 3) 

y::: 1.4 

The waves which occur are a backward facing rarefaction wave (A), a forward 

facing shock (B), and a contact discontinuity (C). 

We can now describe Glimm 1 s method for solving approximately theinitial 

value problem (1.1). Let ~x be a spatial increment, ~t a time increment. We 
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assume that, at time n~t, the approximate solution is constant on intervals of 

length ~x: 

U( 6x)(x,n6t) = Uj E R3 (j- ~) 6x <X< (j + ~) 6x j = 0, ± 1, ± 2, ,,. (1,4) 

We wish to compute an approximate solution which at time has the same property: 

The procedure is given as follows: 

1) Define U~(x,t) n~t < t < (n+1)~t to be the exact solution to the 

initial value problem for (1.1) with initial data given by (1.4). The initial 

data consists of intervals where the solution is constant, separated by jump 

discontinuities; i.e., we have a succession of Riemann problems. If ~t is 

sufficiently small, then by finite propagation speed the waves from adjacent 

discontinuities do not intersect each other and the solutions to the adjacent 

Riemann problems fit together to given U~ (figure 3). A condition on ~t 

which guarantees that the waves do not intersect is 

~~=A<~ sup lu~(x,t) I + c~(x,t) 
X R 

(n+l)6t > t > n6t 
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When doing calcuations, one usually uses the more easily verified 

~t -
~x - A. < a sup 

xER 

( 1 . 4) 

j 

where a is a constant, 0 < a < ~ 

2) Choose an+lE[O,l) and take 

n+l e ( . n+l ) U j = Un ( J - ~ + a ) ~x, ( n + 1) M 

(figure 4). 

Thus we obtain a solution at time (n+l) which depends on a sequence 

. 
0 0 0 ' 

much of the remainder of this section will be devoted to determining the best 

choice for the sequence a. 

At first glance, this method might look complicated, but in fact it 

requires the evaluation of the solution to a Riemann problem once per zone per 

timestep. Let 



-12-

h ( n - ( j - la) fix ) 
j-Ja,n t - nflt 

be the solution to the Riemann problem with left and right states uj_1, uj 
and 1 et 

(( n+l 1 ) fix) a - ::a -n 6t 

Then 

"' 0~ n+l 
> la a 

u~+l J 

J 
0~+1 n+l 

"' a < la 
J "2 

The procedure given here is slightly different from that used previously, 

in that the mesh is fixed, rather than shifting by ~x/2 every timestep. By 

sampling back to a fixed grid, the relation to Godunov's method is immediate: 

in Godunov's method, U~+l is taken to be 
J 

i U~(x,6t)dx f (j + la)6x 

x j - la)flx 

in Glimm's method, one chooses a representative point value of the local exact 

solution. 
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The mechanism by which Glimmus method models wave propagation in a gas is 

most easily demonstrated by the following example. Let UL' UR be the left 

and right states of a Riemann problem whose solution consists of a single 

discontinuity propagating at speed s > 0. The exact solution for this problem 

is 

U(x,t) 
= UL x < sT 
"' U X > sT R 

We will solve this initial value problem using Glimm 1 s method. First, it 

is obvious that, for any time step n there is an 

Q, ( n) = j o - ~' 

j
0 

an integer, such that 

u~ 
J 

= u L 

"' u R 

j < ~(n) 

j > ~(n) 

Q,(n) is the location of the shock in the approximate solution, and satisfies 

~(n) if n+l 
> A.s :::: a 

~(n+l) n+l 
"" ~(n + 1) if a < A.s 

~(0) = ~ 
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So that 

where 

denotes the number of j, n1 < j :S n2 such that aj is contained in L We 

say that a sequence a is equidistributed if the proportion of times that aj 

is contained in I is asympotically equal to III, the length of I, i.e., if we 

define 

then a is equidistributed if lim &(a,nl'n2,I) = 0 for each fixed nl' 

n __.. oo 
2 ' 

I. Given this notation we write 

+ 
~(n)~x = ~(O)~x + ~XASn + 6(a,O,n, O,AS)) n~x 

= ~(O)~x + n~t(l + f o a,O,n,(O,As)) 

If a is equidistributed, then 

,Q,(n) + sT in the limit n + oo 
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ln6t - Tl < 6t , ~~=A> 0 

Thus the shock in the approximate solution at each time step either moves by 

6x or does not move at all. Over many time steps, the cumulative displacement 

is close to that of the exact solution, the leading term in the error being 

proportional to o(a, 0, n, [0, As)). In general, a piecewise continuous flow 

will be represented by 0(1/~x) waves of strength O(~x), all having differing 

speeds, as well as an 0(1) number of discontinuities of strength 0(1). 

Furthermore, the speeds and strengths of the waves will be changing in a 

piecewise continuous fashion as a function of time. In order to model such a 

flow correctly by the above mechanism, one needs to choose a such that cS is 

small as possible, uniformly in i, n1 for n2-n1 large relative to 1, but 

(n 2 -n1 )~t small relative to the characteristic times in which the wave 

speeds change. The sampling procedure given below seems to be optimal from 

the point of view of these requirements. 

The simplest form of this sampling sequence is due to van der Corput (see 

[14]), Let 

m 

n = 2 \2k \ = 0, 1 be the binary expansion of n = 1, 2, ••. 
k=O 

m 

k=O 

. 2-(k+1) 
\ 

The easiest way to see how the sequence is constructed is to write down 

the first few elements in it: 
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1 = 1 a1 "' .5 = .12 2 
2 = 10 2 

a2 "' .25 "' .012 

3 "' 11 2 
a3 = .75 "' .112 

4 = 1002 
4 .125 .0012 a "' = 

5 = 1012 as = .625 "' .1012 

6 = 1102 a6 :::: .375 "' .0112 

7 = 1112 / = . 875 = .1112 

8 = 10002 as = .0625 "' .00012 

So a; §i .5 if i is even. k < a i < 
odd ' 4 -

k+l 'f . 41 1 j(k) mod 4, 

k = 0, 1, 2, 3 where j(O) = 0, j(1) = 2, j(2) = 1, j(3) = 3. In general, 

one divides the unit interval into the subintervals 

( -s ( ) -s) s r2 , r + 1 2 r = 0, ... , 2 - 1 , 

then for each r there is exactly one q for which q0 < q < q0+2 5 such 

that aqe[r2-s,(r+1)2-s). 

We will have need of a variant of this procedure for use in multi-

dimensional problems, Let k1, k2 > 0 be integers, k1 > k2 relatively 

prime, The (k1, k2) van der Corput sampling sequence a is given by 

if 
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where 

m 

.!i "' 0 

is the base k1 expansion of n. Thus the binary van der Corput sampling 

sequence given above is the special case k1 = 2, k2 = 1. 

All the van der Corput sampling sequences are equidistributed. In fact 

where Cl' c2 are constants depending on k1, k2 but not on n1, n2 

or I. For the binary van der Corput sequence cl "' 3, c2 = 1. In the 

example given above, this gives an error bound of O(~xllog6xl) 

In previous computational work for gas dynamics using Glimm's method, 

random sampling was used, i.e. the were drawn from a random number generator 

implemented on the computer, usually with some variance reduction technique, 

such as stratification for random sampling. for which 

giving an error bound in our simple shock example of 0(~). 

Lax [17] proposed the use of a non-random equidistributed sequence due to 

Richtmeyer and Ostrowski, defined by an = n ~mod 1 where r is an integer 

which is not the square of another integer. 

We shall not discuss the Richtmeyer-Ostrowski sampling sequence in detail 

here, save to note that in numerical experiments. and in simple analytical 

examples, one obtains results using the Richtmyer-Ostrowski sequence similar 
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to those obtained using van der Corput sampling. However, the bound on o is 

stronger for the van der Corput sequence than that obtained for the Richtmyer­

Ostrowski sequence, as well as being explicitly uniform in I and n1; uni­

formity in I and n1, does not hold explicitly for the Richtmyer-Ostrowski 

sequence. Also, Van der Corput sampling has some special properties which 

guarantee that certain qualitative features of the continuous part of the 

solution preserved in the approximate solution, at least for simple waves (see 

[5], [6]). Finally, van der Corput sampling has several straightforward 

extensions to two or more dimensions which guarantee good distribution proper­

ties in the square, even for finite sample sizes, In contrast, it has been 

pointed out by Maltz and Hi 1 [18] that such an extension of the Richtmyer-

Ostrowski sequence can give rise to poor distribution in the square for finite 

sample sizes due to resonance effects. 

In an effort to understand the errors introduced by the interaction of the 

sampling and variations in time in the wave speeds, we consider the following 

class of test problems. The initial data consists of two discontinuties 

located at x , and x , separated by constant states: 
r 

U(x,O) 

p 2.,m,r 
(y - 1) 
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We choose U~, Um, Ur such that U~ and Um can be connected by a forward­

facing shock and that Um and Ur can be connected by a forward-facing 

centered rarefaction wave (figure 5). 

The shock overtakes the rarefaction, the cance 11 at ion between them weaken-

ing both (figure 6,(A)). The nonlinear coupling between the modes produces 

waves of the other two families in back of the shock and moving to the left, 

away from the shock. These are, a backwards facing compression wave (figure 

6, (B)), and a strong entropy/density wave (figure 6, (C)) advected passively 

by the velocity field u(x,t). 

In figures 7-9 we show the calculation of such a problem using G1imm 1 s 

method with, respectively, a random sampling sequence, a stratified random 

sampling, and the binary van der Corput sampling sequence. The initial data 

are: 

p "" .6878 
$(, 

U "' -5.98 r 

y = L4 

All calculations were done on the spatial interval [0,1] with boundary 

conditions at 0 and 1 obtained by assuming the solutions satisfy 



-20-

au I "" o ax x = 0,1 

The various solutions being compared were computed with ~x = .01 and are 

represented graphically by circles for the computed values at mesh points, 

interpolated by a dotted line. Also plotted on each of the graphs with a 

solid line, is a solution obtained using Glimm's method, with van der Corput 

and ~x = .0025. Having compared the latter solution with a similar one done 

for ~x = .005 we found that the two results differed by less than .5%, so that 

the method has converged for ~x = .0025. For the purposes of comparing the 

various ~x = .01 solutions, we treat the ~x = .0025 solutions as exact, 

against which the ~x = .01 solutions can be compared. 

The sampling governs the rate at which the shock and rarefaction inter-

act. n If s +~ is the speed of the shock, located between zones q and q + 1 at q 2 

. d n n t1me step n, an A+ = uq+l 

piece of the rarefraction 

at time step n + 1 if and 

Thus the loss of gradient 

+ c~+1 , then the shock will cancel with a 

wave, and produce more wave of the other two families, 

. n+l ~t n ~t n ) only 1f a e max (A+,O), ~xsq+~. 

information observed in the randomly sampled solu-

tion (figure 7) is a result of random fluctuations in the rate of interaction 

between the shock and rarefaction which is producing the wave. The use of 

stratified random sampling (figure 8) produces smoother profiles than those 

obtained with the unmodified random sequence, but the shape of the entropy 

wave is incorrect; in particular, there is a sizable deviation in the density 

profile, a failure to conserve mass. The profile obtained using van der 

Corput sampling (figure 9) is in much closer agreement with the ~ = .0025 
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result, the rate of wave production being modeled much better than in the 

other two cases. In fact, if one uses van der Corput sampling, one can use a 

much coarser mesh and still get good results for this problem. In figure 10 

we present the results obtained on this problem with binary van der Corput 

sampling, and ~x = 1/30. The absolute locations of the waves, and their loca­

tions relative to each other, are correct to within ~x; more important, the 

size and shape of the waves, which are more sensitive to the cumulative error 

introduced by the sampling, are in very close agreement with the ~x = .0025 

result. In all the calculations~ the shock discontinuity is sharp, as 

guaranteed by Glimm 1 s method. 



3. Operator Splitting 

In [3], Chorin proposed a method for computing multi-dimensional unsteady 

compressible flow using Glimm's method by means of operator splitting. We can 

write the equations of motion for an ideal gas in two space dimensions as 

aU+ l_ (F(U)) + ]_ (G(U)) = 0 at ax ay 

U{x,y,t) = U:R 2 x [O,T] + R4 

U(x,y,O) "' <!J(x,y) ¢:R2 + R4 

p m n 
m2 mn m ~+ p 

u = F(U) "' 
p G(U) = p 

' ' n2 + P mn n 
p p 

E !l! (E + p) !l (E + p) 
p p 

Here P is the density, m is the x-component of momentum, n is the y-com­

ponent of momentum, and E is the total energy. We can express the velocity v 

and the internal energy e:: in terms of the above variables: v = !l! is the X p 

x-compondent of the velocity, vy = ~ is the y-component of the velocity, 

and s = l- ~(v2 + v2). The pressure p is a function of p and e::: 
p X y 

p "' (y - 1 )pe:: where y, the ratio of specific heats, a constant assumed to 

be greater than 1. Thus, as was the case for one space variable, the value U 

at a given point is uniquely determined by the values of p, p and vat that 

point. 
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We wish to construct approximate solutions 

Uflx,fly(x
9
y,Mt) 

(i - ~)flX < X < (i + ~) flX 

(j - ~)fly < y < (j + ~) fly 

where x, y are spatial increments, t is a time increment, and i,j,n are 

integers, n 2: 0. 

Assume we know U~ . and want to find U~+~; the procedure is as 
l,J l,J 

fo 11 ows: 

1) For each j perform one time step of Glimm's method for the equation 

~ + £_ (F(V)) "' 0 at ax 

taking as initial data v~ 

(we denote this procedure 

n 1 "' U. .. Set the results V. 
1 'J 1 

n n ' 1 

by ( L :tu ) . . = u .... ~, 
u 1,J l,J 

2) For each fixed i perform one time step of Glimm's method for the 

equations 

~ + £_ (G(V)) = 0 at ay 



taking as initial data v~ = ury+~, time 
J 1 'J 

v1 = u~+ 1 (we denote this procedure by 
1 9 
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t. Set the result 

The solution thus derived at time (n+1)~t is interpreted as being the 

piecewise constant function 

(i - ~)~x < x < (i + ~}~x 

{j - ~)~y < y < (j + ~) ~y 

A necessary condition on the time step t is that it must satisfy (1.4) 

for each of the one-dimensional calculations: 

n I n (lv .. +c .. ) 
X,l,J l,J 

(3,1) 

~yt < om ax ( I vn . ·I + c~ ·), 0 < a < ~ 
0. y,l,J l,J 

i 'j 

The above procedure is formally the same as is done to construct 

multi-dimensional difference methods from one-dimensional ones. However, the 

mechanism by which Glimm's method propagates the solution to the equation in 

one dimension is rather different than that of difference methods, as it 
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requires many time steps for the cumulative effect of the sampling to give the 

correct wave speeds; therefore the actual justification of the splitting 

procedure, currently unknown~ is likely to be quite different than the usual 

truncation error analysis for difference methods. 

The Riemann problems in question are easily solved, given the solution for 

one-dimensional gas dynamics. For example, to solve Riemann's problem for 

~ + l_ (F(V)) = 0 at ax 

take the solution p(x,t), p(x,t), u(x,t) in Section 2 with 

v (x, t) "' v L y y, 

if (x,t) is to the left of the contact discontinuity t s 

vy(x,t) "'v R y, 

if (x,t) is to the right of the contact discontinuity ts. Thus in the 

x-sweep, we have ordinary 1-D gas dynamics, with the discontinuity in vy 

passively advected. To solve the Riemann problem for 
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av + ]_ (G(V)) = o 
at ay 

interchange the roles of vx and vy. 

To test the validity of this procedure, we looked at the simplest 

two-dimensional test problem possible. We took our computational domain to be 

the unit square with the computational mesh aligned with the x- and y-axes, 

and took the initial conditions to be 

X < y 

U(x,y) 
X > y 

This is the Riemann problem, for which we have an analytic solution. 

Computationally, it is a two-dimensional problem, since the initial 

discontinuity is at a 45° angle to the mesh directions. 

We denote by vn the component of the velocity normal to x = y, vt the 

component parallel to x = y. 
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~ vx,R - vy2R v R + v R 
~ x, y, 

~ 

v L + v L X, y, 

Throughout these test calculations we will set vt L ~ vt R ~ 0, i.e., we 
' ' 

will be looking at problems for which there is no slip line in the exact solu-

tion. Unless otherwise indicated, the calculations shown were done on a 50x50 

grid: ~x = ~Y =.02. The results of the calculations are displayed by plotting 

the profiles of various quantities along the line y = 1 - x, and comparing 

them with the exact solution. In these plots, the computed values at the mesh 

points are graphed as circles, interpolated by a dotted line: the exact solu­

tion is plotted as a solid line. When boundary conditions are required, we 

assume the solution is constant on lines parallel to the initial jump. This 

was quite effective in preserving the symmetry of the solution, and enabled us 

to run for long times without noise from the boundary affecting the results. 

The one-dimensional calculations using Glimm's method in the x and y 
+ + 

directions require sampling sequences a , a which we took to be two inde­x y 
+ 

pendent van der Corput sampling sequences: a was the (3,2) van der Corput 
X 

+ 
sequence, and ay was the (5,3) van der Corput sequence. This insured 

optimal distribution in the square [0,1) x [0,1). 

In figure 11, we show the results for the following problem: 
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(3.2) 

y = 1.667 

The exact solution is a strong, right-facing shock. It is almost stagnant 

(after 175 time steps, the exact shock point has moved only two zones). By 

this time, the oscillations ( 80% of the exact post-shock value in the pres­

sure) have begun to make themselves known by a three zone error in the shock 

location, the shock moving a distance more than two times greater than it 

should have. We see substantial values ( 60% of I vn,L - vn,R I) for vT 

(x,y,t) the tangential component of the velocity appearing. Finally, the 

density profile shows a substantial deviation from conservation of mass. 

The fundamental reason why large errors occur in this problem is that, 

although each half-step L~t' Lrt models the resulting one-dimensional 

gas dynamics well, the problem it is modeling is 0(1) incorrect from the point 

of view of the two-dimensional flow. For example, consider the problem one 

solves (one for each value of j) in the first x-pass in the test problem 3.1. 

They are each the same Riemann problem for a one-dimensional gas flow, with 

the jump taking place along the diagonaL The left and ght states 
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- -
PL R ( -2 2 PL R 
y2f + ul,R + (vy)L,R) ~ 

for the one-dimensional problem are 

v y,R 

The jump in the velocity, uL - uR, is less than vn L - vn R so a 
' ' 

weaker forward-facing shock than that of the original two-dimensional problem 

is produced, as well as a backwards-facing rarefaction wave. If we sample 

anywhere in the fan other than the left or right states, we get a 

( ) n+~ v . . > UL' UR 
X 1, J 

The new va 1 ues 

n+~ 
p. . ' 

l 'J 
n+~ 

P· . 
1 'J 
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depend only on the sampling value a; and the ratio 6t/~x but not on ~t 

and ~x separately. So the difference between these and the exact answer is an 

0(1) quantity relative to the mesh spacing. In particular, there is an 0(1) 

contribution to the tangential component of the velocity. Since there has 

been an 0(1) change in the thermodynamic variables p and P, there is no reason 

for they-pass to produce a tangential velocity to cancel the one produced by 

the x-pass, and in fact it does not. Similar phenomena occur for a shock 

tube, (figure 12) or a Riemann problem whose solution consists of two centered 

rarefaction waves. 

The above failures in the splitting procedure in situations when there are 
+ 

discontinuties in p,v can be viewed as a consequence of an invalid interchange 

of limiting procedures. Analytically, shock solutions are obtained as limits 

of viscous solutions as some set of diffusion coefficients go to zero. One 

might try to obtain the shocked solutions by using an operator splitting 

method to solve the viscous equations; the splitting procedure is then known 

to converge as ~t + 0. Then, in the inviscid limit, the viscous solutions 

converge to the physically correct shocked solutions. In a difference method 9 

the two limiting procedures take place simultaneously 9 with the coefficients 

multiplying the numerical diffusion approaching zero with ~t. The use of 

operator splitting with Glimm 1 s method corresponds to letting the diffusion 

coefficients vanish for nonzero ~t. This interchange of limits is valid for 

continuous solutions, or near contact discontinuities, but near discontinui­

ties in p or~ the two limiting procedures are singular with respect to each 

other 9 and cannot be interchanged freely. 
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In order to correct this problem, we replace Glimm's method at 

discontinuities in p and ~with a conservative finite difference method; the 

method we use in the nonlinear Godunov method (Godunov [2]~ Richtmyer and 

Morton [19]) adapted for Eulerian coordinates (Godunov, et al [13]). 

We describe the procedure for advancing this hybrid Glimm-Godunov method 

by one timestep, in one space dimension; the extension to two space 

dimensions, is achieved by an operator splitting procedure like the one 

described above. First, one calculates the exact solution to the initial 

value problem to (1.1), as before. At those mesh points where one uses 

Glimm 1 s method, one samples as before. At those mesh points (j~x, (n+1) ~t ) 

where one wishes to use Godunov's method, one sets 

u~+1 
J Godunov ~X 

(j + ~)~x 

j - ~)~x 

By integrating the conservation law over the rectangle [(j - ~)~xJj + ~) ~x] x 

[n~t,(n + 1) ~t] we obtain, using the notation of Sec. 2, 

u~+1 
J Godunov 

where F is the vector of fluxes for the conservation law being integrated. 

Finally, we need a perscription for iding whether to use GlimmorGod11nov. 

Let 



Pjax ~max (pj,Pj:~) 
- k0 ~ k-j ~ k0 + 1 

Pm.in . ( n n* ) = m1 n p . , p . , . 
J J J -'2 

- k0 ~ k-j ~ k0 + 1 
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where n* p. , the pressure in the region separating the two sonic waves 
J-"2 

which come from the Riemann problem centered at ((j-~)Llx,nL',t) (see [3], [21]; 

and the appendix to this paper). Then the perscription for choosing Glimm and 

Godunov is 

n+l 
~ (Uj ) Godunov if 

max min p. - p. 
J J 

Pm~n 
J 

> 

otherwise 

Here c
0

, k
0 

are constants to be set at the beginning of the calculation. 

Roughly, c
0 

is a measure of the strength of the weakest sonic wave in the 

problem that must be treated as a discontinuity, and k
0 

+ 1 is the effective 

width of a discontinuity. For weak problems (excess pressure ratios ~5), it 

suffices to set k
0 

= 1. For stronger shocks, it appears to be necessary to 

set k
0 

~ 2. In all the calculations presented here, .05 ~ c
0 

~ .2. The 

consequence of the nonoptimal choice of parameters a lossof.accuracy, not 

of stability: failing to detect a pressure jump results in noise; using 

Godunov 1 s method unnecessarily results in the smoothing of relevant wave 

structures. 
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One can make several minor modifications of the method described above. 

The fact that we are using Godunov's method near strong pressure jumps makes 

it possible to introduce some approximations into the solution of the Riemann 

problem. Another consequence of sampling only if the sonic waves are weak is 

that, by accounting approximately for the interaction of those waves, one can 

use a larger time step, allowing a< 1 in 3.1, which is the time step 

restruction for Godunov•s method. We have implemented both of these changes 

in the method for the examples computed here; in an appendix to this paper, we 

describe the details of the algorithms used. Finally, we noticed that the 

first order splitting algorithm described above can lead to errors near very 

strong shocks (excess pressure ratios greater than 100) computed using 

Godunov's method. In particular, large tangential components of velocity are 

generated behind the shock. We found that the use of the Strang splitting 

algorithm 

reduced this error to the level found in regions where the flow is continuous. 

In figure 13, we show the results for the problem 3.2 using the hybrid 

method. Since the solution is a shock discontinuity separating two constant 

states, this calculation is mostly a test of how well the nonlinear Godunov's 

method computes a strong shock. The dip in the density behind the shock is a 

starting error, common to most conservative difference methods; it comes from 

starting a strong shock as a jump discontinuity, Since there is no numerical 

viscosity away from the shock the oscillation is not damped, but flows 

downstream unchanged. 
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Figure 14 shows the results obtained for the shock tube problem 1.3 

calculated as a diagonal Riemann problem; figure 15 shows the result for the 

same problem using Godunov 1 s method alone. The hybrid method treats the shock 

correctly, as opposed to the Glimm 1 S method alone (figure 12). The hybrid 

method is also an improvement over Godunov 1 s method alone: the three waves are 

clearly resolved; in particular, the contact discontinuity is spread over only 

three zones. We have found that, in general, the hybrid method spreads any 

discontinuity over a small (1-4) number of zones, independent of the zone 

size, regardless of whether the discontinuity is a shock, contact 

discontinuity, or slip surface. 

In order test this method on a more complex problem, we computed a 

two-dimensional Cartesian shock reflection problem used by van Leer [23] as a 

test problem; Woodward [24] has compiled a comparison of various difference 

methods, based on this problem. The computational domain is a channel of unit 

length, open at both ends. For x < .2, the channel has width 1/3; at x = .2, 

the lower side of the channel is constricted, so that the width of the channel 

is 4/15 for x > .2. Reflecting boundary conditions are imposed on the upper 

and lower sides of the channel, and on the segment x = .2, 0 ~ y ~ 1/15. The 

solution is assumed to be continuous at both ends. The initial conditions for 

this problem are those of uniform flow throughout the tube: 

p(x,y,O) = 1. p(x,y,O) = 1.4. vx(x,y,O) = 3. vy(x,y,O) = 0. y = 1.4 

with these initial conditions, a detached shock reflects off the constriction, 

and reflects off the upper side of the channel, having formed by timet= 4/3 
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a three-shock Mach reflection configuration. According to Woodward [24], the 

correct location of the Mach stem along the side of the channel is right above 

the constriction at x = .2; the Mach stem should extend about one-fourth the 

distance across the left end of the channel. 

We show results obtained using Godunov 1 s method by itself (figure 16), and 

the hybrid method, with two different zone sizes (figures 17,18). The solu­

tion obtained using Godunov 1 s method alone has the shock slightly in back of 

the step with the Mach stem about half the correct length. The slip line 

emerging to the right of the triple point is spread over four or more zones, 

except right at the shock. The solutions obtained with the hybrid method both 

have the shock in the correct position to within one zone length, and the 

length of the stem differs from the correct length by two zone lengths. Both 

of the hybrid calculations have the slip line spread across two zones for its 

entire length. 



-36-

4. Discussion and Conclusions 

In one space variable, G1imm 1 s method has built into it an approximate 

form of linear and nonlinear wave propagation along characteristics, without 

the smoothing of such information, as occurs in difference methods, and with­

out any complicated bookkeeping; the sampling procedure determining the weak­

est wave or wave interaction to be resolved. The motivation for using van der 

Corput sampling is that one obtains the best possible representation of the 

wave propagation in Glimm 1 s method, independent of the speed of the waves. 

This is essential for the correct representation of continuous waves, parti­

cularly those produced by nonlinear wave interactions. 

We would like to compare the performance of Glimm 1 s method to that of 

difference methods. Sod [21] performed such a comparison, using a one dimen­

sional shock tube problem. The results obtained there were not the best 

possible, due to the use of stratified random sampling. On the other hand, 

comparing di erence methods to Glimm 1 s method on this problem is not entirely 

fair either. As is pointed out in [4], it follows from the additivity 

property for solutions to the Riemann problem that the only values taken on by 

the computed solution are ones taken on by the exact solution as well. In any 

case, we present in figure 19 the calculation done with Glimmus method, but 

using van der Corput sampling. The result obtained here is clearly superior 

to any of those in [ 21] . 

We compared the performance of Gl imm 1 s method to that of two difference 

methods on a shock and rarefaction interaction problem (figure 20) like the 

one described in Sec. 3, but with the waves an order of magnitude stronger: 
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p = 473.9 Pm"" 1.077 Pr = 100. 

u = 6.0 urn = -4.0 ur = -1.181 

x !/, = • 3 xr = , 9 = 1, 4 

The solution has the same qualitative features as those of the weaker problem; 

except that the backwards-facing compression wave produced by the shock-rare­

faction interaction has itself steepened into a shock at the time the solu­

tions are compared. Otherwise, the waves are all much stronger; in parti­

cular, the passively advected density wave is a spike, two zones in width for 

the x = .01 cases. The two difference methods compared are the version of 

Godunov 1 s method (figure 21) discussed in the previous section, and the MUSCL 

code written by Paul Woodward of LLNL, based on the scheme of van Leer 23 

(figure 22), These two methods represent, respectively, one of the most accu­

rate of the first-order methods, and a state of the art representative of the 

adaptive or hybrid difference methods (for other examples see Boris and Book 

[2], Harten [15], Harten and Zwas [16], Zalesak [25]). As before, we compare 

all three results with the answer obtained using Glimm's method, van der 

Cor put samp 1 i ng with 11 x = • 0025. A 11 three methods obtain reasonably good 

answers for the pressure and velocity profiles, modulo the varying widths for 

the shock transition region. However, neither of the difference methods are 
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able to get the correct peak value of the density, nor the correct width for 

the density spike; Glimm's method, by virtue of its direct simulation of the 

wave interaction process without averaging, gets the correct answer. 

The original proposal in [3] for using Glimm's method with operator split­

ting was seen to give incorrect results for flows in which there occur large 

jumps in the pressure and velocity along surfaces oblique to the mesh direc­

tions. By coupling Glimm's method with Godunov's method, we lose many of the 

special properties of the Glimm's method with respect to its treatment of 

shock interactions. However, the resulting method has a number of attractive 

properties. Of all the first-order difference methods, Godunov's method 

produces the narrowest shocks (2-3 zones wide). Both Glimm's method and 

Godunov's method are extremely stable, even in the strongly nonlinear region 

(the problem with Glimm's method at shocks is a loss of accuracy, not of 

stability). Finally, Glimm's method has no numerical diffusion, so that the 

hybrid method has no numerical diffusion away from regions where large pres­

sure gradients are generated. 

For the purpose of comparison with the results of Sod [21], obtained by 

the various difference methods, we computed the shock tube problem 1.3 as a 

diagonal Riemann problem, (figure 23), but on a 100 x 100 grid (6x ~ 6y ~ 

.01); results for this problem compted using the MUSCL code are also given in 

[23]. In principle, the problem solved here is more difficult than the one 

solved in [21], since in the latter it is solved as a one-dimensional 

prob1em. But the answer is the same for both, and the results are worth 

comparing. 
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The calculation of the rarefraction, and the width of the shock transition 

in the results obtained with the hybrid Glimm-Godunov method compare favorably 

with those obtained by any of the difference methods. The treatment of the 

contact discontinuity is clearly superior to that given by any of the 

difference methods in [21], and comparable to that obtained in [23]. The 

difference methods in [21] either spread the contact discontinuity over 6-10 

zones, with the number of zones increasing as a function of time,or introduce 

substantial oscillations near the contact discontinuity. 

The major weakness of the hybrid method is that it computes shocks which 

are 2-3 zones wide. This puts the method at a disadvantage to the methods 

which have narrower shocks in computing problems such as Mach reflection 

problem discussed in the previous section. As is discussed in Woodward [24], 

the number of timesteps required after the time of reflection for the Mach 

stem to form increases as does the width of the shock; consequently, the MUSCL 

code having shocks which are 1-2 zones wide, obtains on coarser meshes 

comparable results to those obtained here. 

There are several directions in which further work is indicated. For 

one-dimensional flows, Glimm's method with van der Corput sampling is quite 

effective in modelling the interaction of discontinuities with smooth parts of 

the flow, without introducing unacceptable errors in the latter. The fact 

that the solutions to the Riemann problem we use in the numerical scheme 

satisfy exactly the conservation laws is probably not essential to the 

accuracy of the method, since much that information is lost in the 

sampling. What is essential is that the solution which is sampled has built 

into it the physically correct waves and wave speeds to some reasonable order 
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of accuracy. Thus it is feasible to try to model with Glimm 1 s method the 

dynamics of other media than an ideal gas in Cartesian coordinates: for 

example, gas dynamics with source terms or unusual equations of state, or 

elastic-plastic flow. 

The central advantage of the hybrid Glimm-Godunov method is that it has 

the simplicity and stability of a first-order method, with substantially less 

numerical diffusion than is usually seen in first-order methods. As the 

method is currently engineered, it seems to be more accurate than the 

non-adaptive first- and second-order methods, but not as accurate as some of 

the adaptive methods. The main question to be answered is the determination 

of a set of optimum engineering decisions. One problem is that we have seen 

that the criterion for whether to use Glimm 1 S method or Godunov 1 s method at a 

point is different depending on the strength of the waves; the distinction 

between strong and weak waves should be made locally, by the algorithm. More 

generally, although the general principle for switching between the two 

methods is clear, the actual details of the procedure are still determined in 

a fairly ad-hoc, problem-dependent fashion, and a more systematic algorithm is 

needed. 
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Appendix: Calculation of Approximate Solutions to the Riemann Problem 

In this appendix, we present a detailed description of the procedure used 

to calculate approximate values to the solution to the Riemann Problem in the 

two dimensional hybrid Glimm-Godunov calculations described in Sec. 2. The 

approximations introduced here are designed to give sufficiently accurate 

answers for the minimum computational effort in the two tuations which arise 

in those calculations: 1) the sonic waves are weak~ or 2) the sonic waves 

are strong~ but the values calculated are used only computing fluxes in 

Godunov's method. The algorithm given here is also better suited for 

efficient implementation on a vector processor, such as the Cray-I, than those 

given previously. 

The first step is an iteration to calculate p*, the pressure of the gas 

between the two sonic waves. We use the Newton 1 s method algorithm given in 

van leer [ ], with one important modification: we assume that the formulae 

for Wl R' the mean lagrangian wave speeds, are the same for both shocks and 
' 

rarefactions: 
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then the iteration proceeds as follows: 

* u ~ 
L 

One criterion for terminating the iteration is to terminate if 

where E > 0 is some predetermined tolerance~ and set p* = p*• 1
• In 

programming this procedure for the Cray-I, we iterated a fixed number of times 

1 0 ~ i.e. set p* = p*'
1o, independent of the left and right states. We 

obtained more than adequate accuracy using 10 = 4, for even the strongest 

problems; it appears to be sufficient, for a wide class of problems, to set 

10 to be 1 or 2. 
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Having obtained p*, we calculate the other quantities we will need 

If, at any point in the iteration, p*,Q, < 0, we reset to be equal to 

some floor value 1 >> Pmin > 0. If p*,£ < 0 for two iterations in a row, 

we terminate the iteration (or ignore the results) setting p* = Pmin" 

The second part of the procedure is to calculate the value of the solution 

at some given point (x,t); we denote the values of the pressure density, 

velocity, and passive component of the velocity at that point by p, P, u, v. 

We follow the procedure given in [ 3], but use explicitly the reflection 

symmetry of the equations to consolidate some of the formulae. 

Let 1); = "f and s = sgn(w- u*.). The we define 



We then compute 

We evaluate p, P, u as follows: 

p, P, U = p*, P*, u* 

-44-

c* ,~yp* 
p* 

if 

if 

if 

if 

p* < p 
0 

p* > p 0 

if AO < ~ < ~ then the solution is being evaluated inside a centered 

rarefracti on wave, and we have 

c "" ~ - u* + 2c* 
y - 1 

u=s(¢-c) 

2 
p = ££... 

y 

2 
- 1 

L=-l 
y + 1 
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One can replace the expression for p inside a rarefaction fan by the formula 

1 - ll 
P = Po 1 + a 

which does not require evaluation of a rational power. 

If the iteration is carried out to convergence, all the approximations 

introduced here are correct to third order in the pressure jump across the 

strongest rarefaction wave present. If one of the waves is a strong 

rarefaction, we will be using the results to calculate fluxes for Godunov•s 

method, and the error committed by using the rarefaction shock formula in the 

iteration is lost in the averaging. However, it is essential to evaluate the 

solution inside the rarefaction fans, rather than treating the waves as jump 

discontinuities, as is done in [13]. Otherwise, sampling would not spread 

weak rarefactions; nor would the averaging in Godunov 1 s method spread strong 

rarefaction shocks into rarefaction waves, if the speed of the rarefaction 

shock is close to zero. 

Using similar approximations to those used above in computing the solution 

to the Riemann problem, we extend the sampling procedure to the case where the 

timestep satisfies (3.1) for~ < o <1, assuming that the sonic waves in the 

solution being sampled are weak. The procedure described below accounts 

correctly for the possible interpenetration of waves from successive Riemann 

problems to first order in the strengths of the sonic waves, and reduces to 

the previous sampling procedure when the waves do not intersect. 

To update the solution at zone j, we first evaluate at ( (j ~ ~ + an+l) ~::,x, 

(n+l)~::,t) the solution to the Riemann problems on either side of the zone: 
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un+~ = hj (n+l Ox) 
+' J n a L\ t 

un+~ ( n>l Ox) = hj+~,n (a ·- 1) L\t -,J 

un+~ = u~ or u~ or un+~ = u~ or un then we can assume, since +,J J-1 J -,J J j+1 
the sonic waves are weak, that the waves from the Riemann probles at 

((j-~)L\x,nL\t) and ((j+~)L\x,nL\t) do not intersect, and set 

= un+~ -,J if 

( n+1) Uj Gl imm 

"' un+~ +,J otherwise 

If U+n+l. 4 u~. un. 1 an'd un+1 ~ un un th th t th ,J r J' J- -,j r j' j+l' en we assume a e 

waves contained in the jump (U~+J~' U~) have reached and interacted 
' J . n n+l with the waves contained in the Jump (Uj,u-,j). Using again the 

assumption that the sonic; waves are weak, we see that the waves which 

intersect are: a part of a backwards-facing sonic wave, from the Riemann 

problem at ((j+~)L1x,nL1t);: a part of the forwards facing sonic wave from the 

Riemann problem at ((j-~)L1x,nL1t) and at most one contact discontinuity, which 

might come from either one of the Riemann problems (figure Al). In that case, 
n+l n+l n+l n+l 

we calculate (~J , pj ,· uJ , vj )Gltmm ~~ follows: 



n+l 
Uo := 
J 

n+l 
P· J 

n+l u ( n+1 
u+ · + wR PJ· ,J 
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w2 
R ) 

-1 

if (an+l - 1) ~x < u~+'~+l 
~t J "2 

n+1 n+1 v. "" v+ . J ,J 

otherwise 
n+1 n+1 v. "' v . 
J -,J 

n+ 1 n+ 1 *, n+ 1 . 
Here wl,j+~' WR,j-~' uj+~ are the mean Lagrang1an wave 

speeds and the velocity of the gas between the two sonic waves for Riemann 

problems centered at ((j+~)~x,n~t). 

The above scheme can be implemented in such a way that almost all the 

calculations are vectorizable. For the test problems discussed in Sec. 4, a 

program run on the Cray-I at the LLNLCC, compiled using the CFT compiler, took 

about 14 Jls/zone/time step/space dimension, or about ,000 zones/second for a 

two dimensional problem. The iteration scheme for computing p*,u* is done 
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once per zone, independent of whether one is sampling or averaging in that 

zone, and takes (1.7 + 1.15 x t0) JlS = 4 J1S for t 0 = 2, or less than 

one-third of the time per timestep. A good deal of redundant work is 

performed because of the limited number of vectorized logical operations 

available at the Fourtran level using the CFT compiler. As more of the 

Cray-I 1 s capabilities become accessible, such as vectorized gather/scatter 

operations and bit vector logic,the timings should improve substantially. 

NOTICE 

This report was prepared as an account of work sponsored by the United 
States Government. Neither the United States nor the United States 
Department of Energy, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness or usefulness of any information, apparatus, 
product or process disclosed, or represents that its use would not infringe 
priva !ely-owned rights. 

Reference to a company or product name does not imply approval or 
recommendation of the product by the University of California or the U.S. 
Department of Energy to the exclusion of others that may be suitable. 
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