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Role of the geodesic acoustic mode shearing feedback loop in transport
bifurcations and turbulence spreading

K. Miki and P. H. Diamond
Center for Astrophysics and Space Science, University of California, San Diego, California 92093, USA

!Received 15 September 2009; accepted 11 February 2010; published online 18 March 2010"

A theory of the effect of the geodesic acoustic mode !GAM" on turbulence is presented. Two
synergistic issues are elucidated: namely, the physics of the zonal flow modulation and its role in the
L-H transition, and the role of the GAM wave group propagation in turbulence spreading. Using a
wavekinetic modulational analysis, the response of the turbulence intensity field to the GAM is
calculated. This analysis differs from previous studies of zero-frequency zonal flows since it
accounts for resonance between the drift wave group speed and the GAM strain field, which induces
secularity. This mechanism is referred to as secular stochastic shearing. Finite real frequency and
radial group velocity are intrinsic to the GAM, so its propagation can induce nonlocal phenomena
at the edge and pedestal regions. To understand the effect of the GAM on turbulence and transition
dynamics, a predator-prey model incorporating the dynamics of both turbulence and the GAMs is
constructed and analyzed for stability around fixed points. Three possible states are identified,
namely, an L-modelike stationary state, a reduced turbulence state, and a GAM limit-cycle state.
The system is attracted to the state with the minimum turbulence level. © 2010 American Institute
of Physics. #doi:10.1063/1.3353037$

I. INTRODUCTION

Zonal flows !ZFs", which are poloidal E!B plasma
flows due to toroidally and poloidally symmetric !m=n=0"
potential perturbations and the accompanying coherent
shearing poloidal flows, have attracted significant attention.1

Since the discovery of the undamped residue of the ZF,2 the
geodesic acoustic mode !GAM",3 which is an oscillatory
counterpart of ZF, coupled to an up-down-asymmetric pres-
sure perturbation with !m ,n"= !1,0", has also been received
attention as a possible mechanism for regulation of turbulent
transport. The GAM is weakly damped by Landau reso-
nance, but is sometimes more easily excited by the Reynolds
stress drive than the zero-frequency ZF !ZFZF" residue. The
GAM damping tends to be of order exp!−q2", so that the
GAM is weakly damped in regions with higher safety factor.
In the edge region, the coherence time of shearing increases.
It also produces no secondary transport in itself, because it
has n=0. Research has uncovered that tokamak ZFs are com-
posed of two kinds of eigenmodes with having specific fre-
quencies, namely, high-frequency ZFs !HFZFs" and low-
frequency or ZFZFs. The HFZFs are the GAM oscillations,
which are damped by ion Landau resonance !for "LD%k&vti".
The low-frequency/ZFZFs are, in turn, damped by collisions
on a longer time scale. Hence, we see that different types of
damping and shearing dynamics can coexist in the ZFs.

Concerning turbulence regulation by the GAMs, there
indeed are experimental results indicating some link between
changes in turbulent fluctuation levels and the GAMs.4–7

Reference 5 suggests that the GAMs are related to L-H tran-
sition dynamics. In experiments on edge turbulence in
DIII-D involving variation in applied neutral beam power,
torque and the consequent toroidal plasma rotation, the po-
loidal turbulence velocity spectrum exhibits a transition from

a GAM frequency to a lower-frequency, zero-mean-
frequency ZF, as rotation varies from cocurrent to balanced,
thus facilitating the L-H transition. Here the GAM possibly
is a player in the L-H transition dynamics, because it is eas-
ily excited in region of high safety factor q!r", i.e., especially
in the edge region. Thus, it is useful to build a model for
describing the transition accompanied by GAM shearing so
as to estimate turbulent transport in the edge region at high
safety factor q!r".

In this work, we discuss the theory of GAM effects on
turbulence and transition dynamics, based on a simple shear-
ing model. Two key issues are discussed. First, due to its
finite frequency, a qualitatively different shearing modulation
of the GAMs is distinguished from that for ZFZFs. In par-
ticular, secular stochastic shearing can result from the reso-
nance between group velocity of the drift-wave packet and
GAM phase velocity, whereas the phase velocity of the
ZFZFs is necessarily zero, so broadening must be considered
for irreversibility. The resonance enables coherent shearing
by the oscillatory GAM field.

Second, GAM group propagation, which is induced by
ion polarization screening effects, causes a nonlocal contri-
bution to turbulence and also radiative dissipation induced
by the Doppler shift in the GAM frequency. Since the GAM
frequency depends on radial wave number qr, its group ve-
locity vgr,GAM=!" /!qr is thus defined, and propagation in a
bounded medium causes radiative dissipation of the GAM
energy. Radially coherent GAM eigenmodes, with a certain
typical scale length and corresponding propagation toward
the edge, can also be described using the Airy function.8 The
consequent radial propagation can couple core with edge,
and can also promote the propagation of turbulence, i.e., tur-
bulence spreading,9,10 as shown in Fig. 1. The GAM group
propagation is an intrinsically different mechanism from that
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that caused by nonlinear turbulence self-diffusion. We dis-
cuss the scale length of the GAM propagation as compared
with the GAM damping length.

The radiative dissipation due to the GAM group propa-
gation causes an effective correction to the GAM frequency,
which we refer to as the radiative Doppler shift in the GAM
frequency. Because the GAM frequency must be constant
along the propagation trajectory, the observed frequency in a
particular fixed radial location can be expanded when the
phase velocity and the group velocity are in the opposite
direction. We discuss the calculation of the radiative dissipa-
tion of the GAM and corresponding effect on the change in
time scale of the GAMs.

To semiquantitatively understand turbulence transport
dynamics in the presence of GAM shearing, we construct a
model based of the well-known predator-prey type.11 We
identify possible states of the system by using stability analy-
ses around the fixed points. Here we identify three types of
states, an L-modelike steady state, a reduced turbulence
state, and an oscillatory state, which we identify as the GAM
state. The stability analysis tells us which state is actually
selected. The outcome can be deduced from a diagram in the
space of the growth rate of turbulence and the Landau damp-
ing rate of the GAM. From this figure, we can recover a
transition from the L-modelike steady state to the oscillatory
state by increasing the heating power. We also obtain the
effective GAM frequency explicitly, including the effect of
radiative dissipation.

The remainder of this paper is organized as follows. In
Sec. II, we discuss the impact of the GAMs on turbulence
and classify the basic interaction mechanisms. One is secular
stochastic shearing by the GAMs and the others are the ef-
fects of propagation and radiative dissipation. In Sec. III, we
present a L-H transition model describing the predator-prey
relation between turbulence and the GAMs. In Sec. IV, we
discuss the significance of the results of this work.

II. PHYSICS OF GAM-TURBULENCE INTERACTION

In this section, we discuss the impact of the GAMs on
turbulence by considering two physics mechanisms, namely:
!i" shearing effects and !ii" propagation of GAMs. ZFs are
also generated by turbulence through the shearing-tilting pro-
cess. However because of the finite real frequency of GAMs,
more care is required in the treatment of HFZF !GAM"
shearing dynamics, a feature not emphasized by previous
works concerning GAM dynamics. The other effect enters
via the finite group velocity of the GAMs. Therefore, HFZFs
may propagate and induce nonlocal phenomena or radiative
damping.

A. Shearing model

Based on the wavekinetic equation,12 we obtain the time
evolution for the mean wave action density as

!'N(
!t

=
!

!kr
D

!'N(
!kr

, !1"

where N=# /"k is wave action density, # is turbulence
energy, "k=k$V! / !1+k"

2 %i
2" is drift frequency, !for the

drift wave mode k", kr and k$ are the radial and poloidal
wave numbers of turbulence fluctuation respectively,
V!=cs"ci

−1Ln
−1 is diamagnetic velocity and the diffusion coef-

ficient D !for scattering in kr" can be written as

D = )
qr

qr
2k$

2*Ṽq*2&'#(q − qrVgr!k"$ , !2"

where qr is the radial wave number of the GAMs, Ṽq is the
amplitude of oscillatory E!B poloidal flow velocity, (q is
the finite real frequency of the GAMs, !(q is negligible in
the case of ZFZFs", and Vgr is the group velocity of drift
wave packet. D can be calculated by using autocorrelation
time scale )ac taking into account three wave resonance be-
tween GAM and turbulence. Here

D + ,
q

q2k$
2*Ṽq*2)ac,",k, !3"

where

)ac,",k % *!vgr,GAM − vph,GAM"*q*−1, !4"

is the autocorrelation time for a drift wave-packet interaction
with the GAM shearing field. )ac measures the coherence of
the drift wave packet with the GAM shearing field. *q is the
width of the envelope of the GAM packet in radial wave
number. Notice that vgr,DW=vph,GAM at resonance.

Multiplying "k by Eq. !1" and integrating, we obtain

!'#(
!t

= −, dk!
d"k

dkr
D

!'N(
!kr

, !5"

which is an evolution equation for the DW energy due to
GAM interaction. Then,

FIG. 1. Illustration of the effect of GAM propagation on turbulence spread-
ing. The dotted line shows the profile of turbulent intensity with only tur-
bulent diffusion. The bold line shows the consequent profile of turbulent
intensity also with GAM propagation.
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!'#(
!t

+ −, dk!vgr!kr")
q

q2k$
2*Ṽq*2)ac

!'N(
!k

+ +, dk!
2%i

2kr

!1 + k"
2 %i

2"2)
q

q2k$
2*Ṽq*2)ac

!(

!kr
, !6"

where ( is the potential enstrophy density of turbulence,
proportional, but not equal to the drift wave energy. Assum-
ing d( /dkr+0 !i.e., the turbulence spectrum always decays
at small scale", we proceed as

d'#(
dt

= −, dk!
2%i

2k$
2

!1 + k"
2 %i

2")q
q2*Ṽq*2)ac'#k(, , !7"

where '#k( is mean turbulence energy of the drift wave with
wave number k, and ,=−!kr!( /!kr" /( is characteristic of
the slope in wave number of the drift wave spectrum. Now
we refer to , as a spectral index, so we obtain the averaged
wave energy damping rate as

-DW =
1

'#(
d'#(
dt

= −
1

'#(, dk!
2%i

2k$
2

!1 + k"
2 %i

2")q
q2*Ṽq*2)ac,'#k( . !8"

Finally, we derive the following time evolution of turbulence
energy as a response to E!B shear *V!*, DW-GAM coher-
ence )ac, and turbulence energy #

!'#(
!t

% − 2,'k$
2%i

2/!1 + k"
2 %i

2"('#(*Ṽ!*2)ac % − *V!*2)ac'#( .

!9"

This formulation is similar to that used in the predator-prey
model for the interplay between turbulence and !zero-
frequency" ZF,13 but involves a different coefficient of ZF
modulation.

An issue for the GAM shearing theory here is that the
wave-packet GAM )ac is both qualitatively and quantita-
tively different from its counterpart for the ZFZF. This is due
to the finite GAM frequency (q. While )ac,ZF includes a non-
linear decay time of the ZFs, )ac,GAM accounts for packet
dispersion, and allows secular GAM shearing at finite fre-
quency. Note also that moderate GAM dispersion ensures
that )ac will be significantly larger than *vph,GAM*q*−1.
Furthermore, the autocorrelation time scale of the GAM,
)ac,GAM is definitely lower than that in the case of ZFZFs,
)ac,ZFZF, as )ac,GAM.)ac,ZFZF= #vgr,DW*q$−1. This is because
vgr,DW/−v!, so the time scale of DW-ZF correlation is com-
paratively short. Thus, by energy conservation, the produc-
tion of the GAM must also be reduced, as compared with
DW time scales. It is useful to discuss how much we can
estimate the time scale ratio. Recalling Vgr,DW%v!%vti /Ln,
where v! is ion diamagnetic velocity, vti=-Ti /mi is the ion
thermal velocity, and Ln is the characteristic length of density
profile, "GAM%vti /R, and also qr is the order of 1 /%i in the
ITG turbulence,14 we can estimate the ratio of the GAM
production rate to that of ZFZF as

0ZFZF

0GAM
%

)ZFZF

)GAM
%

"GAM/qr + Vgr,DW

Vgr,DW

% Ln/R + 1 % 1 + a/R . !10"

Therefore, we find that the relative impact on turbulence of
the zero and finite frequency ZF depend upon the inverse
aspect ratio.

Note that this result is superficially similar to the result
of Ref. 15, in that the reduction in E!B shearing rate due to
finite frequency is determined by the ratio of the real fre-
quency to the autocorrelation rate of the turbulence. How-
ever our result improves upon that of Ref. 15, because it
properly treats GAM wave-packet structure and because the
two-point correlation analysis in Ref. 15 artificially presumes
a particular GAM time variation, and does not account for
the correlation time’s dependence on the turbulence spec-
trum. In particular, we note that GAM dispersion is crucial to
determining )ac.

B. GAM propagation

In this subsection, we discuss the effect of the GAM
group propagation on turbulence, and especially on nonlocal
effects. Including the finite Larmor radius !FLR" effect, the
dispersion relation of the GAM is simply described as

!1 + qr
2%i

2""GAM
2 = "GAM,0

2 , !11"

where qr is the GAM radial wave number, "GAM is the GAM
frequency with finite %i and "GAM,0 is the GAM frequency in
the limit of no FLR effect, i.e., %i11. The bracket on the
left-hand side in Eq. !11" is characteristic of FLR corrections
to the ion pressure. "GAM,0 is stated as "GAM,0=-22!cs /R" in
the case with finite ion temperature and cold electron, where
cs is the ion sound speed and 2=5 /3 is the ratio of specific
heats.

For stationary ZF, the group velocity vanishes because
the ZF has zero real frequency. Therefore the dynamics of
ZFs can be treated as local. Any wave-packet propagation
will necessarily drag the ZF along. However, the GAMs have
a dispersive real frequency, so they can propagate radially.
The GAM group propagation velocity vgr,GAM is

vgr,GAM +
!

!qr
. "GAM,0

!1 + qr
2%i

2"1/2/ = −
"GAM,0qr%i

2

!1 + qr
2%i

2"3/2 . !12"

The lifetime of the GAM packet is the reciprocal of the Lan-
dau damping rate -LD, i.e., )LD=1 /-LD. Therefore the scale
length of the GAM propagation, or the typical scale length
for GAM nonlocality, can be estimated to be

!*x"GAM % vgr,GAM)LD =
"GAM,0

-LD

qr%i
2

!1 + qr
2%i

2"3/2 . !13"

Equation !13" shows that the scale length of the GAM packet
penetration is the order of %i"GAM,0 /-LD, so a high q!r" con-
figuration leads to considerable radial synchronization, be-
cause -LD is small in high safety factor regions. Note this in
effect defines a new edge !and pedestal" length scale.
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Another scale length governing the nonlocal dynamics is
that of turbulence spreading, !*x"TS%-D /-z,

16 where D is
the parameter for the nonlinear spatial diffusion and -z is the
damping rate of turbulence in the stable region. It is found
that GAM propagation should be taken into account in non-
local dynamics such as turbulence spreading, when !*x"GAM
is comparable to !*x"TS. The situation is expected when the
safety factor q!r" is high enough in the edge region.

The effect of the radiative dissipation of the GAM can
be understood systematically as a kind of Doppler shift by
illustrating GAM propagation, as in Fig. 2. Here the horizon-
tal direction indicates radial variation and the vertical shows
time evolution. Now we take the directions of the group and
the phase velocities to be opposite, i.e., vgrvph+0, as is
shown in Landau-fluid simulations17 and is also clear from
the dispersion relation. As seen in Fig. 2, in the case of
normal oscillation without spatial GAM propagation, the tra-
jectory evolves in vertical direction only, indicating evolu-
tion in time alone, so that the scale of the oscillation ) is just
the reciprocal to the GAM frequency, )=1 /"GAM. In turn, if
dependence of the GAM frequency on qr is now introduced,
the GAM phase speed vph="GAM /qr and the group speed
vgr=!" /!qr appear. Suppose a GAM packet propagates on
the GAM time scale 1 /"GAM at the group speed vgr. The
centroid position moves by 3= *vgr* /"GAM. This is, then, the
scale length for GAM propagation.

Now the effective time scale of the GAM 1 /"GAM,eff is
seen to increase by *) due to the effective Doppler shift
induced by group propagation, i.e., 1 /"GAM,eff=1 /"GAM
+*). The difference *) is obtained by dividing the scale
length of the GAM propagation by the phase speed vph,
*)=3 /vph= *vgr* / !"GAMvph". See Fig. 2!b". Thus, we obtain
the following relation:

1
"GAM,eff

=
1

"GAM,0
.1 +

*vgr*
vph

/ . !14"

Finally we get a differential equation,

"GAM,eff = "GAM − qr0 !"GAM,eff

!qr
0 . !15"

This is a radiative Doppler effect due to the GAM group
propagation. Note that the actual calculation involves the ef-
fect of the Landau damping via 3. As we discussed above,
the scale length for the GAM’s spillover into the stable re-

gion inevitably depends on the GAM propagation dynamics.
To solve for the effective GAM frequency, we need take into
account the effect of Landau damping. We will solve for it
using a simplified model.

Note that assuming the same sign for the GAM group
and phase velocity, vGAM,grvGAM,ph.0, we obtain that the
effective GAM frequency is increased by the ratio of vGAM,gr
to vGAM,ph. This is because the effective GAM time is re-
duced by the recession in time by the phase velocity of the
GAM, as shown in Fig. 2!c".

III. SIMPLIFIED MODEL WITH CLOSED FEEDBACK
LOOP

Here we describe a novel predator-prey model in
terms of the turbulence fluctuation and the GAMs. The mini-
mum model for describing the GAM-turbulence interaction
is based on that discussed in Refs. 18 and 19, neglecting
the anisotropic parallel perturbation, assuming a high-q
configuration.

A. Derivation of the equations of zonal flow
and anisotropic pressure perturbation

Starting from the predator-prey model formulated in
terms of the turbulence and ZF !N ,U", we first expand the
model to describe the interplay between the turbulence and
the GAM shearing, by including a new degree of freedom,
i.e., the anisotropic pressure perturbation. Here we will dis-
cuss a leakage of perpendicular current due to grad B drift,
which is the so-called geodesic curvature.3

From $ ·J=0, the time evolution of the vorticity can be
written as

−
ne

B"ci
. !

!t
+ vE · $/$"

2 4 −
2

B0R0
#x,!pi + pe"$ = 0, !16"

where vE1E!B /B2 is E!B drift and pi and pe are the
ion and electron pressure perturbations, respectively. Here
the first term corresponds to the divergence of ion polariza-
tion drift, the second term does the divergence of ion and
electron diamagnetic drift, employing the radial variation in
B/1 / !1+r /R cos $" as the toroidal coordinate, and the par-
allel dissipation of current is neglected since electrons are
Boltzmann. The importance is that leakage of current due to

FIG. 2. Illustration of the GAM propagation and modulation of the GAM frequency as a diagram in the space of radius and time. !a" Without GAM
propagation, the wave propagates only vertically !without variation in the radial direction", while !b" with the GAM propagation, due to radial motion, the time
scale of the GAM oscillation is expanded by *)=3 /vph. !c" shows the case when the direction of GAM phase and group velocities are the same.
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the grad B drifts occurs in toroidal geometry, and contributes
to generation of the GAM.

Applying the following normalization:

!tvti/a,r/%i,%i$",a$&" → !t,r,$",$&" ,
!17"

a

%i
. n

nc
,
e4

Tc
,
v&

vti
,
pi

pc
/ → !n,4,v&,pi" ,

we obtain the normalized form of the vorticity equation

. !

!t
+ vE · $/$"

2 4 = −
2a

R
#x,!pi + pe"$ . !18"

Taking a flux surface average ' · (12d$d5, we obtain the
equation in terms of ZF potential 601'4(.

!

!t
$"

2 60 = '#4̃,$"
2 4̃$( −

2a

R
'#x,p$( , !19"

where p is total pressure written by p1 pi+ pe. Now we ob-
tain the equation for the ZF velocity U1$60 as follows:

!U

!t
= −3 !4̃

!$
$"

2 4̃4 −
2a

R
'p sin $( . !20"

The first term is the vorticity flux, and so the Reynolds stress
drive, driven by the turbulence fluctuations. The second term
is the geodesic curvature term connecting with p!1,0" aniso-
tropic pressure perturbation, thus generating the GAM. Mak-
ing the ansatz 60%6q exp!+iqrr" and also U% iqr6q, and
assuming that q1*kr, where *kr denotes the width of the
drift wave spectrum in kr, the Reynolds stress term can be
written in terms of qr as

−3 !4̃

!$
$"

2 4̃4 = − )
k1+k2=q

k1$k2"
2 4̃k1

4̃k2
. !21"

Note that we here use k normalized by %i. Neglecting noise
from drift waves, using Ek= !1+k"

2 "*4k*2 and applying a qua-
silinear wavekinetic treatment,20 we obtain the energy den-
sity relation

RHS of Eq.!21" = − qr
2)

k

"!ek$kr

!1 + k"
2 "

R!(,k,q"
!'((
!kr

Uq,

!22"

where the response function

R!(,k,q" =
*-k*

!( − qVgr"2 + -k
2 !23"

is related to the autocorrelation time of the GAM )ac,GAM.
Here we include the finite real frequency in the GAM shear-
ing effect. Note that the factor which multiplies Uq in Eq.
!22" is the familiar ZF growth rate, now modified to include
finite GAM frequency.

For the anisotropic pressure perturbation 'p sin $(, the
time evolution is described21 as

!

!t
'p sin $( = !2 + )"peq

a

R
'vEr

( − !2 − 1"

!-8Teq

&

a

qR
'Ti sin $(

− vgr,GAM$r'p sin $( , !24"

where neq and peq and Teq are the density, ion pressure, and
ion temperature equilibrium profile quantities normalized to
their values at the core, respectively. Here the pressure non-
linearity is caused by E!B drift convection '#4 , p$sin $(.
Also, we note that !2,0" contributions, density/temperature
gradient source terms, temperature relaxation contribution,
and any coupling term between 'vEr

( and 'p cos $( are ne-
glected. Here we also neglect the contribution of 'v& cos $(,
assuming high safety factor q!r". Now we introduce a term
reproducing the group propagation of the GAM as the third
term in the right-hand side !r.h.s." of Eq. !24", which is

. !

!t
+ vE$/ → . !

!t
+ !vE + vgr,GAM"$/ . !25"

Note that the effect of the radiative Doppler dissipation is
relevant only in the case that the system is oscillatory, since
vgr,GAM/"GAM.

B. analysis of model

The dynamics of the DW-GAM system are more easily
grasped by considering a zero-dimensional model, instead of
the one-dimensional model. The GAM model based on three
fields !U ,G ,V" involves both zero-frequency and high-
frequency eigenmodes.18 However, the relation between tur-
bulence and the mixture of ZF and GAM shearing, which is
the mixture of zero-frequency and HFZFs, is still uncertain.
Nonetheless, we can construct a model limited to high-
frequency components, which neglects the contribution of
the anisotropic parallel velocity 'v& cos $(, in order to avoid
the complexity of frequency mixing in the shearing model.
This assumption is valid for high safety factor q!r" values.

Thus, we regard the following as two “predators:” HFZF
velocity U1'vEr

(, and G= 'p sin $(, the up-down asymmet-
ric ion pressure perturbation. The “prey” is the turbulence N.
The evolution of these components is described by

!N

!t
= -LN − *"N2 − 0!U2N , !26a"

!U

!t
= !1/2"0!UN − 7G − vgr,GAM$rU , !26b"

!G

!t
= 7!U − -LDG − vgr,GAM$rG . !26c"

Here -L is the growth rate of the turbulence energy, which
may be estimated from the result of simulation or experi-
ments by using -L=-0!8−8c", where 8 is observed ion
temperature gradient, 8c corresponds to the linear critical
temperature gradient, and -0 is a reference growth rate.
In order that the turbulence fluctuations are unstable, 8.8c
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is required. *" is the nonlinear damping rate of the turbu-
lence, 0! is the ZF modulation rate discussed before, which
is the order of qr

2)ac,GAM. Also, 7=2!a /R" /neq, 7!= !5 /3"
!!a /R"peq / !1+qr

2", where qr is radial wave number of
the GAMs normalized by 1 /%i. Here we add the factor
1 / !1+qr

2" as the screening effect by the ion polarization drift.
Note that the terms associated with 7 and 7! corresponds to
the geodesic curvature, so the basic time scale of the GAM
frequency is defined as "GAM

2 ="GAM,0
2 / !1+qr

2"=77!= !5 /3"
!!a /R"2Teq / !1+qr

2". Here "GAM,0 is the reference frequency
in the limit of qr→0, which is equivalent to the limit without
FLR effects. Here we neglect the electron pressure contribu-
tion, characterized by )=Te /Ti, for simplicity. In Eqs. !26b"
and !26c", we include the terms related to the GAM group
propagation vgr,GAM. Note that this is effective only when the
system is oscillatory, i.e., in a limit-cycle state.

First, we should classify possible solutions of the model.
Then we will investigate the stability around each of the
fixed points to understand the comprehensive behavior of the
solution trajectories for the system.19,22 Note that the group
propagation terms vanish in the limit of a stable state, hence
we neglect the radiative dissipation terms in the stability
analysis. We expand Eqs. !26a"–!26c" around a fixed point
!N0 ,U0 ,G0", which is defined as !t!N0 ,U0 ,G0"=0, for small
perturbations !N0+'N ,U0+'U ,G0+'G". Then the following
linear formula involving the dynamical evolution matrix can
be written as

!

!t5'N

'U

'G
6 = 5 * − 20!U0N0 0

!1/2"0!U0 !1/2"0!N0 − 7

0 7! − -LD
65'N

'U

'G
6 ,

!27a"

* = -L − 2*"N0 − 0!U0
2, !27b"

where we assume that the small perturbations have eigenval-
ues 3, i.e., 'N/exp!3t", 'U/exp!3t", and 'G/exp!3t". 3 is
obtained by finding roots of the eigenequation for the deter-
minant of the dynamical matrix in the r.h.s. of Eq. !27a". For
each kind of fixed point, 3 can be obtained individually by
estimating the stability around the point in the phase space
!N ,U ,G". In the case that all eigenvalues are negative or
neutral, and structural stability is thus identified. The fixed
points in this model are !i" the trivial one !N0 ,U0 ,G0"
= !0,0 ,0", !ii" the L-modelike one !NL ,0 ,0", and !iii" the
reduced turbulence one !NH ,UH ,GH", where

NL =
-L

*"
, !28a"

NH =
2"GAM

2

0!-LD
, !28b"

UH
2 =

*"

0!
. -L

*"
−

2"GAM
2

0!-LD
/ =

*"

0!
!NL − NH" , !28c"

GH =
7!

-LD
UH. !28d"

Here we investigate the stability about each fixed point. In
the case of !i" !0,0,0", which is the trivial solution, the eigen-
values calculated are 3=-L ,−-LD /29 i". The condition for
stability is -L+0 and -LD.0. The condition -L+0 is not
valid in the relevant regime of turbulence excitation,
!*" ,0! ,-L ,-LD.0", so that the trivial solution is not struc-
turally stable, but rather is a saddle node.

In the case of !ii", L-modelike solution !NL ,0 ,0", the
eigenequation from the determinant of the dynamical matrix
is

F!3" = !3 + -L"732 + .-LD −
0!-L

2*"
/3

+ .−
0!-L-LD

2*"
+ "GAM

2 /8 = 0. !29"

In order that all real components of the eigenvalues are nega-
tive, -L.0 and -LD,eff− !0!NL" /2.0 are necessary. If -L
.0 is assumed, this condition is equivalent to N!−NL.0,
where N!12-LD,eff /0! is the turbulence level sustained by
oscillating predators !U and G" within a limit-cycle orbit, as
discussed later.

In the case of !iii" reduced turbulence solution
!NH ,UH ,GH", the equation for the eigenvalues is

F!3" = 3#3 + *"NH$73 +
0!
2

!N! − NH"8
+ 0!*"-LDNH!NL − NH"

= 33 +
0!
2
7N! − .1 −

2*"

0!
/NH832

+
0!
2

*"NH!N! − NH"3

+
0!2

2
*"N!NH!NL − NH" = 0. !30"

In order that all real components of the roots in Eq. !30" are
negative, the following conditions are required:

N! − NH . 0, !31a"

NL − NH . 0. !31b"

In other words, the required condition is that NH is the mini-
mum of NL, NH, and N!. Now we consider the case where
both fixed points are not structurally unstable, which is
equivalent to the case where N! is the lowest value in NL,
NH, and N!. In this case, the solution with the limit-cycle
orbit may be regarded as one of asymptotic stability.

Assuming N=N!, the following quantity C is found to be
constant in time along the trajectory of propagation:

. !

!t
+ vgr,GAM

!

!r
/C = 0, !32a"

where
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C =
27!
0!N

U2 +
7

-LD
G2 − 2UG . !32b"

This corresponds to an elliptical orbit in the phase portrait of
!U ,G", as shown in Fig. 3. As seen in Fig. 3!a", the full
solution trajectory traces a circular motion around N=N!.
Figure 3!b" shows the projection to the space !N ,U2", indi-
cating that the radius in the direction of U2 is linear in -L.
Now we estimate how the width of the orbit of U2 depends
on the input heating power via -L. Based on insight from the
numerical calculation, assuming

N = n0 + n2 exp!− 2i"t" + !c.c." , !33a"

U = u1 exp!− i"t + iqrr" + !c.c." , !33b"

G = g1 exp!− i"t + iqrr" + !c.c." , !33c"

and substituting into Eqs. !26a"–!26c", we obtain

0 = -Ln0 − *"!n0
2 + 2n2n2

!" − 0!!2n0*u1*2 + n2u1
!2 + n2

!u1
2" ,

!34a"

− 2i"n2 = -Ln2 − 2*"n0n2 − 0!!2n2*u1*2 + n0u1
2" , !34b"

− i"u1 =
0!
2

!u1n0 + u1
!n2" − 7g1 − iqru1, !34c"

− i"g1 = 7!u1 − -LDg1 − iqrg1, !34d"

where n2
! is the complex conjugate of n2. Now we assume an

ordering as n0 ,u1 ,g1%O!1", n2%O!:". From Eqs. !34c" and
!34d", we first obtain the relation,

− i!" − qrvgr,GAM" −
0!
2

n0

+ "GAM
2 1

− i!" − qrvgr,GAM" + -LD
= 0. !35"

Due to the condition that n0 must be real, we obtain the
following dispersion relation for ":

!" − qrvgr,GAM"9#!" − qrvgr,GAM"2 + -LD
2 $ − "GAM

2 : = 0.

!36"

Thus, we find

" = qrvgr,GAM,qrvgr,GAM 9 -"GAM
2 − -LD

2 . !37"

Substituting "−qrVgr,GAM=-"GAM
2 −-LD

2 into Eq. !35" to
lowest order, we obtain

.0!
2

n0 − -LD/u1 = 0,

!38"

n0 =
2-LD

0!
= N!,

n0!-L − *"n0 − 0!*u1*2" = 0,
!39"

*u1*2 =
*"

0!
!NL − N!" .

Because *u1*2 in Eq. !39" must be positive, we find that
NL.N! is necessary for the limit-cycle solution to exist.

We can estimate the critical scaling of the input of heat-
ing power characterized by -L, as *u1*2/ !-L−-L,crit", which
is consistent with the result in the parameter scan of -L as
seen in Fig. 3!b".

We can find the mechanisms for transition from an
L-modelike stationary state to GAM limit-cycle state by in-
creasing the power heating -L. In the low heating power
regime, where -L is low, L-modelike confinement occurs, in
which the turbulence level is simply proportional to -L as in
usual mixing length and quasilinear estimates. As heating
power increases, the L-modelike turbulence level NL be-
comes higher than N! and NH, thus indicating a possible
change to one of these as a state of higher confinement.
Figure 4 illustrates the transition process from the
L-modelike state to the GAM oscillatory one by increasing
the power heating.

From these results, a diagram of the state of turbulence
as a function of !-L ,-LD" for fixed "GAM and the other pa-
rameters is shown in Fig. 5. It shows that, given a set of
parameters, system will converge to the state with a certain
turbulence level determined by the minimum of the three
characterized variables, i.e., !i" L-modelike steady state NL,
!ii" reduced turbulence steady state NH, and !iii" oscillatory
GAM state N!. Therefore by comparing any two of its val-

(b)

(a)

FIG. 3. !Color online" !a" phase portrait in !N ,U2 ,G2" and !b" phase portrait
in the projection to !N ,U2" with various -L=0.04–0.06 in the case of the
limit cycle oscillation around N=N!+5.06.
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ues, we can find the marginality condition in parameter
space. Between NL and NH, marginality is defined by

-L-LD =
2*"

0!
"GAM

2 . !40a"

Marginality between NL and N! and between NH and N! are
defined, respectively, by

-L =
2*"

0eff!
-LD, !40b"

-LD = "GAM, !40c"

where 0eff! is the parameter 0! modified by the effect of finite
real frequency, which is calculated later including the effect
of the radiative dissipation. It is found that with lower heat-
ing power, -L tends to the L-modelike stationary state, where
turbulence saturates at the level NL, and U and G are
damped. On the other hand, above a certain critical heating
power, turbulence tends to the high confinement state, where
it is oscillatory when -LD is sufficiently weak as compared
with the GAM frequency "GAM. When the Landau damping
time is slower than the GAM time, )LD+)GAM, the oscilla-
tory state will stop and an reduced turbulence steady state is
established. Note that inclusion of a contribution from the
ZFZF or mean flow is necessary to accurately reproduce an
H-mode state in this model, since the peak at the GAM fre-
quency disappears in the observed H-mode state. Therefore
inclusion of the contribution of 'v& cos $( is needed to repro-
duce a transition from a GAM limit-cycle state to the
H-mode state, because zero-frequency eigenmodes are not
excited when -LD+"GAM.

Next we will identify the eigenfrequency of the GAM in
the case that it is the limit-cycle state, which is modified by
the effect of GAM group propagation as well as Landau
damping. We obtain the modified profile of the GAM
frequency " as a function of qr incorporating propagation
effects as well as polarization effects. Including the effect
of ion polarization screening effects, the GAM frequency
has a dependency on qr, i.e., "GAM/ !1+qr

2"−1/2. As seen
in Eq. !37", the effective GAM frequency, !that is the labo-
ratory frame frequency", involves the group velocity,
vgr,GAM=!" /!qr. Therefore solving these as differential

equations for "!qr", we can find the explicit description of
the GAM frequency including the radiative dissipation as
well as the polarization screening. Now we have two
candidates,

" = qr
!"

!qr
, !41a"

" = qr
!"

!qr
9 -"GAM

2 − -LD
2 . !41b"

First we solve Eq. !41a". The solution is the form of
"=Aqr, where A is an integral constant determined by the
boundary condition. From the boundary condition that "!qr"
must be finite in the limit of qr→;, A=0 is found, so
"=0, which corresponds to a stationary case, without
propagation.

In solving Eq. !41b", we need keep in mind of the de-
pendence of "GAM on qr and consider the case without -LD
as a simple case. " is shown to be

" = qr., 1

qr
2

"GAM,0

-1 + qr
2
dqr + C/ ,

!42"
=-1 + qr

2"GAM,0 + qrC ,

where C is an integral constant. We need to set
C=−"GAM,0 due to the condition that "→0 is satisfied when
qr→;. Finally, we obtain

" = "GAM,0!-1 + qr
2 − qr"

= "GAM,0
!-1 + qr

2 − qr"!-1 + qr
2 + qr"

-1 + qr
2 + qr

=
"GAM,0

qr + -1 + qr
2

. !43"

Notice that we obtain the factor 1 / !qr+-1+qr
2" from the

effect of the radiative dissipation, instead of the factor of

FIG. 5. Diagram of the turbulence convergence in !-L ,-LD". The turbulence
level is determined by the minimum one of the three states: !i" L-modelike
state with the turbulence level N=NL, !ii" reduced turbulence steady state
with N=NH, and !iii" limit-cycle GAM state with N=N!. Bold lines show
the critical boundary between two states.

FIG. 4. Illustration of the transition from an L-modelike stationary state
!left" to an limit-cycle GAM state !right" by increasing heating power or -L.
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1 /-1+qr
2 in the case without radiative dissipation.

Figure 6 shows the evolution of the GAM frequency "
as a function of qr in the cases !a" without and !b" with GAM
propagation. We see that including the effect of GAM propa-
gation reduces the effective frequency from 1 /-1+qr

2 to
1 / !qr+-1+qr

2", as illustrated in Fig. 6.
Next we solve the case with finite -LD. We see that

" = "GAM,0qr., 1

qr
2- 1

1 + qr
2 − a2dqr + C/ , !44"

where a=-LD /"GAM,0. Through lengthy calculation, we fi-
nally obtain

"

"GAM,0
= aqr;E7sinh−10.- a2

1 − a2qr/01 −
1
a28<

+ -1 + qr
2-1 − a2!1 + qr

2" − qr, !45"

where E!4 *m" is the elliptic function of the second kind.
Figure 7 shows the evolution of " /"GAM,0 as a function of qr
and -LD.

Here we discuss the effect of the Doppler effect of the
GAM propagation on turbulence transport. Because of the
Doppler effect, the effective GAM frequency decreases, so
the autocorrelation time scale )ac,GAM is also reduced.
Thus the steady state level of turbulence N! is also reduced.
The total estimated level of turbulence governed by the
GAM is determined by the relation among the GAM fre-
quency, the turbulence group velocity, and the effect of GAM
propagation.

IV. CONCLUSION AND REMARKS

We have analyzed the impact of the GAM on turbulence
and transition. First we have discussed the effect of its real
frequency on ZF modulation. Because of the change in the
resonance conditions, secular shearing due to the GAM fre-
quency occurs and a new time scale, namely, the wave
packet-GAM autocorrelation time, is defined. Its variation
follows from a comparison between the scale of the GAM

frequency and that of the diamagnetic drift frequency. The
ratio is approximately comparable to !1+a /R".

As compared to the previous work for the estimation of
the time-evolving E!B shearing rate,15 we have formulated
a more complete calculation of the rate of generation of the
ZF with real frequency and how it depends on the spectrum
of turbulence. We identify the process of secular stochastic
shearing, in which drift wave packets resonate with the dis-
persive GAM shearing field. Our result somewhat resembles
Hahm’s, in that the change in ZF modulation is the order of
the ratio of real frequency of the GAM to the GAM field
autocorrelation rate. However, the autocorrelation rate can be
larger than frequency, due to modest GAM dispersion.

We have also examined the effects of GAM group
propagation. The effect produces both nonlocality of turbu-
lence as well as radiative dissipation. Regarding nonlocal
turbulence dynamics, the dimensionless scale length of radial
propagation can be defined as the ratio of GAM frequency
"GAM to the Landau damping -LD, which may be large in the
large q!r" edge region. This indicates that nonlocal edge-core
coupling dynamics may involve such GAM propagation, so
that the GAMs can play a role in bursty phenomena of tur-
bulence in the edge region. This also defines a new edge
length scale.

To discuss the effect of the GAMs on turbulence, we
construct the zero-dimensional predator-prey model which
relates turbulence and the GAM components. The parameters
governing the system are the following four variables: The
growth rate can be classified into that of the nonlocal turbu-
lence fluctuation -L, which is determined by heating power
and by the net incremental temperature gradient relative to a
critical gradient. The Landau damping rate of the GAM -LD
is determined by wave-particle resonance,23 and has a strong
dependency on q!r". When we consider a high q!r" value, the
Landau damping rate is weak. The ZF modulation rate 0! is
determined by a modulational analysis using the wavekinetic
equations, and is related to the spectrum of turbulence,
!'N( /!kr, and also the real frequency of the GAMs. Consid-
ering the stationary state, we treat it as we do the state with
ZFZFs. While when discussing the limit-cycle state, we use
the parameter incorporating the secular shearing effect in-
cluding the real frequency. The reference GAM frequency
"GAM is determined by the fluid estimation, but it can also be
generalized and obtained from a gyrokinetic analysis. We
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0
0.25
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0.75
1

0
0.2

0.4
0.6

0.8

(a) no GAM,
red. turb. state

FIG. 7. !Color online" !a" The evolution of the GAM frequency " /"GAM,0
including the effect of the radiative dissipation as a function of qr and
a!=-LD /"GAM,0". Note that the GAM can be established only in the region
-LD+1 /-1+qr

2, as shown in !b".

FIG. 6. The evolution of the GAM frequency " as a function of qr in the
case !a" without propagation and !b" with propagation.
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take into account the qr dependency of the FLR or ion po-
larization screening effect.

The stability analyses around fixed points reveal three
kinds of states: !i" an L-modelike stationary state, !ii" a re-
duced turbulence stationary state, and !iii" a limit-cycle
GAM state. We find that the system is attracted to the state
with the lowest turbulence level of the three.

Solving the eigenvalue equation and the corresponding
differential equation in terms of radial wave number qr, we
find the effective GAM frequency incorporating the effect of
the radiative dissipation, as well as Landau damping and ion
polarization screening effect. Due to the radiative dissipa-
tion, the GAM frequency is found to be downshifted by the
GAM radiative Doppler effect. Due to the Doppler effect, the
steady level of the turbulence is suppressed by the effective
reduction in the GAM frequency.

The reduction in the GAM frequency due to the radiative
dissipation may explain the difference between theoretically
predicted and experimentally observed GAM frequencies. As
seen in Fig. 2 in Ref. 14, the observed GAM frequency from
the Landau-fluid simulation is seen to be below the theoreti-
cally predicted profile fGAM. In Miyato’s simulations, the ra-
dial wave number qr%i%0.3 is calculated from the estimation
of the bandwidth of the GAM islands *r, which implies
about a 25% reduction in the frequency. This reduction factor
is consistent with the result of the simulations.

An interesting question here is to discuss the implica-
tions of the radiative dissipation for conventional gyrokinetic
theory or radial eigenmode theory. The calculation of radia-
tive dissipation is quite general and may be applied to other
models by using Eq. !15". These investigations are still under
consideration and will be discussed in future work.

One remark concerns the possibility of return of energy
from the GAM to the drift wave turbulence, as discussed in
Refs. 21 and 24. In our work, such an effect is not treated,
for simplicity. In the present study, we find turbulence back-
flow cannot be reproduced. However, we note that when
4!1,0", a sideband of the GAM, is excited, the convective
term associated with 4!1,0" becomes non-negligible. This is
qualitatively different dynamics from the effect of GAM
propagation, which is based on finite frequency. Due to the
convection by 4!1,0", the excitation of 4!m91,n" may be
enhanced, followed by turbulence spreading. If it is true,
edge turbulence need not be directly excited by “GAM back-
flow,” but rather by indirect enhancement through spatial
coupling mediated by the GAM. A detailed analysis will be
presented in future work.

The theory of the Doppler effect of the GAM frequency
applies not only to the fluid regime, but also to the kinetic
one. In many simulation results, the observed GAM fre-
quency in the steady state regime does not agree with the
theoretical one. We suggest that the mismatch occurs not
only due to the formation of coherent radial eigenmodes but
also due to the Doppler dissipative effect.
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