Recent Work

Title
A NEW SATURABLE TRANSFORMER MEASURES DIRECT CURRENT THROUGH CONDUCTORS IN THE VICINITY OF LARGE STRAY MAGNETIC FIELDS

Permalink
https://escholarship.org/uc/item/3hs5t9sr

Author
Windsor, Alfred.

Publication Date
1960-10-17
A NEW SATURABLE TRANSFORMER MEASURES DIRECT CURRENT THROUGH CONDUCTORS IN THE VICINITY OF LARGE STRAY MAGNETIC FIELDS
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
A NEW SATURABLE TRANSFORMER MEASURES DIRECT CURRENT
THROUGH CONDUCTORS IN THE VICINITY OF
LARGE STRAY MAGNETIC FIELDS

Alfred Windsor

October 17, 1960
A NEW SATURABLE TRANSFORMER MEASURES DIRECT CURRENT THROUGH CONDUCTORS IN THE VICINITY OF LARGE STRAY MAGNETIC FIELDS

Alfred Windsor

Lawrence Radiation Laboratory
University of California
Berkeley, California

October 17, 1960

ABSTRACT

An improved dc transformer operates with its accuracy not impaired by stray magnetic fields because the ampere-turn balance is continuous. Applications are especially useful in physics research.
A NEW SATURABLE TRANSFORMER MEASURES DIRECT CURRENT THROUGH CONDUCTORS IN THE VICINITY OF LARGE STRAY MAGNETIC FIELDS

Alfred Windsor

Lawrence Radiation Laboratory
University of California
Berkeley, California

October 17, 1960

Stable current transducers have many applications in physics research. Particle accelerators and their auxiliary equipment usually require large direct currents, for example. The dc transformer has certain general advantages and limitations. Advantages are: (a) isolation between the current bus and burden resistance, (b) low power dissipation, (c) low temperature coefficient, and (d) high output voltage. Limitations to be considered are: (a) loss of accuracy at low currents, (b) dependence on source voltage and frequency, (c) transfer of source voltage to the current bus, and (d) accuracy affected by stray magnetic fields.

A transverse field has the effect of lowering the saturation flux or \(B_{\text{max}} \) of square loop core material, while the average of positive and negative coercive forces for an alternating wave of equal positive and negative flux remains nearly zero (see Fig. 1).

This saturable transformer makes use of the basic symmetry of the hysteresis loop without being affected by the saturated inductance which varies with stray magnetic fields. Figure 2 illustrates the principle of operation. Here an ac current transformer with a vertical hysteresis loop is supplied a negative volt-second area in the primary, and an equal and opposite volt-second area in the secondary. \(E_s \) is adjusted until \(a_1 = a_2 \) and then is continuously adjusted to maintain an amper-turn balance between \(L_C \) and \(N_2 I_L \). The secondary voltage of \(T_2 \) is \(I_L (R_{T2} + R_L) \) as long as \(D_2 \) conducts. \(D_1 \) conducts and blocks \(D_2 \) when \(E_s \) reverses and reaches the value of \(I_L R_{T1} \). The voltage of \(T_2 \) reverses from \(\phi_2 \) to \((\pi - \phi_2) \) to form area \(a_1 \). \(E_s \) is set just large enough to maintain zero net flux in core 2. Equating the areas and solving for \(E_s \) yields \(E_s \cos \phi_1 = \pi I_L (R_{T2} + R_L) \). If \(R_{T1} \) is small, \(\cos \phi_1 = 1 \), and

\[
E_s (\text{RMS}) = 2.22 I_L (R_{T2} + R_L) \quad (1)
\]

When \(E_s \) is low \(a_1 \) is low, and the core saturates on each cycle from current in the primary. When \(E_s \) is high, the core saturates during the interval of excess \(a_1 \).
Fig. 1. A family of $B - H$ loops for delta-max or Orthonol core material shows reduced B_{max} when a transverse field is applied.
\[E_S \cos \phi_1 = \pi I_L \left(R_{T2} + R_L \right) \]
when \(a_1 = a_2 \)

Fig. 2. Basic circuit and principle of operation.
Fig. 3a. A practical circuit with B - H loops for low control current.
Since it is not practical to regulate and adjust E_s to every current, E_s is made higher than $2.22 (R_T + R_L)$ and the excess volt-seconds are absorbed in another transformer connected in series with R_{T1}. Thus an ampere-turn balance is maintained by T_1 and T_2 in series during the interval of excess a_1.

The current transformer of Fig. 3 is superior to the conventional series-connected saturable reactor, which has a negative stray-field coefficient, because of changes in the saturated inductance with transverse fields. It responds faithfully to high-frequency components of currents because of close coupling between primary and secondary during the full cycle. The series-connected saturable reactor was used in Germany for telemetering direct current before 1919. The same circuit is in use today but suffers the disadvantage of momentary interruptions of the ampere-turn balance while the twin cores are switching.

The dc transformer of Fig. 3a is designed to be unbalanced in order to assure a reset for T_2 before the excess volt-seconds are absorbed in T_1. A fully excited core has a wider hysteresis loop than a partially excited one, thus T_1 may be identical with T_2 as long as the excess of volt-seconds for T_1 is greater than the volt-seconds required to reset T_2. A better utilization of core cross section results from adding secondary turns to T_2 over T_1 or using a core material for core 1 of wider hysteresis loop or making the diameter of core 2 smaller than that of core 1.

Figure 3b shows the shift in volt-seconds from core 1 to core 2 from low to high currents. N_2 is made a little larger than N_1 to permit the smaller loop of core 1 to reset core 2. Another method of reset would be to use orthonol core material for core 1 and Hy Mu 80 for core 2.

To understand the cycle of operation refer to Fig. 4. Starting at "a," core 1 is saturated and core 2 is in a high μ region. An ampere-turn balance is maintained by T_2 as current circulates through D_2 and R_L. Also, E_s blocks D_1 while the core of T_1 is saturated. At point "b", core 2 is still in a high-μ region with established domain walls, while core 1 is just coming out of saturation and starting nucleation centers. Current shifts from D_2 to D_1 at point "b," and the difference in excitation requirements between core 1 and core 2 results in an unbalanced distribution of voltages between T_1 and T_2 until core 2 approaches saturation at point "c." When core 2 reaches the limit of its flux change, voltage shifts to T_1, since core 1 has now established domain walls. T_1 continues to absorb volt-seconds until it resets to saturation at "f." Meanwhile, the ampere-turn balance has shifted to D_2 at "e," when E_s reverses. D_2 maintains the current in the same direction through the load. The switching of current from D_1 to D_2 and back again is done so smoothly that the output current is a true representation of the input plus a small square wave of ripple current equal to the width of the hysteresis loop and of the same frequency as E_s.

At zero control current, core 1 fails to get reset unless reverse volt-seconds are fed back around D_1. R_1 prevents T_1 from going into the magnetic amplifier mode at zero control current and turns D_2 "on" a little bit better at other currents. Core 1 must have enough cross-section
Fig. 3b. Hysteresis loops showing how core 1 resets core 2 when N_2 is greater than N_1.

Fig. 4. Principle of operation -- 2000-amp saturable transformer.
Fig. 5. Coercive current ripple removed.
area to absorb all of E_s plus a safety factor and, as seen from Eq. (1), core 2 requires about half as much, since it can not absorb more than $I_L (R_L + R_{T2})$ for a little more than half a cycle.

This mode of operation makes the dc error approximately equal to the average of positive and negative magnetizing forces for core 2. The ripple current may be removed without loss of frequency response by filtering the output and biasing an ac current transformer. The ac current transformer T_3 in Fig. 5 (upper) should have a low-frequency response that includes the frequency of E_s and crosses over with the frequency response of the saturable transformer so that ripple-frequency components are filtered out by capacitor C and the inductance of T_3.

The conventional dc transformer can be modified to obtain a constant ampere turn balance by adding a third transformer as in Fig. 5 (middle). The ripple amplitude is equal to the width of the hysteresis loop, but the frequency is twice that of E_s. In Fig. 5 (lower), the ripple is removed in the same manner as Fig. 5 (upper) by adding a fourth transformer.

In magnetic fields up to 50 gauss, this transformer is approx a factor of 10 more stable than the conventional one. It is recommended for applications where stray fields are difficult to remove by shielding.

This work was done under the auspices of the U.S. Atomic Energy Commission.

Information Division
Im
REFERENCES

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.