Title
How Many Eigenvalues of a Random Matrix are Real?

Permalink
https://escholarship.org/uc/item/3hw4q0wc

Authors
Edelman, A.
Kostlan, E.
Shub, M.

Publication Date
1992-08-01
How Many Eigenvalues of a Random Matrix Are Real?

A. Edelman, E. Kostlan, and M. Shub

August 1992
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
HOW MANY EIGENVALUES OF A RANDOM MATRIX ARE REAL?

Alan Edelman¹
Department of Mathematics and Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Eric Kostlan
Department of Mathematics
University of Hawaii, Honolulu, HI 96822

Michael Shub
TJ Watson Research Center
IBM
Yorktown Heights, NY 10598-0218

August 1992

How Many Eigenvalues of a Random Matrix are Real?

Alan Edelman*
Eric Kostlan†
Michael Shub‡

August 19, 1992

Abstract

Let A be an $n \times n$ matrix whose elements are independent random variables with standard normal distributions. As $n \to \infty$, the expected number of real eigenvalues is asymptotic to $\sqrt{2n/\pi}$. We obtain a closed form expression for the expected number of real eigenvalues for finite n, and a formula for the density of a real eigenvalue for finite n. Asymptotically, a real normalized eigenvalue λ/\sqrt{n} of such a random matrix is uniformly distributed on the interval $[-1,1]$. Analogous, but strikingly different, results are presented for the real generalized eigenvalues. We report on numerical experiments confirming these results and suggesting that the assumption of normality is not important for the asymptotic results.

1 Statements of Results

Consider a random matrix whose elements are independent random variables from a standard (mean zero, variance one) normal distribution.

Here is one of our main results:

ASYMPTOTIC NUMBER OF REAL EIGENVALUES. If E_n denotes the expected number of real eigenvalues of an n by n random matrix, then

$$\lim_{n \to \infty} \frac{E_n}{\sqrt{n}} = \sqrt{\frac{2}{\pi}}.$$

ASYMPTOTIC SERIES. As $n \to \infty$,

$$E_n = \sqrt{\frac{2n}{\pi}} \left(1 - \frac{3}{8n} - \frac{3}{128n^2} + \frac{27}{1024n^3} + \frac{499}{32768n^4} + O\left(\frac{1}{n^5}\right) \right) + \frac{1}{2}. $$

Corollary 5.2

Let A be a 50×50 random matrix. Figure 1 above plots normalized eigenvalues $\lambda/\sqrt{50}$ in the complex plane for fifty matrices. Thus there are 2500 dots in the figure. There are a number of striking features in the diagram. Firstly, nearly all the normalized eigenvalues appear to fall in the interior of the unit disk. This is Girko's circular law [12], which states that as n gets large, λ/\sqrt{n} is uniformly distributed in the unit disk. It follows that the proportion of eigenvalues on the real line (also strikingly visible to the eye) must tend to 0 as $n \to \infty$. Our results show how fast this converges.

*Department of Mathematics & Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, edelman@math.berkeley.edu, Supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.
†Department of Mathematics, University of Hawaii, Honolulu, HI 96822, kostlan@kahuna.math.hawaii.edu
‡TJ Watson Research Center, 32-2, IBM, Yorktown Heights, NY 10598-0218, shub@watson.ibm.com
Figure 1: 2500 dots representing normalized eigenvalues of fifty random matrices of size $n = 50$. Clearly visible are the points on the real axis.

Figure 2: Histogram of normalized real eigenvalues for 2222 matrices of size 50
Figure 2 takes a closer look at the real eigenvalues again taking \(n = 50 \), but this time we took over 2200 random matrices, and histogrammed the real normalized eigenvalues. Notice the data suggests that the density is nearly uniform on \([-1, 1] \). The plotted curve is the exact density for \(n = 50 \). This suggests

\[\text{ASYMPTOTIC DENSITY OF REAL EIGENVALUES.} \]

If \(\lambda_n \) denotes a real eigenvalue of an \(n \) by \(n \) random matrix, then as \(n \to \infty \), \(\lambda_n / \sqrt{n} \) is uniformly distributed on the interval \([-1, 1] \).

which is the limit of

\[\text{PROBABILITY DENSITY FOR } \lambda_n. \]

If \(\lambda_n \) denotes a real eigenvalue of an \(n \) by \(n \) random matrix, then its probability density \(f_n(\lambda) \) is given by

\[
f_n(\lambda) = \frac{1}{E_n} \left(\frac{1}{\sqrt{2\pi}} \left[\Gamma(n - 1, \lambda^2) \right] + \frac{|\lambda^{n-1}| e^{-\lambda^2/2}}{\Gamma(n/2) 2^{n/2}} \left[\gamma((n-1)/2, \lambda^2/2) \right] \right).
\]

A related function that we study closely is

\[\text{UNNORMAIZED DENSITY FOR } \lambda_n. \]

Given a fixed matrix \(A \) we can define the empirical cumulative distribution function of its real eigenvalues:

\[
\#_{(-\infty, x]}(A) \equiv \{ \text{number of real eigenvalues of } A \leq x \}.
\]

Let

\[
\rho_n(x) = \frac{d}{dx} E_A \#_{(-\infty, x]}(A),
\]

where \(E_A \) denotes expectation for random \(A \). Then

\[
f_n(\lambda) = \frac{1}{E_n} \rho_n(\lambda).
\]

In fact, if \(\Lambda \) is any Lebesgue measurable set of the real line,

\[
\int_{\Lambda} \rho_n(\lambda) d\lambda = E_A \#_{\Lambda}(A) \equiv \text{The expected number of real eigenvalues in } \Lambda.
\]

Most simply put, \(\rho_n(\lambda) \) is a true density; it is the “expected number of eigenvalues per unit length” in an infinitesimal interval near \(\lambda \).

Unless otherwise stated, we omit the distribution and simply use the term “random matrix” to denote a matrix with independent standard normally distributed elements. Other distributions are considered in Section 8. Frequently, authors with access to computers complete investigations of statistical quantities with an appendix of numerical values. We provide a Mathematica expression for \(E_n \) below and merely list enough values of \(E_n \) to suggest a conjecture which turns out to be true. Table 1 tabulates \(E_n \) for \(n \) from 1 to 10 and suggests a difference in the algebraic form of \(E_n \) for \(n \) even or odd.

We see that a 10 by 10 random matrix can be expected to have fewer than 3 real eigenvalues. More striking is the observation that if \(n \) is even, \(E_n \) is a rational multiple of \(\sqrt{2} \), while if \(n \) is odd, \(E_n \) is one more than a rational multiple of \(\sqrt{2} \). We like to think of this as the “extra” real eigenvalue guaranteed to exist since \(n \) is odd. Also notice that the denominators in the ratios are always powers of 2. The observations above and many others may be derived from the exact formulas below.
Table 1: Expected number of real eigenvalues

<table>
<thead>
<tr>
<th>n</th>
<th>E_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$\sqrt{2}$</td>
</tr>
<tr>
<td>3</td>
<td>$1 + \frac{1}{2}\sqrt{2}$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{11}{8}\sqrt{2}$</td>
</tr>
<tr>
<td>5</td>
<td>$1 + \frac{1}{16}\sqrt{2}$</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{241}{128}\sqrt{2}$</td>
</tr>
<tr>
<td>7</td>
<td>$1 + \frac{271}{256}\sqrt{2}$</td>
</tr>
<tr>
<td>8</td>
<td>$\frac{1929}{1024}\sqrt{2}$</td>
</tr>
<tr>
<td>9</td>
<td>$1 + \frac{2597}{2048}\sqrt{2}$</td>
</tr>
<tr>
<td>10</td>
<td>$\frac{67843}{32768}\sqrt{2}$</td>
</tr>
</tbody>
</table>

Table 1: Expected number of real eigenvalues

Exact Formulas for E_n. (Some notation is defined below the box.)

If n is even,

$$E_n = \sqrt{2} \sum_{k=0}^{n/2-1} \frac{(4k - 1)!!}{(4k)!!},$$

while if n is odd,

$$E_n = 1 + \sqrt{2} \sum_{k=1}^{(n-1)/2} \frac{(4k - 3)!!}{(4k - 2)!!}.$$

Alternatively, for both even and odd n,

$$E_n = \frac{1}{2} + \sqrt{2} \frac{\Gamma(n + 1/2)}{\pi \Gamma(n)} \text{$_2F_1$(1, $-1/2$; n; 1/2)}$$

$$= \frac{1}{2} + \sqrt{2} \frac{\text{$_2F_1$(1, $-1/2$; n; 1/2)}}{B(n,1/2)}$$

$$= \frac{1 - (-1)^n}{2} + \sqrt{2} \text{$_p$F$_{n-2}$}^{(1-n,\frac{3}{2})}(3), \text{ if } n > 1.$$

Perhaps nicer yet, we have the generating function

$$\frac{z(1 - z + z\sqrt{2} - 2z)}{(1 - z)^2(1 + z)} = \sum_{n=0}^{\infty} E_n z^n.$$

Theorem 5.1 and corollaries.

In the formulas above we use the Euler Beta function, a Jacobi polynomial evaluated at three, and also the familiar double factorial (also known as the semifactorial) notation defined by

$$n!! = \begin{cases} 1 \times 3 \times 5 \times \ldots \times n & \text{if } n \text{ is odd} \\ 2 \times 4 \times 6 \times \ldots \times n & \text{if } n \text{ is even.} \end{cases}$$

By convention, $0!! = (-1)!! = 1$.

For the benefit of Mathematica users who may wish to compute E_n,
Mathematica Program.

\(e[n_] := \frac{(1 - (-1)^n)}{2} + \sqrt{2} \text{JacobiP}[n-2, 1-n, 3/2, 3] \)

Mathematica calculated \(E_n \) much faster using this formula than using our other formulas for \(E_n \). For example, the above Mathematica program effortlessly computed the expected number of real eigenvalues of a 100 by 100 random matrix:

\[E_{100} = 75002314698289190681410505950979137956286758500731773968829\sqrt{2}/2^{193}. \]

In Section 6, we consider the generalized eigenvalue problem

\[\det(M_1 - \lambda M_2) = 0, \]

where \(M_1 \) and \(M_2 \) are independent and random. One might guess that questions about generalized eigenvalues would be more difficult than corresponding questions about eigenvalues, but in fact they are simpler.

Number of Real Generalized Eigenvalues. If \(E_n^G \) denotes the expected number of real generalized eigenvalues of a pair of independent \(n \) by \(n \) random matrices, then

\[E_n^G = \frac{\sqrt{\pi} \Gamma((n + 1)/2)}{\Gamma(n/2)}. \]

Asymptotic Number of Real Generalized Eigenvalues.

\[\lim_{n \to \infty} \frac{E_n^G}{\sqrt{n}} = \sqrt{\frac{\pi}{2}}. \]

Asymptotic Series. As \(n \to \infty \),

\[E_n^G = \frac{\sqrt{\pi n}}{2} \left(1 - \frac{1}{4n} + \frac{1}{32n^2} + \frac{5}{128n^3} - \frac{21}{2048n^4} + O\left(\frac{1}{n^5}\right) \right). \]

Theorem 6.1 and Corollary 6.1

Probability Density for Real Generalized Eigenvalues. If \(\lambda \) denotes a real generalized eigenvalue of a pair of independent random matrices, then its probability density \(f^G(\lambda) \) is given by

\[f^G(\lambda) = \frac{1}{\pi(1 + \lambda^2)}, \]

that is, \(\lambda \) obeys the standard Cauchy distribution. Equivalently, \(\text{atan}(\lambda) \) is uniformly distributed on \([-\pi/2, \pi/2] \).

Theorem 6.2

Notice that the density function of a real generalized eigenvalue does not depend on \(n \). We could also define \(\rho_n^G(\lambda) \) in analogy to \(\rho_n(\lambda) \), but this will not be of use to us.

2 Motivation, History, Background

Eigenvalues of random matrices arise in many applications areas, perhaps the most well-known areas are nuclear physics, multivariate statistics, and as test matrices for numerical algorithms. See [10] for references to some of these numerous applications. We strongly suspect that random eigenvalue models have been
considered in any area where eigenvalues have been considered. The subject is also a favorite for pure mathematicians because it touches on harmonic analysis, combinatorics, and integral geometry.

The first investigation of the eigenvalues of real non-symmetric matrices with normally distributed entries began with Ginibre [11]. He attempted to calculate the probability distribution of the real eigenvalues under the assumption that some fixed number \(k \) of them are real, but only succeeded in the case when all of the eigenvalues are real.\(^1\) In Section 3.5 of [13], Girko derives formulas for the distribution of the eigenvalues under the same assumption that a fixed number are real. Unfortunately, derivations are tedious and the text, at least in translation, contains sufficiently many typographical errors as to make the derivations difficult to check.

Research into the analogous question for polynomials has been much more successful, as is well documented in [2]. For example, in the 1940s Kac [17, 18], considered an \(n \)th degree polynomial whose coefficients are independent standard normals. He derived an integral formula for the expected number of real roots and was able to show that there are, asymptotically as \(n \to \infty \), \((2/\pi) \log(n)\) real roots. Kostlan [19] was able to derive an integral formula for the expected number of real roots of a polynomial with any central normal distribution using the Poincaré formula of integral geometry. Furthermore, Kostlan [19], and Shub and Smale [24] were able to apply geometric methods to show that if the coefficients have independent central normal distributions with variances equal to the binomial coefficients, then the expected number of real roots is exactly the square root of the degree. That these geometric methods, unlike the purely analytic methods of Kac and others, give results for (even underdetermined) systems of equations, demonstrates the power of integral geometry.

Thus from the pure mathematics side, the problem of computing the expected number of real eigenvalues grew out of an attempt to apply integral geometry to linear algebra. The ease with which integral geometry gives the expected number of real generalized eigenvalues (see Section 6) gave added hope that the problem of the expected number of real eigenvalues could be solved.

From the applied mathematics side, we wished to respond to a question by Shiu-Hong Lui [20] who was testing homotopy methods to find the eigenvalues and eigenvectors of a general real matrix using random test matrices. Random matrices are often used to test algorithms because of the small effort involved in producing them. As an example, the eigenvalues of random matrices are computed in the LAPACK test suite [4] though LAPACK makes no effort to count the number of eigenvalues that are real.

3 Eigenvalue Inflation

We begin by defining a process that might be called eigenvalue inflation because it inverts the usual numerical process known as eigenvalue deflation. Let \(A_0 \) be any real \(n - 1 \times n - 1 \) matrix, \(v \) be any unit \(n \)-vector such that \(v_n \geq 0 \), and \(w = (w_1 \ldots w_n) \) be any \(n - 1 \) dimensional row vector. We can "inflate" the set of eigenvalues of \(A \) by building the \(n \) by \(n \) matrix

\[
A \equiv H(v) \begin{pmatrix} 0 & & & & & \lambda \\ & A_0 & & & & \\ & & \ddots & & & \\ & & & 0 & & \\ w_1 & \ldots & w_{n-1} & & & \end{pmatrix} H(v).
\]

Here \(H(v) \) is the linear operator that exchanges \(v \) and \(e_n = (0 \ldots 0 \ 1)^T \). For definiteness, let \(H(v) \) denote reflection across the internal angle bisector of \(v \) and \(e_n \). In numerical linear algebra, reflections of the sort

\(^1\)This is an extremely rare event for \(n \) not too small. It occurs with probability \(2^{-n(n-1)/4} \), a fact that will be derived in an upcoming paper.
that exchange an arbitrary vector \(v \) with \(e_n \) are usually called Householder reflections, they are orthogonal
and symmetric see [14].

If we make a change of variables from \(A \) to \(v, \lambda, w \) and \(A_0 \), the following lemma tells us how to integrate.

Lemma 3.1 Let \(\Lambda \) be a Lebesgue measurable subset of the real line, let \(\#_\Lambda(A) \) denote the number of real
eigenvalues of \(A \) in \(\Lambda \), and let \(J(\lambda, v, A_0, w) \) denote the Jacobian of the transformation defined in (1). Further
let \(\tau \) denote the density function (Radon-Nikodym derivative) of any measure that is absolutely continuous
with respect to Lebesgue measure. We then have

\[
\int_{A_0} \#_\Lambda(A) \tau(A) dA = \int_{v, \lambda \in \Lambda, w, A_0} J(v, \lambda, w, A_0) \tau(A(\lambda, w, A_0, v)) \, d\lambda \, dw \, dA_0,
\]

where \(dS(v) \) is the standard (Haar) measure on the unit sphere, and where \(dA, d\lambda, dw \) and \(dA_0 \) are standard
Lebesgue measures. In particular, the expected number of real eigenvalues is

\[
E_n \equiv \int_{A_0} \#_\Lambda(A) \tau(A) dA = \int_{v, \lambda \in \Lambda, w, A_0} J(v, \lambda, w, A_0) \tau(A(\lambda, w, A_0, v)) \, d\lambda \, dw \, dA_0,
\]

Proof It is easy to see that as \(A_0 \) varies over all \(n-1 \) by \(n-1 \) matrices, \(w \) varies over \(\mathbb{R}^{n-1} \), and \(v \) varies
over the unit hemisphere in \(\mathbb{R}^n \), every matrix \(A \) is covered exactly \(k \) times, where \(k \) is the number of real
eigenvalues of \(A \) in \(\Lambda \), unless \(A \) falls on the set (of measure zero) of matrices with an eigenvector \(v \) where \(v_n = 0 \) or the set (of measure zero) of matrices with multiple eigenvalues.

Lemma 3.2 The Jacobian of the transformation defined in (1) is

\[
J(v, \lambda, w, A_0) = | \det(A_0 - \lambda I)|.
\]

Proof The proof requires calculation of some differentials near fixed \(\lambda, v, A_0, \) and \(w \) so that we omit the
dependence of \(H \) on \(v \) etc. In the following, matrices and vectors of differential quantities are in bold face
Roman letters so as to distinguish them from the notation for Lebesgue measure.

Notice that \(v^T \, dv = 0 \) so that \(H^T \, dv \), which is also the last column of \(H^T \, dH \), has the form \((dy_1, \ldots, dy_{n-1}, 0)^T\).
The element of surface area in this rotating coordinate system, \(dS = dy_1 dy_2 \ldots dy_{n-1} \), is the natural element
of surface area on the unit sphere. See Muirhead [22, p.63] for a slightly similar treatment in a more general
setting.

Let \(M \) denote \(HAH \). Since \(H^2 = I \), we have \(HdH = -dHH \). Therefore \(A = HMH \) and \(dA = dHMH +
HdMH + HMDH \) or \(HdAH = dM + (HdH)M - M(HdH) \). It follows that if we omit the last component
of the last column of \(HdAH \) we obtain \((A_0 - \lambda I) \begin{pmatrix} dy_1 \\ \vdots \\ dy_{n-1} \end{pmatrix} \). The other elements of \(HdAH \) contain
differential forms composed of the corresponding element of \(dM \) and the \(dy_i \). Taking exterior products of
the differential forms of the \(n^2 \) components using standard techniques, we see that

\[
\bigwedge_{ij} dA_{ij} = | \det(A_0 - \lambda I)| \, d\lambda \, dw \, dA_0,
\]

completing the derivation.

This derivation in terms of differentials almost hides the action on the tangent spaces. To be precise,
consider the tangent space at \(e_n \) and ask how does that map to the tangent space at \(\hat{A} \) in directions orthogonal
to \(\hat{A} \). A perturbation theory argument would derive a relationship from

\[
(\hat{A} + \varepsilon w e_n^T)(e_n + \varepsilon y) = (\lambda + \varepsilon \lambda_1)(e_n + \varepsilon y),
\]
with the assumption that $e_n^T w = 0$ and $e_n^T y = 0$. A quick calculation shows that the relationship between the last $n - 1$ components of w as a function of those of y is given by $\lambda I - A_0$. This is more informative than saying the Jacobian is $| \det(\lambda I - A_0) |$, because it gives a clear interpretation to the matrix itself.

We now specialize to the case when the matrix A has independent standard normally distributed elements, or, in other words, where $\tau(A) = (2\pi)^{-n/2} \exp(-\frac{1}{2} \sum_{i,j=1}^n a_{ij}^2)$.

Theorem 3.1

$$\int_A \# \lambda(A) \left[(2\pi)^{-n^2/2} \exp\left(-\frac{1}{2} \sum_{i,j=1}^n a_{ij}^2 \right) dA \right]$$

$$= \int_{\lambda \in \Lambda, A_0} \frac{\pi^{1/2}}{2^{(n-1)/2} \Gamma(n/2)} | \det(A_0 - \lambda I) | \left[(2\pi)^{-1/2} \exp\left(-\frac{1}{2} \lambda^2 \right) d\lambda \right] \left[(2\pi)^{-(n-1)/2} \exp\left(-\frac{1}{2} \sum_{i,j=1}^{n-1} (a_{ij})^2 \right) dA_0 \right],$$

and where $dA, d\lambda$ and dA_0 are standard Lebesgue measures. For clarity, we have placed Gaussian measures in brackets.

Proof By Lemma 3.1 and Lemma 3.2, it is clear that the variables v and w are independent of λ and A_0 and also they are independent of each other. Thus we can readily integrate out the v and w terms:

$$\int_v dS(v) = \frac{\pi^{1/2}}{2^{(n-1)/2} \Gamma(n/2)} \text{Vol}(S^{n-1}) = \pi^{n/2} \Gamma(n/2)$$

(1) and $\int_w \exp\left(-\frac{1}{2} \sum w_i^2 \right) = (2\pi)^{(n-1)/2}$. From these equations and the previous two lemmas the theorem is immediate.

Taking Λ to be \Re, we learn that

Corollary 3.1

$$E_n = \frac{\pi^{1/2}}{2^{(n-1)/2} \Gamma(n/2)} \mathbb{E}_{A_0, \lambda} | \det(A_0 - \lambda I) |,$$

where the \mathbb{E} denotes expectation over the variables in the subscripts.

Definition 3.1 Let $D_{n-1}(\lambda) = \mathbb{E}_{A_0} | \det(A_0 - \lambda I) |$, where the expected value is taken over all $n - 1$ by $n - 1$ matrices A_0 with independent standard normally distributed elements. Also define

$$\rho_n(\lambda) = \frac{e^{-\lambda^2/2}}{2^{n/2} \Gamma(n/2)} D_{n-1}(\lambda), \quad E_n = \int_{-\infty}^{\infty} \rho_n(\lambda) d\lambda, \quad f_n(\lambda) = \frac{1}{E_n} \rho_n(\lambda).$$

From the discussion above, all of these quantities are related statistically to expectations concerning the real eigenvalues of a random matrix:

$$\rho_n(\lambda) = \lim_{\Delta \to 0} \frac{1}{\Delta} \left(\text{expected number of eigenvalues in } [\lambda - \Delta/2, \lambda + \Delta/2] \right).$$

Therefore,

$$\int_{\lambda \in \Lambda} \rho_n(\lambda) d\lambda$$

(4)

represents the expected number of eigenvalues in Λ; E_n is the expected number of real eigenvalues (i.e. the expected number of eigenvalues in \Re); $f_n(\lambda)$ is the derivative of the cumulative distribution function of the real eigenvalues. It is sometimes called a condensed density function, in contrast to joint densities [2]. Since we consider all the real eigenvalues to be identical, $f_n(\lambda)$ is nothing more than the marginal (probability) density function of a single real eigenvalue. In the next two sections we obtain explicit closed-form expressions for $\rho_n(\lambda), E_n$ and $f_n(\lambda)$.

8
4 Density Computation

The computation of the density of a real eigenvalue of an \(n \times n \) random matrix proceeds by evaluating \(D_{n-1} = \mathbb{E}_{A_0}(|\det(A_0 - \lambda I)|) \) where \(A_0 \) is an \(n-1 \times n-1 \) random matrix first in terms of objects known as zonal polynomials\(^2\), and then in terms of more elementary functions.

For simplicity we calculate \(D_n \) instead of \(D_{n-1} \). Let \(A \) be an \(n \times n \) random matrix. From Theorem 10.3.7 of [22, p.447], we learn that

\[
D_n(\lambda) = \mathbb{E}_A(|\det(A - \lambda I)|) = \frac{2^n/2 \Gamma((n + 1)/2)}{\sqrt{\pi}} F_1\left(-\frac{1}{2}; \frac{n}{2}; -\frac{\lambda^2}{2} I_n\right).
\]

This is a hypergeometric function of a matrix argument not in the sense of applying a Taylor series to the matrix (which would yield a matrix), but rather it is a more complicated object that yields a scalar [22].

We introduce the following abbreviation:

Definition 4.1

\[
F_n(\lambda) = \frac{2^{n-1} \Gamma((n + 1)/2)}{\Gamma(n) \Gamma(n)} \left(\frac{\lambda^2}{2}\right)^{n/2} F_1\left(-\frac{1}{2}; \frac{n}{2}; -\frac{\lambda^2}{2} I_n\right).
\]

It is not generally known when hypergeometric functions with a scalar matrix argument can be written as a finite sum of hypergeometric functions with scalar arguments. Gupta and Richards [16] have explored when certain hypergeometric functions of a scalar matrix argument can be written as infinite sums of simpler expressions. In our case, \(F_n(\lambda) \) can be written in terms of incomplete gamma functions.

Theorem 4.1

\[
F_n(\lambda) = e^{\lambda^2/2} \Gamma(n, \lambda^2) \Gamma(n) + \frac{2^{n-1} \Gamma((n + 1)/2)}{\Gamma(n) \Gamma(n)} \left(\frac{\lambda^2}{2}\right)^{n/2} \gamma\left(n, \frac{\lambda^2}{2}\right).
\]

We postpone the proof of this theorem until the end of this section.

Corollary 4.1 The generating function of the \(F_n(\lambda) \) is given by

\[
\sum_{n=0}^{\infty} F_n(\lambda) z^n = 1 + \frac{z}{1 - z} e^{(2z - 1)\lambda^2/2} + z \sqrt{\pi \lambda^2/2} e^{-\lambda^2/2} \left\{ \text{erf}(z \sqrt{\lambda^2/2}) + \text{erf}((1 - z) \sqrt{\lambda^2/2}) \right\}.
\]

Proof Rewrite the formula in Theorem 4.1 using

\[
\Gamma(n, \lambda^2) = \int_{\lambda^2}^{\infty} t^{n-1} e^{-t} dt \quad \text{and} \quad \gamma\left(n, \frac{\lambda^2}{2}\right) = \int_0^{\lambda^2/2} t^{n/2-1} e^{-t} dt.
\]

Switching the order of summation and integration, the generating function can be written as a sum of two integrals. These integrals are easy to evaluate.

In the previous section we established that

\[
\rho_n(\lambda) = \frac{e^{-\lambda^2/2}}{2^{n/2} \Gamma(n/2)} D_{n-1}(\lambda).
\]

Thus

\[
\rho_n(\lambda) = \frac{e^{-\lambda^2/2}}{\sqrt{2\pi}} F_{n-1}(\lambda).
\]

Using the duplication formula [1, 6.1.18] to rewrite \(\Gamma(n) \) in the second term of the formula in Theorem 4.1 and then combining with (4) and (5) proves the following two corollaries.

\(^2\)Zonal polynomials arise in group representation theory and the study of related hypergeometric functions [22].
Corollary 4.2: The expected number of eigenvalues on the interval \([a, b]\) is equal to
\[
\int_a^b \left(\frac{1}{\sqrt{2\pi}} \left[\frac{\Gamma(n-1, \lambda)}{\Gamma(n-1)} + \frac{\lambda^{n-1} e^{-\lambda^2/2}}{\Gamma(n/2)2^n/n^2} \left[\frac{\gamma((n-1)/2, \lambda^2/2)}{\Gamma((n-1)/2)} \right] \right] \right) d\lambda.
\]

Corollary 4.3: If \(\lambda_n\) denotes a real eigenvalue of an \(n\) by \(n\) random matrix, then its marginal probability density \(f_n(\lambda)\) is given by
\[
f_n(\lambda) = \frac{1}{E_n} \left(\frac{1}{\sqrt{2\pi}} \left[\frac{\Gamma(n-1, \lambda^2)}{\Gamma(n-1)} + \frac{\lambda^{n-1} e^{-\lambda^2/2}}{\Gamma(n/2)2^n/n^2} \right] \right).
\]

The probability density for the normalized eigenvalue \(x = \lambda/\sqrt{n}\) is \(g_n(x) = \sqrt{n}f_n(x\sqrt{n})\). We wish to understand the limiting behavior of this function as \(n\) becomes large.

Corollary 4.4: For all real values of \(x\),
\[
\lim_{n \to \infty} g_n(x) = \begin{cases} 1/2 & |x| < 1 \\ (2 + \sqrt{2})/8 & |x| = 1 \\ 0 & |x| > 1 \end{cases}
\]

Furthermore, the functions \(g_n(x)\) converge in the \(L^p\) norms for all \(1 \leq p < \infty\).

Proof: First we analyze pointwise convergence. We will show in Corollary 5.2 that
\[
\lim_{n \to \infty} \frac{E_n}{\sqrt{n}} = \sqrt{\frac{2}{\pi}}.
\]

Furthermore [1, 6.5.34],
\[
\lim_{m \to \infty} \frac{\Gamma(m + \alpha, my)}{\Gamma(m + \alpha)} = 1 - \lim_{m \to \infty} \frac{\gamma(m + \alpha, my)}{\Gamma(m + \alpha)} = \begin{cases} \frac{1}{y} & 0 \leq y < 1 \\ \frac{1}{2} & y = 1 \\ 0 & y > 1 \end{cases}
\]

and, using Stirling’s (asymptotic to equality) inequality
\[
\Gamma(m + 1) \geq m^m e^{-m\sqrt{2\pi m}},
\]

we can easily establish that
\[
\lim_{n \to \infty} \frac{(\sqrt{n\pi})^{n-1} e^{-n\pi^2/2}}{\Gamma(n/2)2^n/n^2} = \begin{cases} 1/(2\sqrt{\pi}) & |x| = 1 \\ 0 & |x| \neq 1 \end{cases}
\]

Combining (6), (7) and (9), we establish the desired pointwise convergence. Using elementary calculus one can show that for all \(y \geq 0\) and \(m \geq 1/2\),
\[
y^{2m-1}e^{m-my^2} \leq e^{1-y}.
\]

Furthermore, the Gaussian continued fraction for the incomplete gamma function [15, 8.358] shows that for \(y > \alpha - 1\),
\[
\Gamma(\alpha, y) \leq \frac{e^{-y}y^\alpha}{y + \alpha - 1}.
\]

Using (6), (8), (10) and (11), it is not hard to show that for all sufficiently large \(n\),
\[
g_n(x) \leq e^{1-|x|}.
\]

Thus by the dominated convergence theorem, the sequence \(\{g_n\}\) converges in the \(L^p\) norm for all \(1 \leq p < \infty\).

Since \(L^1\) convergence of densities implies convergence in distribution, we have at once another corollary.
Figure 3: Density of normalized eigenvalues for $n = 5, 10, 20, 50, 100, 200$. The bigger n is the closer it resembles the uniform density on $[-1, 1]$.

Corollary 4.5 If λ_n denotes a real eigenvalue of an n by n random matrix, then as $n \to \infty$, the normalized eigenvalue λ_n/\sqrt{n} converges in distribution to a random variable uniformly distributed on the interval $[-1, 1]$.

Figure 3 illustrates the convergence to the uniform density.

Proof of Theorem 4.1: Following Muirhead, we begin by considering ordered partitions κ of an integer k

$$\kappa = (k_1, k_2, \ldots, k_n),$$

where $k_1 + \ldots + k_n = k$ and $k_1 \geq k_2 \geq \ldots \geq k_n \geq 0$.

The (confluent) hypergeometric function of a matrix argument is defined as

$$1F_1(a; b; xI) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \sum_{\kappa} \frac{(a)_\kappa}{(b)_\kappa} C_\kappa(I),$$

where

$$(a)_\kappa = \prod_{i=1}^{n} (a - (i - 1)/2)_{k_i},$$

$$(a)_k = (a+1)\ldots(a+k-1) = \Gamma(a+k)/\Gamma(a)$$

and the zonal polynomial [22, p.237] is

$$C_\kappa(I) = 2^{2k}k!(n/2)_\kappa \prod_{i<j}^n (2k_i - 2k_j - i + j) \prod_{i=1}^n (2k_i + n - i)!.$$

Observe that

$$(-\frac{1}{2})_\kappa = \prod_{i=1}^{n} (-i/2)_{k_i}. \hspace{1cm} (12)$$

However, since $(-1)_k = 0$ unless $k = 0$ or 1, $(-\frac{1}{2})_\kappa = 0$ unless $1 \geq k_2 \geq k_3 \geq \ldots \geq k_n \geq 0$. In other words, we are only interested in partitions where possibly only the first component is not 0 or 1.
We now focus on \(F_n(\lambda) - F_{n-1}(\lambda) \). Since \(C_\kappa(I_n)/(n/2)_\kappa \) is independent of \(n \), the only difference between the expansion for \(F_n \) and \(F_{n-1} \) is the summation over partitions with exactly \(n \) non-zero components. To be precise, we may restrict our attention to partitions of the form

\[
\kappa = (k - n + 1, \underbrace{1, 1, \ldots, 1}_{n-1}), \quad k \geq n.
\]

We see from (12) that

\[
(-1/2)_\kappa = (-1/2)_{k-n+1}(n/2)_{k-n+1},
\]

and that

\[
\frac{C_\kappa(I_n)}{(n/2)_\kappa} = 2^{2k+1} \frac{\prod_{j=2}^{k+1} \left(2(2k+1) - 2 + j\right) \prod_{j=3}^{2k+1} (j-1)!}{(2k-n+1)! \prod_{i=1}^{n} (2n-i)!} \frac{1}{2^{2k-k-1}(2k-n-1)!} \frac{1}{2^{2k-k-1}(2k-n-2)!}
\]

\[
= 2^{2k} \frac{1}{(2k-n+1)! (2k-2n)!} \frac{1}{2^{2k-k-1}(2k-n-1)!} \frac{1}{2^{2k-k-1}(2k-n-2)!}.
\]

Therefore,

\[
F_n(\lambda) - F_{n-1}(\lambda) = \frac{1}{(n-1)! (-2)^{n-1}} \sum_{k=n}^{\infty} \frac{(-1/2)_{k-n+1}(2k-n-1)! 2^{2k}}{(2k-n+1)! (2k-2n)!} (-\lambda^2/2)^k.
\]

Letting \(l = k - n \) and noting

\[
(-1/2)_{l+1} 2^l (2l)! = -1,
\]

we can rewrite (13) as

\[
F_n(\lambda) - F_{n-1}(\lambda) = \frac{2^n}{\Gamma(n)} \left(\frac{\lambda^2}{2} \right)^n \sum_{l=0}^{\infty} \frac{(-\lambda^2/2)^l}{l!(2l+n+1)(2l+n)}
\]

\[
= \frac{2^n}{\Gamma(n)} \left(\frac{\lambda^2}{2} \right)^n \left[\sum_{l=0}^{\infty} \frac{(-\lambda^2/2)^l}{l!(2l+n+1)} - \sum_{l=0}^{\infty} \frac{(-\lambda^2/2)^l}{l!(2l+n+1)} \right]
\]

\[
= \frac{2^n}{\Gamma(n)} \left(\frac{\lambda^2}{2} \right)^n \left[\gamma \left(\frac{n+1}{2}, \frac{\lambda^2}{2} \right) - \gamma \left(\frac{n+1}{2}, \frac{\lambda^2}{2} \right) \right]
\]

\[
= \frac{2^n}{\Gamma(n)} \left(\frac{\lambda^2}{2} \right)^n \left[\gamma \left(\frac{n+1}{2}, \frac{\lambda^2}{2} \right) - \gamma \left(\frac{n+1}{2}, \frac{\lambda^2}{2} \right) \right]
\]

\[
= \frac{2^n}{\Gamma(n)} \left(\frac{\lambda^2}{2} \right)^n \gamma \left(\frac{n+1}{2}, \frac{\lambda^2}{2} \right) + \frac{2^{n+2}}{\Gamma(n)} \left(\frac{\lambda^2}{2} \right)^n \gamma \left(\frac{n+1}{2}, \frac{\lambda^2}{2} \right) + \frac{2^{n+1}}{\Gamma(n)} \left(\frac{\lambda^2}{2} \right)^n \gamma \left(\frac{n+1}{2}, \frac{\lambda^2}{2} \right)
\]

To calculate \(F_n(\lambda) \), we sum the preceding formula over \(n \). The first two terms of the formula telescope and it is only the last term that must be summed. However

\[
\sum_{k=1}^{n} \left(\frac{\lambda^2}{2} \right)^{k-1} 2^{k-1} e^{-\lambda^2/2} \frac{1}{\Gamma(k)} = e^{-\lambda^2/2} \sum_{k=1}^{n} \frac{(\lambda^2)^{k-1}}{\Gamma(k)} = \frac{e^{+\lambda^2/2} \Gamma(n, \lambda^2)}{\Gamma(n)}.
\]

Thus we see that

\[
F_n(\lambda) = \frac{e^{+\lambda^2/2} \Gamma(n, \lambda^2)}{\Gamma(n)} + \frac{2^{n-1}}{\Gamma(n)} \left(\frac{\lambda^2}{2} \right)^{n/2} \gamma \left(\frac{n+1}{2}, \frac{\lambda^2}{2} \right),
\]

as required.
5 Expected Number of Real Eigenvalues

To calculate the expected number of real eigenvalues, we need only perform the integration indicated in Corollary 4.2, taking the interval to be \([-\infty, \infty]\). The integrals involved may be found in classical references (e.g. [15, 6.455]). This produces a closed-form expression for \(E_n\) in terms of the Gaussian hypergeometric function:

\[
E_n = \sqrt{\frac{2}{\pi}} \frac{\Gamma(n - 1/2)}{\Gamma(n)} \left[n - 1 + \frac{1}{2} {}_2F_1(1, n - 1/2; (n + 1)/2; 1/2) \right].
\]

We wish to rewrite \(E_n\) in various forms, each form having its own advantages. The above form was not included in the first section of this paper, because we found it unenlightening. In principle, manipulations of Gaussian hypergeometric functions should be able to prove the equality of any two formulas for \(E_n\). However, it is easier to check formulas for \(E_n\) by computing their generating functions and then comparing them to the result in the following theorem.

Theorem 5.1 The generating function of the \(E_n\) is given by

\[
\sum_{n=0}^{\infty} E_n z^n = \frac{z(1 - z + z\sqrt{2 - 2z})}{(1 - z)^2(1 + z)}.
\]

Proof Using the generating function for \(F_n\) (Corollary 4.1), we can easily produce the generating function for the \(p_n\) and integrate it to produce the generating function appearing in this theorem.

The following corollary will be convenient for computing the asymptotic character of \(E_n\) for large \(n\).

Corollary 5.1 In terms of Gaussian hypergeometric functions,

\[
E_n = \frac{1}{2} + \sqrt{\frac{2}{\pi}} \frac{\Gamma(n + 1/2)}{\Gamma(n)} \frac{1}{2} {}_2F_1(1, -1/2; n; 1/2) = \frac{1}{2} + \sqrt{2} \frac{{}_2F_1(1, -1/2; n; 1/2)}{B(n, 1/2)}.
\]

Proof Observe that [15, 9.111]

\[
\sqrt{2} {}_2F_1(1, -1/2; n; 1/2) = (n - 1) \int_0^1 (1 - t)^{n-2}\sqrt{2 - t} \, dt.
\]

Interchanging summation and integration, we can therefore write the generating function for the postulated \(E_n\) as a single integral. This integral will evaluate to an algebraic function. We then compare this with the generating function in Theorem 5.1.

Corollary 5.2 We have the asymptotic series

\[
E_n = \sqrt{\frac{2n}{\pi}} \left(1 - \frac{3}{8n} - \frac{3}{128n^2} + \frac{27}{1024n^3} + \frac{499}{32768n^4} + O\left(\frac{1}{n^5}\right) \right) + \frac{1}{2}
\]

as \(n \to \infty\).

Proof The standard series for the hypergeometric function serves as an asymptotic formula for large \(n\) since \(n\) appears in the denominator. An asymptotic formula for \(\Gamma(n + 1/2)/\Gamma(n)\) can be found in [25, 43:6:10].

Corollary 5.3 If \(n\) is even,

\[
E_n = \sqrt{2} \sum_{k=0}^{n/2-1} \frac{(4k - 1)!!}{(4k)!!},
\]

while if \(n\) is odd,

\[
E_n = 1 + \sqrt{2} \sum_{k=1}^{(n-1)/2} \frac{(4k - 3)!!}{(4k - 2)!!}.
\]
Proof Using Corollary 5.1, the Gauss recursion formulas for Gaussian hypergeometric functions give

\[\frac{1}{\sqrt{2}}(E_n - E_{n-2}) = \frac{\Gamma(n - 3/2)}{\sqrt{\pi} \Gamma(n - 1)} = \frac{(2n - 5)!!}{(2n - 4)!!} \]

Thus it is elementary to establish this corollary by induction.

Corollary 5.4 For \(n > 1 \),

\[E_n = \frac{1 - (-1)^n}{2} + \sqrt{2} P_{n-2}^{(1-n, \frac{3}{2})}(3). \]

Proof The Jacobi polynomials are Gaussian hypergeometric functions. To be precise [15, 8.962.1],

\[P_{n-2}^{(1-n, \frac{3}{2})}(z) = (-1)^n \frac{4\Gamma(n + 1/2)}{3\sqrt{\pi} \Gamma(n - 1)} {}_2F_1(2 - n, 3/2; 5/2; (z + 1)/2). \]

Rewrite the postulated \(E_n \) using this formula, and then proceed as in Corollary 5.1, or as in Corollary 5.3.

6 Real Generalized Eigenvalues

A “generalized eigenvalue” of the pair of matrices \((M_1, M_2)\) (or of the pencil \(M_1 - \lambda M_2\)), is defined to be a solution \(\lambda \) to the equation

\[\det(M_1 - \lambda M_2) = 0. \]

In this section we show how symmetry can be used to obtain the expected number of real generalized eigenvalues and their density.

Theorem 6.1 If \(E_n^G \) denotes the expected number of real generalized eigenvalues of a pair of independent \(n \) by \(n \) random matrices, then

\[E_n^G = \frac{\sqrt{\pi} \Gamma((n + 1)/2)}{\Gamma(n/2)}. \]

Since the asymptotic series of the Euler Beta function is known [25, 43:6:10] we have an immediate corollary.

Corollary 6.1 We have the asymptotic series

\[E_n^G = \frac{\sqrt{\pi} n}{2} \left(1 - \frac{1}{4n} + \frac{1}{32n^2} + \frac{5}{128n^3} - \frac{21}{2048n^4} + O\left(\frac{1}{n^5}\right) \right) \]

as \(n \to \infty \).

Theorem 6.2 If \(\lambda \) denotes a real generalized eigenvalue of a pair of independent random matrices, then its probability density \(f^G(\lambda) \) is given by

\[f^G(\lambda) = \frac{1}{\pi(1 + \lambda^2)}, \]

that is, \(\lambda \) obeys the standard Cauchy distribution. Equivalently, \(\tan(\lambda) \) is uniformly distributed on \([\pi/2, \pi/2]\).

Since a standard Cauchy random variable can be defined as the ratio of two independent standard normals, it seems appropriate to call the random matrix \(M = M_2^{-1} M_1 \) a “(standard) Cauchy matrix.” Clearly the eigenvalues of \(M \) are just the generalized eigenvalues of the pair \((M_1, M_2)\) and thus the expected number of real eigenvalues of an \(n \) by \(n \) Cauchy matrix is equal to

\[\frac{\sqrt{\pi} \Gamma((n + 1)/2)}{\Gamma(n/2)}. \]
and a real eigenvalue of a Cauchy matrix is Cauchy.

We now prove these results. A straightforward calculation using Jacobians would be possible here, but we prefer to use the more elegant tools of integral geometry. When trying to find an application of integral geometry to some subject, one first asks if there are natural compact sets associated with that subject. A candidate for linear algebra (although there are others worth investigating) is the set of singular matrices. Unfortunately, this set is not compact, so we replace it with the following.

Definition 6.1 Let Δ_n denote the set of all $n \times n$ singular matrices of Frobenius norm one.

Following standard notation, the Frobenius norm of a matrix A is defined as $\|A\|_F = \sqrt{\sum a_{ij}^2}$. In the language of algebraic geometry, Δ_n is a real algebraic subvariety of dimension $n^2 - 2$ of the unit sphere $S^{n^2 - 1}$ in \mathbb{R}^{n^2}.

Now let the pair (M_1, M_2) be a pair of random matrices. If we replace M_1 with $M_1/\|M_1\|_F$, and we replace M_2 with $M_2/\|M_2\|_F$, the matrices M_1 and M_2 remain independent, and each is uniformly distributed on $S^{n^2 - 1}$. The generalized eigenvalue equation may be rewritten

$$\det[\cos(\theta)M_1 + \sin(\theta)M_2] = 0.$$

Real generalized eigenvalues correspond to (pairs of antipodal) intersections of Δ_n with the great circle \{$\cos(\theta)M_1 + \sin(\theta)M_2$\} in $S^{n^2 - 1}$.

Thus when we consider real generalized eigenvalues of the random pair (M_1, M_2), we are considering intersections of Δ_n with random great circles in $S^{n^2 - 1}$. From the choice of probability measure for the pair (M_1, M_2), it is not hard to show that the random circles have the standard (Haar) measure. This is a classical set up for integral geometry. We wish to know the expected number of intersections of a fixed variety and a random variety. Here the fixed variety is Δ_n, and the random variety is the random circle determined by M_1 and M_2.

Lemma 6.1 (Poincaré) Let V be a variety in S^m of dimension $m - 1$. The expected number of intersections of V and a random great circle (with the normalized Haar measure) is equal to twice the volume of V divided by the volume of S^{m-1}.

This formula and its generalizations appear in integral geometry books such as [23]. Poincaré's formula reduces the problem of calculating the expected number of real generalized eigenvalues to finding the volume of Δ_n.

The set Δ_n was studied by Demmel [3] and Edelman [8] in the context of studying the probability that a numerical analysis problem is difficult. In particular, they investigated the probability distribution of Demmel's scaled condition number $\kappa_D(M) \equiv \|M\|_F \|M^{-1}\|_2$. Computing the volume of Δ_n reduces to computing the asymptotics of the probability that $\kappa_D > \alpha$ as $\alpha \to \infty$.

Let $V_\epsilon(\Delta_n)$ be the volume of an ϵ neighborhood of Δ_n in $S^{n^2 - 1}$. Clearly,

$$\text{Vol}(\Delta_n) = \lim_{\epsilon \to 0}(2\epsilon)^{-1} V_\epsilon(\Delta_n).$$

By the definition of the Demmel condition number κ_D,

$$V_\epsilon(\Delta_n) = \text{Prob}[\kappa_D > 1/\epsilon] \text{Vol}(S^{n^2 - 1}).$$

Edelman [8, Corollary 2.2] has shown that

$$\lim_{\epsilon \to 0} \epsilon^{-1} \text{Prob}[\kappa_D > 1/\epsilon] = \frac{2\Gamma((n + 1)/2)\Gamma(n^2/2)}{\Gamma(n/2)\Gamma((n^2 - 1)/2)}.$$
We conclude that

\[\text{Vol}(\Delta_n) = \frac{2\pi^{n^2/2}\Gamma((n+1)/2)}{\Gamma(n/2)\Gamma((n^2-1)/2)}. \]

Dividing this by the volume of \(S^{n^2-2} \) gives the expected number of real generalized eigenvalues.

We now deduce the density function of a real generalized eigenvalue. For this we do not normalize \(M_1 \) and \(M_2 \). Rather, we consider the pair \((M_1, M_2)\) to be a collection of \(n^2 \) bivariate normals. Since each of these bivariate normals is invariant under rotation, we can readily see that \((\cos(\theta), \sin(\theta))\) is uniformly distributed on the unit circle. Since \(\lambda = -\tan(\theta) \), we have immediately that \(\lambda \) is Cauchy.

7 Numerical Experiments

Fairly early into our investigation, we had some notion that the expected number of real eigenvalues must be roughly \(0.8\sqrt{n} \) from numerical simulations. We were later pleased to learn that this \(0.8 \) was the number \(\sqrt{2/\pi} \).

With the investigation completed, we can now provide the numerical experiments alongside the exact theoretical results. The numerical experiments were performed using the newly released LAPACK eigenvalue algorithms which we ran on 64 processors of the CM-5 parallel supercomputer. We are pleased to report that the LAPACK algorithm on the CM-5 computed results consistent with our theorems:

Expected number of real eigenvalues: CM-5 Experiments using LAPACK on 64 processors

<table>
<thead>
<tr>
<th>(n)</th>
<th>trials</th>
<th>experimental (E_n)</th>
<th>theoretical (E_n)</th>
<th>minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>640</td>
<td>7.6</td>
<td>7.603</td>
<td>1</td>
</tr>
<tr>
<td>160</td>
<td>640</td>
<td>10.7</td>
<td>10.569</td>
<td>7</td>
</tr>
<tr>
<td>320</td>
<td>640</td>
<td>14.9</td>
<td>14.756</td>
<td>51</td>
</tr>
<tr>
<td>640</td>
<td>128</td>
<td>20.8</td>
<td>20.673</td>
<td>82</td>
</tr>
<tr>
<td>900</td>
<td>64</td>
<td>24.5</td>
<td>24.427</td>
<td>107</td>
</tr>
</tbody>
</table>

We used the CM-5 in what is sometimes called “embarrassingly parallel mode” because each individual matrix never crossed any processor boundaries. Indeed, a 900 by 900 double precision real matrix is about the largest that can fit on any one processor. The results of the computations were sent to the CM-5’s host using the CM-5’s message passing language CMMD.

In order to save some computing time, rather than working with a dense matrix with normally distributed elements, we defined random upper Hessenberg matrices \(A \) with exactly the same eigenvalue distribution as a matrix with normally distributed elements. This upper Hessenberg matrix is defined by

\[
 a_{ij} = \begin{cases}
 \text{normally distributed} & i \leq j \\
 \text{distributed like } \chi_{n-j} & i = j - 1 \\
 0 & \text{otherwise}
\end{cases}
\]

To prove that this random matrix does indeed have the same eigenvalue distribution, simply consider the standard reduction to upper Hessenberg form using Householder matrices as described in books such as [14]. The subdiagonal is merely the length of the column below it which is a \(\chi \) distribution, the appropriate elements are zeroed out creating Hessenberg form, and the remainder of the matrix remains normally distributed because of the orthogonal invariance.

8 Extensions to Other Distributions

Mehta [21, Conjectures 1.2.1 and 1.2.2] conjectures from extensive numerical experience that the statistical properties of matrices with independent identically distributed entries behave as if they were normally
distributed as $n \to \infty$. Mehta focuses on the symmetric or Hermitian cases, but surely the idea is quite general.

Through our own extensive numerical experience, we strongly believe that any eigenvalue property of most any well-behaved distribution can be modeled by the normal distribution. Below are some numerical experiments performed on matrices whose entries came from the uniform distribution on $[-1, 1]$ and also the discrete distribution $\{-1, 1\}$. Notice that both of these measures have mean zero and finite variance. Though we have not tested this, we suspect that these are the crucial hypotheses. As indicated in the caption, our CM-5 was upgraded to 128 processors before running these experiments.

Expected number of real eigenvalues: CM-5 Experiments using LAPACK on 128 processors

<table>
<thead>
<tr>
<th>n</th>
<th>trials</th>
<th>experimental E_n</th>
<th>minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>3200</td>
<td>7.5</td>
<td>3.5</td>
</tr>
<tr>
<td>160</td>
<td>3200</td>
<td>10.5</td>
<td>24.5</td>
</tr>
<tr>
<td>320</td>
<td>3200</td>
<td>14.9</td>
<td>191</td>
</tr>
<tr>
<td>640</td>
<td>896</td>
<td>21.1</td>
<td>412</td>
</tr>
<tr>
<td>900</td>
<td>384</td>
<td>24.6</td>
<td>499</td>
</tr>
</tbody>
</table>

Expected number of real eigenvalues: CM-5 Experiments using LAPACK on 128 processors

<table>
<thead>
<tr>
<th>n</th>
<th>trials</th>
<th>experimental E_n</th>
<th>minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>3200</td>
<td>7.5</td>
<td>3.3</td>
</tr>
<tr>
<td>160</td>
<td>3200</td>
<td>10.5</td>
<td>24.1</td>
</tr>
<tr>
<td>320</td>
<td>3200</td>
<td>14.8</td>
<td>188</td>
</tr>
<tr>
<td>640</td>
<td>640</td>
<td>20.8</td>
<td>308</td>
</tr>
<tr>
<td>900</td>
<td>384</td>
<td>24.7</td>
<td>500</td>
</tr>
</tbody>
</table>
Acknowledgements
We would like to thank Shiu Hong Lui for piquing our interest in this problem as well as Zhimin Yan who encouraged us to carry through a zonal polynomial solution to our problem. We further wish to thank the authors and architects of LAPACK, Matlab, and the CM-5 supercomputer without which such extensive experimentation would not have been possible.

References

