Title
DIRECT OBSERVATION OF CRISES OF THE CHAOTIC ATTRACTOR IN A NONLINEAR OSCILLATOR

Permalink
https://escholarship.org/uc/item/3jh3q4xr

Authors
Jeffries, C.
Perez, J.

Publication Date
1982-07-01
DIRECT OBSERVATION OF CRISSES OF THE CHAOTIC ATTRACTOR IN A NONLINEAR OSCILLATOR

Carson Jeffries and Jose Perez

July 1982

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or service described or recommended or implied in this book. Neither the United States Government nor any agency thereof guarantees the views and opinions expressed in this book, which do not necessarily state or reflect those of the United States Government or any agency thereof.

Lawrence Berkeley Laboratory is an equal opportunity employer.
DIRECT OBSERVATION OF CRISSES OF THE CHAOTIC ATTRACTION IN A NONLINEAR OSCILLATOR*

Carson Jeffries and Jose Perez

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, and Department of Physics, University of California, Berkeley, CA 94720

July 1982

*This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
and on which they move pseudorandomly. Grebogi, Ott and Yorke have investigated theoretically sudden qualitative changes, called crises, of the attractor, using a one-dimensional quadratic map, which has been experimentally shown to model chaos surprisingly well in many physical systems (see Ref. 3). An interesting question is: how does the attractor, which controls the chaotic dynamics, depend on the driving parameter of the map? They conclude that crises can occur at parameter values for which the chaotic attractor is intersected by a coexisting unstable periodic orbit. In this paper we report novel experimental evidence for three types of such crises in a driven nonlinear semiconductor oscillator.

The physical system used is a series connected inductance L, resistance R, and diode C (type IN953) driven by an external voltage $V_0(t) = |V_0|\cos(2\pi t/T)$, of period $T = 12.5 \mu$sec. This resonant LRC system is described by $L\dot{I} + RI + V_C(t)$ and two additional differential equations in the diode voltage $V_C(t)$ and series current $I(t)$ describing the nonlinear capacitance and switching characteristics of the diode. Previous experiments showed that this system follows the universal period-doubling route to chaos, with bifurcation diagram, universal numbers, and window sequences and patterns explicable by the logistic quadratic map

$$x_{n+1} = \lambda x_n(1-x_n),$$

(1)

with the correspondences $|V_C| \rightarrow x$, $|V_0| \rightarrow \lambda$ between experimental quantities and the map. Effects of additive noise and the observation of an intermittency route to chaos can also be understood by theoretical models using Eq. (1). However, higher-dimensional effects, which should vanish as $R \rightarrow \infty$, are observable for finite resistance:
(1) The system shows hysteresis in the period-three window (see below).
(2) The Poincaré section, or attractor diagram, shows a Henon-like structure, 10 characteristic of a two-dimensional system (see below). (3) The return map shows a quadratic maximum with some folding. 9 We believe the system is well characterized and interesting for the experimental study of crises. Some novel results are presented below.

Crisis following the period-three window. The bifurcation diagram of Fig. 1 plots the iterated value \(\{x_n\} \) vs \(\lambda \), computed from Eq. (1); it shows a period-doubling cascade and onset of the chaotic regime for \(\lambda > \lambda_c \). Grebogi et al. show that a crisis occurs at points near \(C \), Fig. 1, where the period-three unstable orbits intersect the three-band chaotic attractor. Figure 2 is an oscillogram of the upper part of a bifurcation diagram (generated from the diode voltage \(V_c \) by a scanning window comparator) as the driving voltage \(V_0 \) is increased through the value \(V_3 \) for the onset of the window at point A, to the value \(V_{*3} \) at point B, where the crisis occurs: \(V_c \) suddenly takes on a set of values (white dots) between the semi-periodic bands shown. It can be seen that point B is also the conjunction of two "veils", i.e., high iterates of the critical point of the map. We note the close resemblance between our experiment, Fig. 2, and the computed behavior (Ref. 3, Fig. 2), including the veils. Figure 3 is an oscillogram of the diode current \(I(t) \) vs \(V_c(t) \) with the oscilloscope intensity strobed by short pulses at period \(T \), synchronous with \(V_o(t) \). If we make the correspondences \(I(t) \rightarrow \dot{q}, V_c(t) \rightarrow q \), then this figure is a real-time Poincaré section in the phase space \((\dot{q}, q) \) of the system. Figure 3(a), for \(V_3 < V_0 < V_{*3} \), shows a three-band chaotic attractor;
in Fig. 3(b), for $V_o = V_{*3}$, the crisis occurs: the attractor suddenly becomes a one-band attractor, with increased transverse width. The threshold voltage V_o for this was observed to be exactly the same as for point B, Fig. 2. The shape of the attractor is found to be Henon-like, except for the vertical section at small values of V_c where the diode voltage is clamped under forward conduction.

Hysteresis crisis of period-three window. The hysteresis at point A in Fig. 2 is shown under high resolution in Fig. 4(a) for V_o decreasing, and in Fig. 4(b) for V_o increasing. A hysteresis is clearly displayed in the composite drawing, Fig. 4(c). We note the parabolic shape of the (stable) periodic attractor in Fig. 4(a), which is redrawn in Fig. 4(c), together with the associated unstable orbit (dashed line). We explain the hysteresis crises by the intersection of this unstable period-three orbit with the chaotic attractor. We note the veils in Fig. 4 do not show hysteresis, nor is it expected. Although hysteresis does not occur for Eq. (1), it is predicted by Huberman and Crutchfield in an integration of the second order differential equation of a driven nonlinear oscillator. It is also predicted by Gibson for the Henon map. Figure 5 is an oscillogram of the attractor diagram observed under the conditions of Fig 4. The three dots are stable period-three fixed point attractors for $V_o > V_3$. As V_o is reduced below window threshold, the attractor jumps discontinuously to the Henon-like solid lines, which do not lie on the fixed points but extrapolate to them. This jump in size and shape of the attractor is an interior crisis.³
Crisis at 4 + 2 band merging. Figure 1 shows unstable period-two orbits intersecting the chaotic attractor at points near A and B, where there is 4 + 2 band merging. This should give rise to a crisis, although, like hysteresis, it does not seem to be predicted by the logistic map. However, the observed attractor diagram, Fig. 6, clearly shows a sudden change as $V_o \rightarrow V_{om}$, the voltage at band merging. Figure 6(a) for $V_o < V_{om}$ shows a four-band chaotic attractor imbedded in the fixed points of a period-24 window. Figures 6(b) and (c), as V_o is increased, show a transverse expansion of the attractor near band merge. In Fig. 6(d), $V_o = V_{om}$, 4 bands \rightarrow 2 bands, and there is a crisis: observation of the oscilloscope in real time shows a fountain-like transverse motion along the V_c axis of successive crossings of the orbit through the Poincaré section. We believe this to be an interior crisis of the attractor.

To summarize, directly from bifurcation and attractor diagrams for a real physical system in chaos, we present novel results for three cases of an interior crisis of the strange attractor: a sudden and discontinuous change as defined by Grebogi et al.3 We also have experimental evidence for crises arising from two attractors with separate basins of attraction.13 Our experiments support the conjecture of Grebogi et al. that these crises arise from the intersection of a coexisting unstable orbit with the chaotic attractor.

We thank E. Knobloch, R. Shaw, J. Crutchfield, E. Ott, and G. Gibson for informative discussions and suggestions. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.
12. G. Gibson, private communication, to be published.
13. C. Jeffries, to be published.
Figure Captions

Fig. 1. The attractor \(\{x_n\} \) vs \(\lambda \) computed from Eq. (1), showing onset of chaos at \(\lambda_C \), period-5 and period-3 windows. A crisis occurs at points near C (Ref. 3), and also at points near A and B where an unstable orbit (dashed line) intersects the chaotic attractor.

Fig. 2. Upper section of bifurcation diagram observed for nonlinear oscillator. At point A the driving voltage \(V_0 = V_3 \) has the threshold value for the period-three window. At point B, \(V_0 = V*3 \) and a crisis of the attractor occurs (cf. Ref. 3, Fig. 2).

Fig. 3. Oscillogram of attractor diagram (Poincaré section) observed for nonlinear oscillator. (a) \(V_3 < V_0 < V*3 \), showing three-band attractor. (b) \(V_0 = V*3 \), showing onset of crisis: sudden change to one-band attractor.

Fig. 4. Reversed oscillogram of bifurcation diagram observed for nonlinear oscillator at period-three window. (a) With driving voltage \(V_0 \) decreasing; there is a sudden jump down at \(V_0 = A \). (b) With \(V_0 \) increasing; there is a sudden jump up at \(V_0 = B \). (c) Scale drawing overlay of envelopes of (a) and (b) together with an unstable orbit (dashed line) intersecting the chaotic attractor - this gives rise to the hysteresis. Experimental values are \(A = 3.1054 \) volts rms and \(B = 3.1469 \) volts rms for the system used.
Fig. 5. Reversed oscillogram of two attractor diagrams observed for nonlinear oscillator at period-three window: three dots, for $V_0 > V_3$, stable fixed point attractors; solid line, for $V_0 < V_3$, in the chaotic region. For $V_0 = V_3$ the system jumps discontinuously between the two diagrams in a hysteresis crisis.

Fig. 6. Oscillograms of attractor diagrams observed for nonlinear oscillator as $V_o + V_{om}$ for 4 + 2 band merge. (a) $V_o < V_{om}$. (b) $V_o < V_{om}$. (c) $V_o > V_{om}$. (d) $V_o = V_{om}$, a crisis (transverse explosion) of the attractor occurs.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.