Title
Alkylating agents stronger than alkyl triflates

Permalink
https://escholarship.org/uc/item/3jk1j80

Journal
Journal of the American Chemical Society, 126(39)

ISSN
0002-7863

Authors
Kato, T
Stoyanov, E
Geier, J
et al.

Publication Date
2004-10-06

DOI
10.1021/ja047357d

Peer reviewed
Alkylating Agents Stronger than Alkyl Triflates

Tsuyoshi Kato,† Evgenii Stoyanov,‡ Jens Geier,§ Hansjörg Grützmacher,§ and Christopher A. Reed*†

Contribution from the Department of Chemistry, University of California, Riverside, California 92521-0403, and Department of Chemistry and Applied Biosciences, ETH-Hönggerberg, Wolfgang-Pauli-Strasse, CH-8093 Zürich, Switzerland

Received May 5, 2004; E-mail: chris.reed@ucr.edu

Abstract: A new class of potent electrophilic “R+” alkylating agents has been developed using weakly nucleophilic carborane anions as leaving groups. These reagents, R(CHB11Me5X6) (R = Me, Et, and i-Pr; X = Cl, Br), are prepared via metathesis reactions with conventional alkylating agents such as alkyl triflates, using the high oxophilicity of silylium ion-like species, Et3Si(carborane), as the driving force to obtain increased alkyl electrophilicity. The crystal structure of the isopropyl reagent, i-Pr(CHB11Me5Br6), has been determined, revealing covalence in the alkyl–carborane bonding. This contrasts with the free i-Pr+ carbocation observed when the anion is less coordinating (e.g. Sb2F11+) or with tertiary alkyl centers, as in [tert-butyl][carborane] salts. In solution, the reagents exist as equilibrating isomers with the alkyl group at the 7–11 or 12 halide positions of the CB11icosahedral carborane anion. These alkylating agents are so electrophilic that they (a) react with alkanes at or below room temperature via hydride extraction to produce carbenium ions, (b) alkylate benzene without a Friedel–Crafts catalyst to give arenium ions, and (c) alkylate electron-deficient phosphorus compounds that are otherwise inert to conventional alkylating agents such as methyl triflate.

Introduction

Friedel–Crafts alkylation of arenes with alkyl halides is a classic example of electrophilic alkylation where the potency of the alkylating agent is enhanced by promoting the leaving group properties of the anion. Electrophilic R+ character in RX is enhanced by complexation of the halide X to a Lewis acid such as Al2Cl6, allowing it to leave as a less nucleophilic anion such as Al2Cl7+. Intrinsically less nucleophilic anions such as sulfate and triflate (CF3SO3−) give dimethyl sulfate and methyl triflate their efficacy as popular Lewis-acid-free alkylation agents. The most potent alkylating agents generated to date have weakly nucleophilic SbF6− or SbF11− counterions, but reagents based on these anions typically do not have the requisite thermal stability to be used as practical reagents. In addition, the antimony pentafluoride latent in these anions or in situ from the media used to generate them can be a destructive and corrosive oxidant. Fluoroantimonates can also be the source of an unwanted F− nucleophile.

Carborane anions (Figure 1) are among the most inert, least coordinating, least basic, and therefore among the least nucleophilic anions presently known.

1 University of California, Riverside.
2 On leave from the Boreskov Institute of Catalysis, Novosibirsk.
3 ETH-Hönggerberg.

Figure 1. CHB11RnXn− carborane anions used in this work.

Unlike fluoroantimonates, they are non-oxidizing and are not a source of halide ions. In a preliminary communication,7 we reported that the pentamethylenated hexabromocarborane anion, CHB11Me5Br−, allowed the isolation of a very strong “methyl−” alkylating reagent, CH3(carborane). Its potency was indicated by the observation that methylation of benzene to give the toluenium ion occurred with stoichiometric amounts of the reagent under conditions where neat methyl triflate was unreactive. In the present paper, we expand on this work to include the corresponding ethyl and isopropyl reagents, improve the synthetic method, provide detailed structural characterization of the reagents, and further illustrate their enhanced reactivity.

toward weakly nucleophilic substrates such as alkanes and electron-deficient phosphorus.

Experimental Section

General. Air-sensitive solids were handled in a Vacuum Atmospheres Co. glovebox (O$_2$, H$_2$O < 0.5 ppm). All reactions were done in Schlenk tubes with Teflon stopcocks. Solvents were dried over Na/K or P$_2$O$_5$ and distilled prior to use. NMR spectra were recorded on a Varian Inova 500 for 1H, 13C, 31P, and 11B and on a Varian Inova 300 for 19F. IR spectra were run as KBr disks on a Shimadzu-8300 FT spectrometer and were identical to those run as solids between thin films of Teflon, showing that KBr was unreactive on the time scale of the measurements.

Cesium salts of CHB$_2$Me$_2$Br$_6^-$, CHB$_2$Me$_3$Cl$_6^-$, and CHB$_2$Cl$_6^-$ were prepared by literature methods6,7 and recrystallized two or three times from acetone/toluene/hexanes to high purity (colorless). Silver and trityl salts were prepared by standard methods.21 Triethylsilylcarboranes were prepared in ca. 85% isolated yield by a slight modification of published methods8,18 as follows. Toluene (ca. 5 mL) was added to cover crystalline trityl salt [Ph$_3$C][carborane] (2 g), and triethylsilane (1–2 mL) was added. The mixture was stirred until the solids dissolved and the solution became a pale orange-yellow (ca. 2 h). The solution was filtered via syringe and concentrated to a smaller volume, and the product precipitated by the addition of dry hexanes with stirring overnight. The white or pale pink solid was washed with several aliquots of hexanes.

Preparation of CH$_2$(CHB$_2$Me$_2$Br) (2a). Hexanes was added to Et$_3$Si(CHB$_2$Me$_3$Br$_2$) (0.2 g) to just cover the solid, followed by methyl triflate (31 μL, 1.1 equiv). The suspension was immediately cooled to 0 °C and sonicated for 2 h, maintaining the lowered temperature. The volatiles were then removed under vacuum to give an off-white solid in quantitative yield. 1H NMR (SO$_2$, δ, 500 MHz, -60 °C): (2a-I) 0.55 (s, 15H, BCH$_3$), 2.98 (s, 1H, BCH), 4.43 (s, 3H, CH$_3$); (2a-II) 0.55 (s, 9H, BCH$_3$), 0.74 (s, 6H, BCH$_3$), 2.92 (s, 1H, BCH), 4.45 (s, 3H, CH$_3$). 13C NMR (CD$_2$Cl$_2$, 75 MHz, 2928 °C): (2a-I) 3078 (s), 1400 (C), 726 (CH$_2$), 125 MHz, -80 °C: (2a-II) 0.3 (br, BCH$_3$), 33.3 (q, 1J$_{CH}$ = 162.6 Hz, CH$_3$), 57.4 (C); (2a-III) 0.3 (br, BCH$_3$), 34.3 (q, 1J$_{CH}$ = 162.8 Hz, CH$_3$), 57.4 (C). [See Figure 3 at natural abundance and Figure 4 for 99% 13C-enriched sample.] IR (KBr): 3078 (ν$_{CH}$), 3063 (ν$_{CH}$), 1400 (ν$_{CH}$), 125 MHz, -80 °C: (2a-II) -0.3 (br, BCH$_3$), 33.3 (q, 1J$_{CH}$ = 162.6 Hz, CH$_3$), 57.4 (C); (2a-III) -0.3 (br, BCH$_3$), 34.3 (q, 1J$_{CH}$ = 162.8 Hz, CH$_3$), 57.4 (C). [See Figure S1 for 1H and Figure S2 13C NMR spectra of the hydrolysis reaction.] 13CH$_2$(CHB$_2$Me$_3$Cl) (2b). This was prepared as a pale yellow powder in a manner similar to used for 2a using trimethylsilyl in place of the triethylsilyl reagent. 1H NMR (SO$_2$, δ, 500 MHz, -60 °C): (2b-I) 0.52 (s, 15H, BCH$_3$), 2.37 (s, 1H, BCH), 4.75 (s, 3H, CH$_3$); (2b-II) 0.58 (s, 15H, BCH$_3$), 2.36 (t, 1H, BCH), 4.75 (s, 3H, CH$_3$). 13C NMR (SO$_2$, δ, 500 MHz, -60 °C): (2b-I) -3.9 (br, BCH$_3$), 46.8 (q, 1J$_{CH}$ = 162.6 Hz, CH$_3$), 48.7 (BCH); (2b-II) -3.9 (br, BCH$_3$), 46.6 (q, 1J$_{CH}$ = 162.8 Hz, CH$_3$), 48.9 (BCH).

Figure 2. 12- and 7-isomers of Me(CH$_2$Br$_2$MeBr$_3$), 2a-II and 2a-III.

Figure 3. 1H NMR of Me(CH$_2$Br$_2$MeBr$_3$) (2a) in liquid SO$_2$ at room temperature.

Figure 4. NMR spectra at -60 °C with >95% 13C labeling of the active methyl group of Me(CH$_2$Br$_2$MeBr$_3$) (2a). (a) 1H NMR of unenriched 2a, (b) 1H NMR of 13C(CH$_2$Br$_2$MeBr$_3$), and (c) 13C NMR of 13CH$_3$(CH$_2$Br$_2$MeBr$_3$). * 2a-II (12-isomer); ** 2a-II (7-isomer).
(BCH3), 18.2 (q, JCH = 132.4 Hz, CH3), 57.3 (s, BCH), 63.0 (t, JCH = 164.7 Hz, CH3).

Preparation of C5H5(CH3)(CHB11Me5Br6) (4a). Compound 2a (50 mg) was dissolved in cold (~30 °C) dichloromethane (1.0 mL), and a few drops of 2-chloropropane were added. The mixture was stored at ~30 °C for 2 days, and colorless crystals formed. The solution part was removed using a syringe, and the crystalline part was washed with cold dichloromethane and dried under a vacuum. 1H NMR (CD2Cl2/SO2, δ, 500 MHz, ~60 °C, Figure S5): ~0.01 (s, BCH3, 15H), 1.99 (d, JHH = 5.75 Hz, CH3, 6H), 2.24 (s, BCH, 1H), 6.85 (br, CH, 1H). 13C NMR (CD2Cl2, δ, 125 MHz, ~80 °C, Figure S8): ~2.25 (BCH3), 28.49 (CH3), 55.47 (BCH), 103.70 (CH).

Reaction of 2a with i-PrCl. i-PrCl (11 μL) was added to a cold solution of 2a (50 mg) in SO2 at ~70 °C. The solution was analyzed by 500 MHz ~1H NMR at ~60 °C: 0.40 (s, 15H, BCH3), 2.31 (d, JHH = 5.67 Hz, 6H, CH3), 3.54 (s, 1H, BCH), 6.27 (br, 1H, CH).

Preparation of ArF-PCl2 (9). The diphosphene 2a was conveniently prepared in an acceptable yield by simply reacting ArF2 with MeOTf (eq 1). This was later determined to be correct. Direct methods of phase determination followed by two Fourier cycles of refinement led to an electron density map from which most of the non-hydrogen atoms were identified. This was reflected in the greater difficulty of preparing R(CHB11-Me5-Br)6 products with hexanes.

Chloro-substituted carborane anions are less coordinating than bromo-substituted analogues toward the silylium ion.5 The conjugate acids of carborane anions, H(CB11H2X6), are stronger for X = Cl than for X = Br.5,6 Thus, we expected that alkyl reagents based on chloro-substituted carboranes would be more electrophilic than those based on bromo-substituted analogues. This is reflected in the greater difficulty of preparing R(CB11-Me5-Br)6 reagents for X = Cl.

The metathesis reaction of eq 1 gives an impure red-colored product when the hexachlorocarborane is used in place of the hexabromocarborane. However, if trimethylsilylilum 5b carborane is used instead of triethylsilylilum 1b, the desired Me3(THF)2Cl (2b) can be prepared in hexanes suspension at 0 °C (eq 3). The increased volatility of trimethylsilyl triflate allows faster and cleaner isolation of the desired product. The corresponding isopropyl reagent 4b with the hexachlorocarborane is so reactive that it cannot be isolated. Nevertheless, NMR studies indicate that, in liquid SO2 or at ~90 °C in dichloromethane, reaction of 2b with i-PrOTf does produce the

\[
\text{Me(CBH11Me5Cl2)} + i-\text{PrCl} \rightarrow \text{2b}
\]

\[
\text{Me(CBH11Me5Cl2)} + \text{CH2Cl2} \rightarrow \text{2a}
\]
desired i-Pr(CHB\(_{11}\)Me\(_5\)Br\(_6\)) (2b) reagent. However, it decomposes in liquid SO\(_2\) within 2 h at \(-60^\circ\text{C}\).

The undecachloro-substituted carborane anion, CHB\(_{11}\)Cl\(_{11}\)^\(-\), is expected to be even less nucleophilic than the hexachloro pentamethyl anion, CHB\(_1\)Me\(_6\)Cl\(_6\)^+, because of the electronegativity of Cl relative to a CH\(_3\) group. Thus, the Me(carborane) reagent derived from CHB\(_{11}\)Cl\(_{11}\)^- is expected to be the most reactive methylating agent of all. This appears to be the case because the reaction of eq 1 in hexanes using Et\(_3\)Si(CHB\(_{11}\)-Cl\(_{11}\)) (1e) produced the methycyclopentyl carbenium ion salt 6. Evidently, the desired Me(CHB\(_{11}\)Me\(_5\)Br\(_6\)) (2c) reagent is produced transiently, but it reacts immediately with methycyclopentane in the hexanes solvent mixture via hydride abstraction (eq 4) to give 6 and eliminate methane.\(^{10}\)

\[
\text{Et}_3\text{Si(CHB}_{11}\text{Cl}_{11}) + \text{MeO Tf} \rightarrow [\text{Me(CHB}_{11}\text{Cl}_{11})] + \text{Et}_3\text{SiO Tf}
\]

\[
\text{[Me(CHB}_{11}\text{Cl}_{11})] + \text{Hexanes} \rightarrow \text{CHB}_{11}\text{Cl}_{11}^+ + \text{CH}_4
\]

Characterization

NMR. The \(^1\text{H} \text{NMR spectrum of Me(CHB}_{11}\text{Me}_{5}\text{Br}_{6}) (2a) was initially quite puzzling. It showed three distinct sets of signals for the carborane anion but only one for the active methyl group ("Me\(^+\)). We have traced these observations to (a) the inevitable presence of traces of water, giving small amounts of free carborane anion in an [H\(_2\)O\] or [Et\(_3\)Si(OH\(_2\))]\(^+\) salt, and (b) the existence of two isomers of Me(CHB\(_{11}\)Me\(_5\)Br\(_6\)), depending upon whether methylation is at bromine in the 7- or 12-position of the carborane anion (Figure 2).

The \(^1\text{H} \text{NMR spectrum of Me(CHB}_{11}\text{Me}_{5}\text{Br}_{6}) taken in liquid SO\(_2\) at room temperature, is shown in Figure 3.

Peaks a, b, and c arise from the 2,3,4,5,6-pentamethyl substituents of the carborane anion, and peaks d, e, and f arise from C–H at the 1-position. Peaks a and d, which always accompany the signal h, are assigned to free carborane anion in an [H\(_2\)O\] or [Et\(_3\)Si(OH\(_2\))]\(^+\) salt, a probable remnant of hydrolysis of the silylum starting material. These peaks are coincident with resonances seen in other salts (e.g., trityl) and represent only a small part of the sample. They become the sole peaks in the anion spectrum after 1 h of exposure to moisture as Me(CHB\(_1\)Me\(_2\)Br\(_2\)) becomes completely hydrolyzed. A signal at 4.9 ppm grows in, assigned to the CH\(_3\) group of the MeOH\(^-\) ion in the hydrolyzed product. Peak h at 10.5 ppm, arising from O–H in aminated ions, gradually shifts to 9.5 ppm as hydrolysis proceeds. The formation of the free carborane anion upon hydrolysis was confirmed in the \(^{11}\text{B} \text{NMR spectrum. The complex pattern \(^{11}\text{B} \text{of resonances from Me(CHB}_{11}\text{Me}_{5}\text{Br}_{6}) was reduced to the simple 1:5:5 pattern of the C}_{5}\text{symmetric free ion.}

Initially, it appeared that the complexity of the \(^{11}\text{B} \text{NMR spectrum of Me(CHB}_{11}\text{Me}_{5}\text{Br}_{6}) and the presence of two \(^1\text{H} \text{peaks (b and c) from the 2–6 pentamethyl substituents could be explained by the symmetry-lowering effect of methylation at the 7-position (Figure 2, 2a-II). Silylation of hexahalocarborane anions in R\(_3\)Si(CHB\(_1\)Me\(_x\))X\(_y\)) is known to occur exclusively at the 7-position rather than the 12-position.\(^{3,11}\) However, the single room-temperature \(^1\text{H} \text{peak g of the Me}\(^+\) group at 4.41 ppm splits into two distinct resonances (g\(_1\) and g\(_2\)) upon cooling. At \(-60^\circ\text{C}\), two distinct peaks can be observed at 4.45 and 4.43 ppm in a ratio of 1:2.2 (Figure 4a). These can be assigned to 12- and 7-isomers (2a-I and 2a-II), respectively (Figure 2) via a detailed analysis of behavior of the other methyl groups in the variable-temperature \(^1\text{H} \text{NMR spectrum (see below). Proof that the two \(^1\text{H} \text{peaks in the \(-60^\circ\text{C} \text{NMR spectrum belong to the other. The 3:1:6 integrated intensity ratio in the \(^1\text{H} \text{NMR spectrum arise from the 2,3,4,5,6-pentamethyl substituents could be assigned to the 12-methylated isomer (Figure 2, 2a-II).}

\text{Figure 5. Variable-temperature \(^1\text{H} \text{NMR spectrum of 2a in SO}_2.}

\text{g}_2\text{ upon cooling. At }-60^\circ\text{C}, two distinct peaks can be observed at 4.45 and 4.43 ppm in a ratio of 1:2.2 (Figure 4a). These can be assigned to 12- and 7-isomers (2a-I and 2a-II), respectively (Figure 2) via a detailed analysis of behavior of the other methyl groups in the variable-temperature \(^1\text{H} \text{NMR spectrum (see below). Proof that the two \(^1\text{H} \text{peaks in the \(-60^\circ\text{C} \text{NMR spectrum arise from the 2,3,4,5,6-pentamethyl substituents could be assigned to the 12-methylated isomer (Figure 2, 2a-II).}

\text{The variable-temperature behavior of the \(^1\text{H} \text{spectra of 2a between -70 and 25 }^\circ\text{C (Figure 5) was used to confirm the presence of two isomers and assign their spectra. As expected, the ratio of the integrated intensities of the sum of peaks b and c (15 carborane Me) to peaks e and f (1 carborane C–H) to peaks g or g\(_1\) and g\(_2\) (3H from active methyl group) remains constant at 15:1:3. The ratio of g\(_1\):f remains constant at 3:1 and g\(_2\):c remains constant at 3:1:6, despite changing g\(_2\):c ratios at different temperatures. This indicates that g\(_1\) and f belong to one isomer of Me(CHB\(_1\)Me\(_5\)Br\(_6\)) while g\(_2\), e, and c belong to the other. The 3:1:6 integrated intensity ratio in the latter can only arise from broken C\(_{5}\) symmetry, so g\(_1\) and f are assigned to the 12-methylated isomer (Figure 2, 2a-I) while g\(_2\), e, and c are assigned to the 7-methylated isomer 2a-II. Peak b contains accidentally overlapping resonances from the five
The 13C chemical shifts of the active C atom in the methyl, ethyl, and isopropyl R(carborane) species are all indicative of covalent rather than ionic species. The 35.8 and 35.2 ppm shifts of the methyl group in the two isomers of Me(CHB11Me5Br6) are similar to that of the dimethylbromonium ion in [Me2Br]-[SbF6] (37 ppm) and well shy of that expected for a free (and presently unobserved) methyl cation.13 The ethyl group in Et(CHB11Me5Br6) has distinct Cα and Cβ resonances at 63.6 (t, JCH = 164 Hz) and 18.2 (q, JCH = 164 Hz), respectively, which is not consistent with the symmetrical structure favored for the free C2H5+ cation.14 The Cα resonance at 63.6 ppm is not sufficiently deshielded for an ionic formula, and we do not see any evidence for H exchange between Cα and Cβ.1

The isopropyl group in i-Pr(CHB11Me5Br6) has a 13C resonance at 103 ppm (JCH = 169 Hz) for the carbon atom at the 2-position. While far short of the 321 ppm value (JCH = 169 Hz) in the free 2-propyl cation as a fluorooantimonate salt,15 the >100 ppm downfield shift is consistent with the idea of developing cationic character that increases Me < Et < i-Pr. For comparison, the 13C shift for the 2-position carbon atom isopropyl bromide is 45 ppm.

Concomitant with this downfield 13C shift, the associated 1H resonance for the unique isopropyl H atom also occurs considerably downfield at 6.9 ppm. That for isopropyl bromide appears at 3.7 ppm, while that of the free isopropyl cation occurs at 14 ppm in SbF5 media.13 These observations support the idea that the isopropyl group is less covalently bonded to the carborane halide substituents than methyl or ethyl groups and rationalizes the faster 7-to-12 isomerization. A closely related example of 7-to-12 isomerization has recently been reported in a zirconium metalloocene complex with an undecamethylated carborane anion.26

Table 1. Ratio of 12- and 7-Isomers of Me(CHB11Me5Br6), 2a-I and 2b-II, Respectively

<table>
<thead>
<tr>
<th>temp, °C</th>
<th>2a-I:2a-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>−60</td>
<td>30:70</td>
</tr>
<tr>
<td>−30</td>
<td>45:65</td>
</tr>
<tr>
<td>−10</td>
<td>57:53</td>
</tr>
<tr>
<td>10</td>
<td>50:50</td>
</tr>
<tr>
<td>25</td>
<td>55:45</td>
</tr>
</tbody>
</table>

Infrared Spectroscopy. The synthesis of CH3(CHB11Me5Br6) and its deuterated analogue CD3(CHB11Me5Br6) allowed good-quality difference IR spectra to be obtained in the νC−H and δC−H region for the active methyl group, without ambiguity arising from the absorption bands of the carborane anion. Spectra were obtained anaerobically as KBr disks, and the compounds were shown to be unreactive toward KBr over the time frame of the measurement. Difference spectra were obtained by normalizing the spectral bands of the anion and subtracting the CH3 spectrum from the CD3 spectrum. These are shown in Figure 6 as bands with positive intensity for C−H and negative intensity for C−D.

The mirror-image shape of the major C−H bands relative to the C−D bands is especially good for the A1 and E νC−H stretches, although imperfect subtraction of anion bands does leave shoulders on the bands. The H/D frequency ratios are in the range 1.33–1.36 for all bands, in agreement with standard reduced-mass calculations. These observations confirm the validity of the spectra. The number of bands, their frequencies, and their intensities are diagnostic of a methyl group with C3v symmetry which is not significantly perturbed by the environment.16

As indicated in Table 2, the stretching frequencies are somewhat higher than those of methyl triflate and binding frequencies are somewhat lower. This means that the positive charge on the carbon atom of methyl group in CH3(CHB11Me5Br6) is higher than that in methyl triflate, suggesting that the C−Br bond in Me(CHB11Me5Br6) is less covalent than the C−O bond in methyl triflate.

X-ray Crystallography. Single crystals of the isopropyl compound, i-Pr(CHB11Me5Br6) (4a), suitable for X-ray crystallography were grown from CH2Cl2 at −30 °C. The structure is shown in Figure 7.

The anion is coordinated to the isopropyl group via a 7-position bromine atom. The absence of the 12-isomer, believed...
to be present in solution by NMR (see above), must be the result of preferential crystallization from the rapidly isomerizing mixture. The overall features of the structure are reminiscent of preferential crystallization from the rapidly isomerizing mixture. The overall features of the structure are reminiscent of preferential crystallization from the rapidly isomerizing mixture. The overall features of the structure are reminiscent of preferential crystallization from the rapidly isomerizing mixture.

Table 2. Methyl Group Modes of Naturally Isotopic CH₃(CHB₁₁Me₅Br₆) and Deuterated CD₃(CHB₁₁Me₅Br₆) in Comparison with Those of Methyl Triflate (in Parentheses)¹⁷

<table>
<thead>
<tr>
<th></th>
<th>v₁(E)</th>
<th>v₂(E)</th>
<th>v₃(A₁)</th>
<th>v₄(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃⁺</td>
<td>3078(3042)</td>
<td>3063(2980)</td>
<td>1400(1452)</td>
<td>1292</td>
</tr>
<tr>
<td>CD₃⁺</td>
<td>3156(2307)</td>
<td>2302(2188)</td>
<td>1028(1088)</td>
<td>969(1065)</td>
</tr>
<tr>
<td>υ₁(νD)</td>
<td>1.33</td>
<td>1.33</td>
<td>1.36</td>
<td>1.33</td>
</tr>
</tbody>
</table>

C−C−C angle is 116.5(3)°, somewhat larger than that observed in a typical isopropyl group (110 ± 3°).⁸,¹⁸ These indications of developing carbocationic character in the isopropyl group are consistent with the deduction that 7−12 isomerism is rapid on the NMR time scale.

Discussion

The major conclusion drawn from the characterization data is that R(CHB₁₁Me₅X₆) reagents for R = Me, Et, and i-Pr have covalent structures. Nevertheless, there are several indications of developing cationic R⁺ character that increases Me < Et < i-Pr. This is in keeping with increasing C−C bond hyperconjugative stabilization of carbocations: primary < secondary < tertiary. Indeed, for anions of the nucleophilicity of the present halocarboranes, the transition from covalent to ionic occurs between i-Pr and t-Bu. Thus, while i-Pr(carborane) is covalent, [t-Bu][carborane] is ionic.¹⁰ On the other hand, the covalent-to-ionic transition occurs between Et and i-Pr with less coordinating fluoroantimonate anions.¹⁹ With more coordinating anions such as triflate or perchlorate, all simple alkyl-based carbocationic moieties, whether primary, secondary, or tertiary, form covalent species. We note that there is a reversal of order of coordinating ability for cationic silicon relative to cationic carbon. Carboranes are less coordinating than fluoroantimonates toward silyl cations.¹¹

With respect to the nature of the halide substituents on the carborane anions, the order of increasing alkylating reactivity of the reagents is CHB₁₁Me₅Br₆⁻ < CHB₁₁Me₅Cl₂⁻ < CHB₁₁Cl₁₁⁻. This is evident from the conditions necessary for synthesis of Me(carborane) species, which cannot be isolated when the undecachloro anion is used. Reaction with the alkane solvent is too rapid, even at −40 °C. The same order of anion basicity is observed for silicon in R₃Si(carborane) species⁷,²⁰ and for acidity in H(carborane).⁶

In principle, the Me, Et, and i-Pr reagents can be viewed as “alkyl¹⁺” reagents or as halonium ions. The appropriate resonance forms can be written

$$R⁺ = -(X−CHB₁₁Me₅X₆)⁻ \leftrightarrow R−X⁺-(CHB₁₁Me₅X₆)⁻$$
Given the reactivity described below, and the fact that the t-Bu analogue is fully ionic, the carbocationic character is clearly more dominant than the halonium ion character.

Reactivity

The high electrophilic reactivity of the present R(CHB$_{11}$-Me$_5$X$_6$) reagents is illustrated by three reactions (eq 5).

First, as previously communicated, benzene is methylated by Me(CHB$_{11}$Me$_5$Br$_6$) in stoichiometric amounts to give the tolenium ion, (CH$_3$)$_6$C$_6$$^+$. Under the same conditions, neat methyl triflate is unreactive. Second, all the present R(carborane) reagents react with alkanes at or below room temperature via hydride abstraction to form tertiary carbenium ions. This is a notably clean and efficient reaction, allowing tertiary carboxations to be isolated in high yield and crystallized for structural analysis by X-ray crystallography. Again, this reactivity is unknown for alkyl triflates. Third, phosphorus centers with highly electron-withdrawing substituents can be so weakly nucleophilic that they are unreactive toward neat boiling methyl triflate. An example is the diphosphene ArF$_2$P=PArF$_2$, where ArF$_2$ = 2,4,6-tris(trifluoromethyl)phenyl. While this substrate does not react with methyl triflate as solvent, Me(CHB$_{11}$Me$_5$Br$_6$) methylates it in stoichiometric amounts in liquid SO$_2$ at room temperature to give cation 8. Alkylated phosphorus cations of this type are useful for reducing to novel diphosphanyl radicals.

Conclusion

The R(CHB$_{11}$Me$_5$X$_6$) (2–4) reagents reported in this work are very potent sources of Lewis-acid-free Me, Et, and i-Pr groups. Their electrophilicity easily eclipses that of alkyl triflates in both alklylation and hydride abstraction chemistry, and they are more practical than reagents based on fluoroantimonate anions. Although expensive, specialty applications can be expected in other areas of chemistry where weakly nucleophilic substrates fail to react with traditional electrophilic alkylating agents.

Acknowledgment. We thank Dr. Fook Tham for determination of the crystal structure. This work was supported by NSF grant CHE-0095206 and NIH grant GM 23851.

Supporting Information Available: NMR spectra and complete X-ray structure determination data (PDF, CIF). This material is available free of charge via the Internet at http://pubs.acs.org.