Title
Surface-initiated self-healing of polymers in aqueous media

Permalink
https://escholarship.org/uc/item/3jp40426

Journal
Nature Materials, 13(9)

ISSN
1476-1122

Authors
Ahn, BK
Lee, DW
Israelachvili, JN
et al.

Publication Date
2014

DOI
10.1038/nmat4037

License
CC BY-NC 4.0

Peer reviewed
Surface-initiated self-healing of polymers in aqueous media

B. Kollbe Ahn1†, Dong Woog Lee2†, Jacob N. Israelachvili2* and J. Herbert Waite3*

Polymeric materials that intrinsically heal at damage sites under wet or moist conditions are urgently needed for biomedical and environmental applications5–8. Although hydrogels with self-mending properties have been engineered by means of mussel-inspired metal-chelating catechol-functionalized polymer networks7–10, biological self-healing in wet conditions, as occurs in self-assembled holdfast proteins in mussels and other marine organisms11,12, is generally thought to involve more than reversible metal chelates. Here we demonstrate self-mending in metal-free water of synthetic polyacrylate and poly(meth)acrylate materials that are surface-functionalized with mussel-inspired catechols. Wet self-mending of scission in these polymers is initiated and accelerated by hydrogen bonding between interfacial catechol moieties, and consolidated by the recruitment of other non-covalent interactions contributed by subsurface moieties. The repaired and pristine samples show similar mechanical properties, suggesting that the triggering of complete self-healing is enabled underwater by the formation of extensive catechol-mediated interfacial hydrogen bonds.

All polymeric materials suffer damage in the course of their functional lifetimes. Few, if any, completely heal at damage sites. Despite recent progress in the design of self-mending polymeric materials based on crack-activated crosslinking13, light14, heat15 or other external stimuli16, these remain less than perfectly healed, and, in the case of polymers in wet environments, self-healing technologies are even more limited than those engineered for dry conditions. Mussel adhesives holdfasts exhibit significant self-healing capabilities11,12, although the molecular mechanisms involved are poorly understood. Notwithstanding this, the self-mending adhesion and cohesion of isolated dopa (3,4-dihydroxyphenyl-L-alanine)-containing adhesive proteins were shown to rely critically on maintaining dopa in an acidic and reducing environment13,14. Significantly different conditions are required to recapitulate the self-healing cohesion of tris-dopa-Fe3+–mediated complexes in proteins and polymers7–9,15. Such results increasingly suggest the importance of dopa, but also its subtle and diverse interfacial reactivity vis-à-vis the traditional and still widely held view that dopa, and catechols generally, function primarily as crosslinkers after their 2-electron oxidation to quinones16. To better assess the contribution of catechol to polymer self-healing in a reducing (pH 3), metal-free wet environment, we prepared a material from common, water-insoluble synthetic acrylic polymers having a catechol-functionalized surface. These materials are completely self-healing in a process initiated by catechol-mediated interfacial hydrogen bonding, and consolidated by follow-up interactions (for example, hydrophobic and steric) after a brief compression (~6 × 10^4 Pa). The crucial and robust roles played by catecholic hydrogen bonding in re-establishing contact between the fragments, then giving way to other interactions, were completely unexpected and may inspire the wet repair of other polymers and tissues.

Surface rearrangement plays a critical role in polymeric interface properties17; therefore, two polymers with different moduli were prepared to study the surface changes initiated during self-healing. Semi-rigid (Young’s modulus, $E \sim 1.3$ MPa) and rigid polymer rods ($E \sim 350$ MPa) were cast from triethylysilane-blocked catecholacrylate and catecholmethacrylate monomers, respectively, by free radical ultraviolet polymerization (Supplementary Fig. 1). The rods were bisected using a new scalpel blade; the two pieces were soaked in a series of dilute buffers with increasing pH (pH range: 3–10), respectively, for 20 min. Subsequently, the cut ends were rejoined under light compression (~6 × 10^4 Pa) for 2 min in water (pH 3, 7 or 10). pH 3 activates the catechol functionalities on the surfaces by removing the triethylysilyl-protecting groups18 (Fig. 1), whereas triethylysilyl catechols at pH 7 and 10 remain blocked (protected). Catechols internalized in the bulk remained blocked at all conditions (pH 3, 7 and 10). To avoid catechol oxidation and related ring coupling, experiments involving exposed surface catechols were performed at pH 3, where the high quinone reduction potential ($E_0 \sim 0.38$ V; ref. 18) assures catechol stability19. Semi-rigid rods with exposed surface catechols never failed near the contact region, whereas rigid rods sometimes ruptured in the contact region (Fig. 1a,b). In the latter case, when breakage occurred in the contact region, the two pieces were repeatedly brought into contact and pulled in tension until a non-contact breakage occurred. During cyclic testing, the healed (the contact region) and undamaged portions of the rigid polymer rods exhibited similar mechanical properties (Fig. 1c). When surface treatments and experiments were carried out at pH 7 and 10, catechols remain blocked by silyl protection. Under these conditions, the semi-rigid polymer rods with blocked surface catechols always failed in the contact area, whereas the rigid polymer rods with blocked surface catechols showed no bonding whatever (Fig. 1c). These results highlight the importance of catechols at the self-healing interface, and suggest that only reversible interactions (for example, hydrogen bonds) take place during the initial stages of self-healing. Details of this surface-mediated healing system are discussed in depth later.

The Bell theory predicts that a bidentate hydrogen bond, such as that between a catechol donor and a surface acceptor, has a binding lifetime that is 10^3 times longer than the monodentate hydrogen–bond7; experiment confirms that the catechol-mediated bidentate hydrogen bond is stronger than the monodentate hydrogen bond (that is, $E_{\text{bidentate}} \sim 2E_{\text{monodentate}}$ or $r_{\text{bidentate}} \sim 10^3r_{\text{monodentate}}$) (refs 13,20). In addition, previous studies of the intermolecular hydrogen bonds between phenolic hydroxyls21, catechol and...
Figure 1| Schematic diagram of the steps entailed in polymer-rod healing studies. **a**, Polymer rods (1; semi-rigid, blue rectangle; rigid, red rectangle) were processed as follows: bisected (2), immersed in H$_2$O (pH 3 buffer) at room temperature (3), brought into contact (4) and pulled in tension (5). The blue (semi-rigid) and red (rigid) arrows denote the location of the healed incisions. **b**, Self-healing scheme. **c**, Average tensile strength of the samples (error bars indicate standard deviation, $n = 3$).

Figure 2 | Schematic diagram of the steps entailed in polymer-rod healing studies. **a**, Polymer rods (1; semi-rigid, blue rectangle; rigid, red rectangle) were processed as follows: bisected (2), immersed in H$_2$O (pH 3 buffer) at room temperature (3), brought into contact (4) and pulled in tension (5). The blue (semi-rigid) and red (rigid) arrows denote the location of the healed incisions. **b**, Self-healing scheme. **c**, Average tensile strength of the samples (error bars indicate standard deviation, $n = 3$).

Figure 3 | Schematic diagram of the steps entailed in polymer-rod healing studies. **a**, Polymer rods (1; semi-rigid, blue rectangle; rigid, red rectangle) were processed as follows: bisected (2), immersed in H$_2$O (pH 3 buffer) at room temperature (3), brought into contact (4) and pulled in tension (5). The blue (semi-rigid) and red (rigid) arrows denote the location of the healed incisions. **b**, Self-healing scheme. **c**, Average tensile strength of the samples (error bars indicate standard deviation, $n = 3$).

Figure 4 | Schematic diagram of the steps entailed in polymer-rod healing studies. **a**, Polymer rods (1; semi-rigid, blue rectangle; rigid, red rectangle) were processed as follows: bisected (2), immersed in H$_2$O (pH 3 buffer) at room temperature (3), brought into contact (4) and pulled in tension (5). The blue (semi-rigid) and red (rigid) arrows denote the location of the healed incisions. **b**, Self-healing scheme. **c**, Average tensile strength of the samples (error bars indicate standard deviation, $n = 3$).

Figure 5 | Schematic diagram of the steps entailed in polymer-rod healing studies. **a**, Polymer rods (1; semi-rigid, blue rectangle; rigid, red rectangle) were processed as follows: bisected (2), immersed in H$_2$O (pH 3 buffer) at room temperature (3), brought into contact (4) and pulled in tension (5). The blue (semi-rigid) and red (rigid) arrows denote the location of the healed incisions. **b**, Self-healing scheme. **c**, Average tensile strength of the samples (error bars indicate standard deviation, $n = 3$).
differences are likely to be significant25,26. Consistent with NEXAFS, X-ray photoelectron spectroscopy showed \textsim 10\% decrease in the Si 2p signal following acid treatment (Supplementary Fig. 6).

Contact-angle measurements of water droplets on all prepared polymer surfaces indicate a decreasing hydrophobicity with time, suggesting that the polymeric surfaces are undergoing a reversible rearrangement17 (Supplementary Fig. 7). These surface-group ‘turnover’ effects are known to change the interfacial adhesion energy and, therefore, the contact angle. Increasing adhesion with contact time, t_c, has been seen in many systems15. These phenomena directly depend on bulk and (especially surface) molecular mobility, stiffness and viscosity of the material, and determine the time frame in which an increase in adhesion starts and plateaus.

To elucidate the interfacial mechanism of adhesion related to self-healing, a surface forces apparatus (SFA) was used to investigate the contact time (t_c)-dependent adhesion at the interface of the self-healing (contact) area (Fig. 3a,b).

Adhesion forces (F_{ad}) between symmetric surfaces were measured as a function of t_c (Fig. 3) at a fixed load (L) of 250 mN. For soft polymers (synthesized as the semi-rigid polymer but with lower polymerization; see Supplementary Methods), F_{ad} of the exposed and blocked catecholic polymers increased monotonically with time from 700 to 1,500 mN and from 100 to 1,210 mN, respectively, with t_c increasing from 5 to 120 s (Fig. 3c). After a contact time of $t_c \sim 120$ s, the F_{ad} between two exposed catecholic polymer surfaces (film thickness \textsim 25 μm) exceeded the F_{ad} of the same polymer to a glass disc ($F_{ad} \sim 1,500$ mN for these asymmetric surfaces), and resulted in polymer damage during detachment (Fig. 3f). In contrast, a $t_c \sim 600$ s was required for the blocked catecholic polymer to exhibit the same level of damage on detachment.

In the case of the semi-rigid polymers (Fig. 3d), owing to the increase in polymer stiffness, F_{ad} of both the exposed and blocked catecholic polymers exhibited a low F_{ad} of \textsim 50–70 mN up to a ‘critical’ t_c of 30 and 120 s, respectively. After the critical t_c, F_{ad} of the exposed catecholic polymer monotonically increased up to 820 mN at $t_c = 120$ s, whereas with blocked catechols F_{ad} increased to only 230 mN at $t_c = 3,600$ s. Also, the contact surface of the blocked catecholic polymer remained undamaged during detachment up to a $t_c = 3,600$ s (Fig. 3f).

For the rigid polymers (Fig. 3e), the effects of the low molecular mobility were more pronounced. No increase in F_{ad} was observed for the blocked catecholic polymer up to $t_c = 3,600$ s, whereas exposed catecholic polymers had a critical $t_c \sim 50$ s, which was larger than in the semi-rigid polymer. Consequently, F_{ad} increased to only 180 mN at $t_c = 3,600$ s in the rigid polymers.

Previous studies have proposed that the self-healing adhesion of catechol-functionalized polymers and proteins relies on the bidentate hydrogen bonding of catechols as well as on hydrophobic contributions15,21,26. If the same is true for catecholic polycrylates, then molecular and polymer mobility should be important contributing factors. From the time-dependent adhesion tests (Fig. 3), we can conclude the following. First, bulk and surface molecular rearrangements are required to enable hydrogen bonding. The existence of a critical t_c indicates that the rearrangement/reorientation of polymer chains and molecular groups is a requisite for extensive interfacial hydrogen bonding. That the critical t_c increases with decreasing bulk and molecular mobility further supports this conclusion. Second, hydrogen-bond formation accelerates other attractive interactions. For the blocked catecholic semi-rigid polymer, F_{ad} increased only slightly (\textsim 230 mN m-2 at $t_c = 3,600$ s), whereas the adhesion of exposed catecholic polymer (Fig. 3d) increased from 70 to 820 mN at $t_c = 120$ s, which is significantly greater than the hydrogen-bond contribution of $F_{ad} \sim 300$ mN ($F_{ad}\text{exposed} = F_{ad}\text{blocked}$) measured for soft polymers at $t_c = 120$ s. This suggests that below a certain bulk/molecular mobility, hydrogen bonding is required to mobilize the other attractive interactions (for example, van der Waals, hydrophobic, polymer interdigitation, interpenetration, and interdiffusion) for self-healing.

Periodate stoichiometrically oxidizes catechol to quinone28, hence was used to perturb intermolecular hydrogen bonding between symmetric catecholic soft polymer films (Fig. 4). With a $t_c = 5$ s and $L = 250$ mN, the soft polymer films achieved a $F_{ad} = 700$ mN. This force decreased monotonically with increasing [periodate] (Fig. 4II), ranging from all catechols (at 0 mM periodate; Fig. 4I) to all quinones (at 100 mM periodate; Fig. 4II). The latter resembled that of blocked catecholic polymers (Fig. 4a-III,b-III), suggesting no catecholic hydrogen-bond
contribution to adhesion. The importance of hydrogen bonding is further underscored by the adhesion tests using asymmetric film chemistry in which an all-catechol surface was brought into contact with an all-quinone surface (Fig. 4a-IV,b-IV). As this allows every catechol donor to hydrogen-bond to a quinone acceptor, this configuration gave forces comparable to or higher than those of symmetric catechol–catechol surfaces, where the catechols are both acceptors and donors.

The adhesion force from pure hydrogen bonding \(F_{ad,catechol/catechol} - F_{ad,quinone/quinone} \) was calculated to be 600 mN at \(t_c = 5 \) s. The catecholic bidentate hydrogen bond\(^{30} \) has previously been reported to be around 67 ± 11 pN, which gives a catechol surface density of \(\Gamma = 4.6 \times 10^{16} \) m\(^{-2} \) and a contact diameter of 0.5 mm in a contact about to detach. Assuming a flat surface with catechols distributed in a square lattice, the spacing between exposed catechols would be \(\delta \approx 4.7 \pm 0.4 \) nm. The high density of catechols at the interface is further compelling evidence for hydrogen-bond-initiated self-healing. However, we must emphasize that this prediction is valid only when intermolecular bidentate hydrogen bonding occurs, and some degree of multivalent hydrogen bonding is highly likely\(^{24} \) (Fig. 1b).

Complete underwater self-healing in catechol-functionalized polyacrylates is initiated by intermolecular hydrogen bonding between interfacial catechol moieties, and subsequently consolidated by the recruitment of deeper physical interactions. This mechanism may explain the unusually strong and reversible adhesion measured between two dopa-containing mfp-5 films under reducing conditions\(^{29} \). More critically, it shows how simply...
LETTERS

Figure 4 | Adhesion force between various polymeric surfaces with a contact time of 5 s and 250 mN of applied load. a. Catechol surfaces are partially (I) or fully (II) oxidized to quinone surfaces by adding different concentrations (0.01-100 mM) of periodate. Error bars indicate standard deviation, n = 5. b. Proposed interfacial chemistry for I, II, III and IV.

Methods

To prepare the underwater self-healing polymers, silane-protected eugenol acrylates (1 in Supplementary Fig. 1) and silane-protected methacrylates (2 in Supplementary Fig. 1) were synthesized on the basis of the previously reported silane protection of eugenol6, epoxydation12,13 and acrylylation15 of the alken group, followed by ultraviolet radical polymerization (Supplementary Fig. 1). Ultraviolet radical polymerization was carried out with the Fusion ultraviolet system (Gaithersburg) that consisted of a 300 W medium-pressure H lamp and LC6B bentchop conveyor belt. We prepared the polymers with a photoinitiator (IRgapure 819, bis-[4,6-trimethylbenzoyl]-phenylphosphineoxide), which was generously provided by BASF (Florham Park). IRgapure 819 at 1 wt% (0.01 g) was added to neat 1 or 2 (1 g) and the mixture was coated (thickness 25 µm) onto a substrate. Soft polymer sample was produced from 1 with 4 ultraviolet scans (ultraviolet radiation dose; 2,460–2,640 mJ cm⁻²) whereas semi-rigid polymer required 8 scans (ultraviolet radiation dose: 4,920–5,280 mJ cm⁻²). Rigid polymer sample was produced from 2 with 2 scans (ultraviolet radiation dose: 4,920–5,280 mJ cm⁻²). The tensile strength (stress at break) was measured with a Bionix 200 tensile tester (MTS Systems). The polymer rods with 5 mm diameters were prepared by casting and kneading from the ultraviolet polymerized polymer films on a Teflon liner. The tensile stress distinguished the semi-rigid polymer with acrylate backbone (left in Supplementary Fig. 2) and the rigid polymer with methacrylate backbone (right in Supplementary Fig. 2). We bisected each polymer rod with a clean razor blade, and then soaked the pieces in buffers of different pH (pH 3, 7 and 10); the silyl-protecting groups of the catechols at the polymer surface were conveniently removed at low pH (pH 3 buffer) as previously reported7 to expose superficial catechol moieties. It is unlikely that the pH 3 buffer removes all silyl groups at the interface; thus, quantification and optimization of silyl deprotection will require further work. Subsequently, the applied tensile stress of each sample was measured to study the surface adhesion force using an MTS tensile tester. NEXAFS were performed at the NIST/Dow soft X-ray materials characterization facility, beamline U7A at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory. Carbon K-edge partial electron yield data were collected at a grid bias of ~150 V. Contact angle measurements were performed using a custom-built contact angle goniometer. A sealed contact angle chamber was built of glass, and Teflon. A syringe needle was inserted through a hole at the top Teflon cap of the chamber and delivery was controlled from the outside by a motorized syringe device (KDS LEGATO270, Kd Scientific). A video camera was used to record the image of the drop. The air inside the chamber was saturated with water vapour for 30 min before experiments, maintaining the humidity at ~85%. The water droplet was infused for 2 min with the constant volumetric flow rate of 5 µl min⁻¹ and was in rest for 60 min (Supplementary Fig. 8). The contact angle decreased with time (from 138° to 119°) and a three-phase contact line consequently crept out (horizontal arrows in Supplementary Fig. 8D). Contact line creep is an indicator of molecular turnover of polymers at the surface, for example, erosion of less hydrophobic polymers. The initial hydrophobicity returned when the surface was dried, suggesting a reversible rearrangement of the polymeric surfaces. In the SFA experiments, two glass discs (one spherical with R = 2 cm, and one flat) were thoroughly cleaned with chloroform and ethanol. The spherical disc was firstly mounted into a custom-made ‘cup’ (Fig. 3a) before polymer deposition. The monomers (silane-protected eugenol acrylates or silane-protected methacrylates) were spread onto the glass discs and ultraviolet cured for predetermined times to achieve soft, semi-rigid or rigid polymeric surfaces (see ultraviolet polymerization section for details). For the contact time dependence experiment (Fig. 3), no additional modification was performed before mounting the surfaces into the SFA. For the experiment to check the effect of catechol oxidation (Fig. 4), catechol moieties at the surface were unblocked by soaking in pH 3 buffer for 30 min. Oxidation of catechols to orthoquinones was obtained by exposure to 0.01 mM–100 mM of periodate solution in pH 3 buffer for 10 min. The surfaces prepared as above were mounted in an SFA 2000 (ref. 34) attached with semiconductor strain gauges at double cantilever springs for load measurement35. Both surfaces were kept immersed in treatment buffer (pH 3 sodium acetate or pH 7 phosphate) using a miniaturized ‘cup’, which contains buffer reservoir (Fig. 3a). Loading and unloading were performed using a coarse micrometer which gives a maximum displacement of 0.5 cm at the velocity of ~2 mm s⁻¹. Depending on the stiffness of the double cantilever spring (up to ~3,000 N m⁻¹), this system can measure adhesion forces up to ~15 N. Applied load is determined by a change of the normal force signal to the positive direction and adhesion (pull out) force was measured by the negative normal force signal at which it jumped to zero normal force (Fig. 3b). For the first set of experiments (Fig. 3), after loading, the system was equilibrated for an adjustable contact time t (5–3,600 s) before unloading, to investigate the relation between the polymer rigidity, contact time and adhesion force. After unloading, the lower surface was dismounted from the SFA to check for damage. For the second set of experiments (Fig. 4), a fixed t = 5 s was applied, and different surfaces were investigated to study the effects of hydrogen bonding on adhesion force. Applied loads L were set to 250 mN for all cases. Supplementary Figs 1–10 and associated Supplementary Refs (1–7) are available in the Supplementary Information.

Received 23 January 2014; accepted 17 June 2014; published online 27 July 2014

References

© 2014 Macmillan Publishers Limited. All rights reserved

Acknowledgements

The authors gratefully acknowledge financial support from the Office of Naval Research N000141310867, the United Soybean Board, the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the US Army Research Office (the content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred), the National Science Foundation MRSEC DMR-1121053, and the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences under Award DE-FG02-87ER45331 (J.N.I. for the instrument modification of the Surface Forces Apparatus for the adhesion measurements and D.W.L. for the adhesion measurements). The authors also acknowledge assistance from T. Bates for XPS, Y. Li for XRR, and L. Perez for NEXAFS and GIWAXS.

Author contributions

B.K.A. and D.W.L. designed the research, performed the experiments, and wrote the paper. J.N.I. advised the experimental design of the modified SFA and experimental measurements, and the interpretation of results. J.H.W. supervised the overall experimental design and writing.

Additional information

Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to J.N.I. or J.H.W.

Competing financial interests

The authors declare no competing financial interests.