Lawrence Berkeley National Laboratory
Recent Work

Title
THE PERMANGANATE OXIDATION OF URACIL AND 5-NITOURACIL

Permalink
https://escholarship.org/uc/item/3jr8w8pz

Authors
Fairley, J. L.
Daus, L. L.
Krueckel, B.

Publication Date
1952-11-11
TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE PERMANGANATE OXIDATION OF URACIL AND 5-NITOURACIL

J. L. Fairley, L. L. Daus and B. Krueckel

November 11, 1952

Berkeley, California
THE PERMANGANATE OXIDATION OF URACIL AND 5-NITOURACIL

J. L. Fairley, L. L. Daus and B. Krueckel

Radiation Laboratory and Department of Chemistry
University of California, Berkeley

November 11, 1952

ABSTRACT

Permanganate oxidation of uracil-4-C14 and 5-nitouracil-4-C14 indicates that in the two compounds ring cleavage occurs both between carbons 4 and 5 and carbons 5 and 6.
THE PERMANGANATE OXIDATION OF URACIL AND 5-NITROURACIL

J. L. Fairley*, L. L. Deus and B. Krueckel

Radiation Laboratory and Department of Chemistry
University of California, Berkeley**
November 11, 1952

(*) Present address: Kedzie Chemical Laboratory, Michigan State College, East Lansing, Michigan.

(**) The work described in this paper was sponsored by the U. S. Atomic Energy Commission.

The reaction of uracil with potassium permanganate to yield carbon dioxide and oxalic acid has been of use in the degradation of the pyrimidine ring.1 2

The similar oxidation of 5-nitouracil has been used by Lagerkvist to obtain the distribution of carbon-14 in the uracil of the nucleic acids of rats following the injection of radioactive bicarbonate.3 In this work the assumption was made, following Offe,4 that the oxalic acid fragment obtained upon hydrolysis of oxalic acid was derived from carbon atoms 4 and 5 of the pyrimidine.***

(***) The numbering of the pyrimidine ring is in conformance with current usage of Chemical Abstracts.
It was felt that the determination of the course of these reactions might prove of value in tracer experiments on the biological synthesis of the pyrimidine compounds. Accordingly, uracil-$4-C^{14}$ and 5-nitouracil-$4-C^{14}$ were synthesized and subjected to permanganate oxidation. As shown in Table I, high percentages of the isotope were found in each carbon dioxide and the oxalic acid fraction of the two pyrimidines, indicating that ring cleavage had occurred both between carbons 4 and 5 and carbons 5 and 6, with the last reaction predominating to some extent. In its present form the method offers little value as a degradative procedure, and therefore the interpretation of the results of Lagerkvist is seriously in doubt.

Table I
Permanganate Oxidation of Uracil-$4-C^{14}$ and 5-Nitouracil-$4-C^{14}$

<table>
<thead>
<tr>
<th>Compound</th>
<th>Amt. Used mg.</th>
<th>Amt. Recovered (as BaCO₃)</th>
<th>Specific Activity c₉/min./mg. BaCO₃</th>
<th>Total Activity c₉/min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uracil-$4-C^{14}$</td>
<td>75</td>
<td>115</td>
<td>7900</td>
<td>24.7 x 10⁵</td>
</tr>
<tr>
<td>CO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxalate</td>
<td>160</td>
<td>6600</td>
<td></td>
<td>10.6 x 10⁵</td>
</tr>
<tr>
<td>5-Nitouracil-$4-C^{14}$</td>
<td>47.5</td>
<td>53</td>
<td>1350</td>
<td>7.1 x 10⁴</td>
</tr>
<tr>
<td>CO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxalate</td>
<td>72</td>
<td>1140</td>
<td></td>
<td>8.2 x 10⁴</td>
</tr>
</tbody>
</table>
Experimental

Uracil-$4^{-14}C$. The method of Davidson and Baudisch5 was used for the synthesis of uracil from urea and a sample of malic acid-$4^{-14}C$ prepared in this laboratory by methods recently described.6 The identity and purity of the twice-recrystallized uracil-$4^{-14}C$ were established by the determination of the ultraviolet absorption spectrum in 0.01 M HCl. Both the ϵ_{max} and the ratio of optical densities at 260 to 280 mμ agreed to within 1% with published data.7

5 D. Davidson and O. Baudisch, J. Am. Chem. Soc. \textbf{48}, 2379 (1926).

7 J. M. Ploeser and H. S. Loring, J. Biol. Chem. \textbf{178}, 431 (1949).

5-Nitouracil-$4^{-14}C$. The method of Johnson and Matsuo8 was used for the preparation of 5-nitouracil from a portion of the uracil-$4^{-14}C$ diluted somewhat with non-radioactive uracil. The gain in weight during this process was 94% of theory. The material was recrystallized once from water.

Oxidation of Uracil-$4^{-14}C$. The procedures described by Heinrich and Wilson1 for the cleavage of the pyrimidine ring, collection of the CO$_2$, hydrolysis of the oxaluric acid, precipitation of calcium oxalate and its subsequent oxidation to CO$_2$ were followed closely, except that the pH of the reacting solution was maintained between 5 and 7 with the aid of a pH meter.

Oxidation of 5-Nitouracil. The method of Offe4 was followed for the oxidation step, followed by procedures similar to those mentioned for uracil.

References

For publication in the Journal of Americal Chemical Society.