Title
SOLVING CRYSTAL STRUCTURES USING SEVERAL WAVELENGTHS FROM CONVENTIONAL SOURCES. ANOMALOUS SCATTERING BY HOLMIUM

Permalink
https://escholarship.org/uc/item/3jt508xp

Authors
Chapuis, G.
Templeton, D.H.
Templeton, L.K.

Publication Date
1984-08-01
SOLVING CRYSTAL STRUCTURES USING SEVERAL WAVELENGTHS FROM CONVENTIONAL SOURCES. ANOMALOUS SCATTERING BY HOLMIUM

G. Chapuis, D.H. Templeton and L.K. Templeton

August 1984

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Solving Crystal Structures Using Several Wavelengths from Conventional Sources. Anomalous Scattering by Holmium

By Gervais Chapuis
Institut de Cristallographie, Université de Lausanne, BSP, 1015 Lausanne, Switzerland

and David H. Templeton and Lieselotte K. Templeton
Materials and Molecular Research Division, Lawrence Berkeley Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720 USA

Abstract

The anomalous scattering terms for trivalent holmium are measured for Cu Kα₁, Kα₂ and Kβ radiation in diffraction experiments with a crystal of NaHo(EDTA).8H₂O. Intensities at these wavelengths and at Mo Kα are used to calculate amplitudes and the phase difference for the waves scattered by holmium and by the rest of the structure to test the multiple-wavelength method of diffraction phase determination. Relative phases are determined with a mean accuracy of 44° for 759 high-angle reflections. A similar calculation for the analogous Sm crystal using synchrotron-radiation data gives the phase difference with an average error of 5°.
Introduction

Anomalous scattering has long been recognized as a source of helpful information for solving crystal structures by diffraction methods. For most substances at most X-ray wavelengths the effects are rather small, yet they are useful and widely used in an accessory manner in one-wavelength studies, and of course to establish absolute configuration. More information can be obtained by using more than one wavelength. Near an absorption edge the complex form factor changes with wavelength. These changes may be quite large, for example as much as 30 electrons/atom near some L edges (Templeton, Templeton, Phizackerley & Hodgson, 1982). They may induce substantial variation of the diffracted intensities depending on the wavelength of the incident beam. Various authors (e.g., Herzenberg & Lau, 1967, and references cited therein; Karle, 1980) have described the basic principles for obtaining information on diffraction phases from Friedel pairs of measurements at different frequencies. Hoppe & Jakubowski (1975) demonstrated the method with erythrocrurorin using two wavelengths. These effects can be very large in neutron diffraction in special cases, and they were applied to the solution of the structure of NaSm(edta).8H2O with measurements at three neutron wavelengths (Koetzle & Hamilton, 1975). Most of the recent work on this method has been in the context of synchrotron radiation, because it permits access to the largest effects for X-rays. The method has not yet been very widely exploited, however, in part because access to synchrotron radiation is still limited, and perhaps in part for lack of recognition of how much can be done with ordinary laboratory sources.
Holmium is a special case because its $L_3$ absorption edge (1.5368 Å) is very close to Cu $K\alpha$ radiation, so close that the holmium form factor is not the same for $K\alpha_1$ (1.5406 Å) and $K\alpha_2$ (1.5444 Å). Furthermore, its $L_2$ edge (1.3905 Å) is only 0.0017 Å below the wavelength of Cu $K\beta_{1,3}$ (wavelengths from Bearden, 1967). Thus three effectively-different wavelengths are available from a single anode. The purposes of the present work were to measure this form factor at these wavelengths using an ordinary X-ray source, to test its application in the multiple-wavelength method of phase determination, and to explore some alternate procedures for this method.

**Algebraic theory.**

For simplicity of notation we consider a structure in which the form factor of only one kind of atom changes with wavelength, and assume that $f''$ is negligible for other atoms. This treatment is adequate for the present work. More complicated cases need more algebra and sometimes more wavelengths for effective solution, but do not require any fundamental change of the theory. We write the structure factor as the sum of an anomalous (A) part and a normal (N) part:

$$F(h) = F_A + F_N$$

$$= \sum_{j=1}^{m} (f^0 + f' + if'') \exp(2\pi i h x_j) + \sum_{j=m+1}^{M} f^0 \exp(2\pi i h x_j).$$  \hspace{1cm} \text{(1)}

With only one kind of anomalous atom we can drop the subscripts on $f'$ and $f''$, which are the only quantities in this expression which depend on wavelength. By definition:

$$f = f^0 + f' + if'' = f^0 g \exp(i\delta),$$  \hspace{1cm} \text{(2)}

where

$$g \cos \delta = (f^0 + f')/f^0$$  \hspace{1cm} \text{(2a)}
and
\[ g \sin \delta = f'/f^0. \tag{2b} \]
We define further:
\[ F_A^0 = \sum_{j=1}^m f^0 \exp(2\pi i x_j) = |F_A^0| \exp(i\varphi_A^0), \tag{3} \]
Then,
\[ F = |F_A^0| g \exp[i(\delta - \varphi_A^0)] + |F_N| \exp(i\varphi_N), \tag{4} \]
where \( \varphi_N \) is the phase of \( F_N \). We introduce the new variable:
\[ \Delta = \varphi_A^0 - \varphi_N \tag{5} \]
and multiply (4) by its complex conjugate to obtain:
\[ |F|^2 = |F_N|^2 + g^2 |F_A^0|^2 + 2g \cos \Delta |F_A^0||F_N| \cos \Delta \]
\[ - 2g \sin \Delta |F_A^0||F_N| \sin \Delta. \tag{6} \]
This expression is linear in the four terms:
\[ x_1 = |F_N|^2, \]
\[ x_2 = |F_A^0|^2, \]
\[ x_3 = |F_A^0||F_N| \cos \Delta, \text{ and} \]
\[ x_4 = |F_A^0||F_N| \sin \Delta, \tag{7} \]
but subject to the additional condition:
\[ x_1 x_2 = x_3^2 + x_4^2. \tag{8} \]
An expression similar to (6) has been derived by Karle (1980). It is easy to show that the expression corresponding to (6) for \( F(-h) \) differs only by the sign of the coefficient of \( x_4 \). Denoting by \( |F_+| \) and \( |F_-| \) the magnitudes of a Friedel pair \( F(h) \) and \( F(-h) \), one can derive:
\[ |F_+|^2 - |F_-|^2 = -4g \sin \delta x_4, \tag{9a} \]
\[ |F_+|^2 + |F_-|^2 = 2(x_1 + g^2 x_2 + 2g \cos \delta x_3). \tag{9b} \]
One sees that \( x_4 \) is directly proportional to the Friedel (or Bijvoet)
intensity-difference and with a known proportionality factor. The other
variables depend linearly on the sum of the Friedel intensities, but subject
to condition (8).

In principle it is possible to determine uniquely the three variables
of interest, namely $|F_N|$, $|F_A|$ and the angle $\alpha$ with three observations at
various wavelengths or two observations at different wavelengths and one
Friedel pair. Unfortunately, the experimental observations are subject to
errors, and the problem is best solved by optimization with redundant data.
It is important to realize that the method gives only a phase difference $\alpha$,
deefined by (5), rather than a phase relative to a chosen origin. If the
heavy (anomalous) atom positions are known, $\varphi_0^A$ can be calculated. If they
are not known, they can be found with a Patterson map or direct methods
using the set of $|F_A^0|$, if it is accurate enough and complete enough.

The solution of a set of equations (6) requires that the observed
structure amplitudes are on a consistent scale. Scale factors can be
obtained from Wilson statistics, aided by the fact that temperature factors
are the same for all wavelengths if the temperature is constant. One must
remember, however, that

$$<|F|^2> = \Sigma f^2 = \Sigma g^2 f_0^2$$

(10)

is not the same at all wavelengths because of the factors $g$. This matter
has also been discussed by Karle (1984).

Experimental

The structure of NaHo(edta).8H$_2$O, edta = ethylenediaminetetraacetate, has
been determined by Templeton, Templeton & Zalkin (1984) using Mo K$\alpha$
radiation. Crystal data: NaHoC$_{10}$.H$_{12}$.N$_{12}$O$_8$.8H$_2$O, monoclinic, Fd11, $a = $
19.33(1), $b = 35.37(2)$, $c = 12.103(5)$ A, $\alpha = 89.60(10)^\circ$, $Z = 16$. The unit
cell and space-group symbol are chosen for an unconventional setting of space group Cc to preserve the close similarity of cell dimensions and atomic coordinates with respect to the orthorhombic Fdd2 structure of a series of analogous rare-earth salts (Templeton, Templeton, Zalkin & Ruben, 1982, and references therein).

Diffraction intensities were measured with Cu Kα and Kβ radiation for a crystal with 8 faces, 0.41 x 0.45 x 0.53 mm, Enraf-Nonius CAD-4 diffractometer with graphite monochromator, 0-2θ scan technique. Correction factors for absorption by the analytical method ranged from 3.4 to 7.6 for Kα and 6.5 to 33 for Kβ. Measurements included both members of each Bijvoet pair in the angular ranges indicated in Table 1.

For the separation of the intensity into the Kα₁ and Kα₂ components, the 96 values of each scan measurement were fitted to a sum of two Gaussian curves and a constant term:

$$I(t) = c_1 + c_2 \exp[-a_1(t - a_2)^2] + c_3 \exp[-a_3(t - a_4)^2].$$

The linear (c₁) and non-linear (a₁) constants were obtained by multiple non-linear regression (VARPRO, 1979). The components were calculated from the expressions:

$$I(K\alpha_1) = c_2(π/a_1)^{1/2},$$
$$I(K\alpha_2) = c_3(π/a_3)^{1/2},$$

which represent the areas delimited by the background line and the gaussian curves. It is interesting to note that the ratio $I(K\alpha_1)/I(K\alpha_2)$ for some reflections differs significantly from the usual value of 2; a few are smaller than 0.5 or larger than 6!

The solution of a set of equations (6) also requires knowledge of the anomalous scattering factors for the Ho atom. They were determined by least-squares refinement of each data set and are listed in Table 1. For
the two Cu Kα sets only the scale and anomalous parameters were refined with other parameters fixed at the values found with the Mo Kα data. For the Cu Kβ set the anomalous parameters were refined along with the coordinates and anisotropic thermal parameters of the Ho atoms. For Mo Kα we used values from Cromer & Liberman (1970).

The three copper data sets and the molybdenum data (Templeton, Templeton & Zalkin, 1984) were used to test the multiple-wavelength method. Multiple linear regression was used to find estimates of \( x_1, x_2, x_3 \) and \( x_4 \), subject to constraint (8). Initial values were all taken as zero after tests showed that more elaborate techniques did not improve convergence. The structure amplitudes \( |F_N| \) and \( |F_A| \) and the relative phase \( \phi \) were then derived from (7). This was done for each reflection for which a Bijvoet pair was included in at least three of the data sets. Among the 763 groups satisfying this condition, the relative phases and amplitudes for only four reflections could not be determined because solutions of the regression were physically unrealistic. The most frequent number of iterations necessary to attain convergence was 6; 80% of the refinements converged with less than 16 iterations. A damping factor of 0.5 was introduced beyond 30 iterations to accelerate convergence.

Analysis of the results

The large number of least-squares cycles needed to obtain convergence is due to the high correlation between the two variables \( x_2 \) and \( x_3 \). The correlation coefficients derived from the covariance matrix lie between -0.97 and -0.98. The correlation coefficients for \( x_2, x_4 \) and \( x_3, x_4 \) are practically zero. This characteristic shows that in essence our problem has
two independent variables, namely \( f(x_2, x_3) \) and \( f(x_4) \). Geometrically, the refinement amounts to finding the two sides of a right triangle knowing the hypotenuse. One side is determined by the sum, the other by the difference, of a Bijvoet pair as given by (9). The additional step of separating \( f(x_2, x_3) \) into \( f(x_2) \) and \( f(x_3) \) is more difficult; one is looking for a point on the side which is not well defined.

The ratio \( R = \frac{\sum |F_{\Delta}^C| - |F_{\Delta}^L|}{\sum |F_{\Delta}^C|} = 0.18 \) shows a fair agreement between the values obtained from this refinement (c) and those calculated from the known structure (t). The corresponding ratio for \( F_N \) is 0.48. This higher value is associated with the large number of small amplitudes. The error in the determination of \( \Delta \) is directly linked to the magnitudes of \( F_N \). The standard deviation calculated from the least-squares refinement lies typically in the range between 20° and 30°. The average value of \( \varepsilon = |\Delta_C - \Delta_L| \) is 44°. The percentage cumulative distribution of the reflections vs \( \varepsilon \) is plotted in Fig. 1. Among the 759 reflections, 60% show deviations \( \varepsilon \) less than 40°. For comparison, we have done a similar calculation for the nearly-isomorphous Sm derivative using data measured at four wavelengths with synchrotron radiation by Templeton, Templeton, Phizackerley & Hodgson (1982). The results are also plotted in Fig. 1. The dramatic improvement in this case is due both to the much larger range of \( f' \) and \( f'' \) values (which range from -8.9 to -31.5 and 4.4 to 28.9) and to the greater accuracy of the intensity measurements. The corresponding mean difference \( \langle \varepsilon \rangle \) is 5° for 311 reflections.

These high angle data for the Ho compound have been used to calculate a Fourier map with \( |F_N| \exp(i\phi_N) \) as coefficients. The phase \( \phi_N \) was obtained from (5) with \( \phi^0_A \) replaced by the value calculated from the known positions of the Ho atoms. In this map the 12 largest peaks are water molecules or
atoms belonging to the edta complex. The additional peaks are either additional atoms of the structure or noise due to errors. For comparison, a theoretical Fourier map with the same terms but with coefficients calculated from the light atoms of the known structure indicates that the 40 largest peaks correspond to atoms.

Concluding remarks

The differences between experimental and theoretical values of \( f' \) and \( f'' \), Table 1, are explained by several factors. For wavelengths this close to an absorption edge the scattering factor depends on the chemical state of the atom, here the +3 oxidation state. The value of \( f' \) is sensitive to the precise wavelength of the absorption edge, which is likely to change with oxidation state and may not be the same as the value used in the theory. It is also sensitive to the resonance structure of the absorption edge, which in this case includes a very strong white line and which is disregarded in the theoretical model, as is the finite level width of the edge. These experimental values are relevant to finite scattering angles and therefore may differ by a few percent from the zero-angle values calculated by theory. While the wavelengths of the characteristic X-ray lines are stated with great precision, the natural widths of these lines are appreciable. The experimental form factors actually correspond to some kind of average over each line profile. The effect on the scattering factors may not be negligible so close to an absorption edge. Finally, it is difficult to judge the accuracy of the theoretical model.

We find the results of the phase determination tests to be very encouraging. The samarium experiment is an example of overkill because the
anomalous scattering tends to dominate the intensity data. The phase accuracy of ca. 45° in the holmium experiment is sufficient to lead to a correct solution of a structure even with inaccurate initial values of |F_N|. There are several ways in which the experiment can be improved. We operated the diffractometer in a routine manner, and the \( x_1 \) and \( x_2 \) intensities are not very accurate. More elaborate monochromator techniques could achieve a better separation of these two components, even for the low-angle reflections which are relevant to serious phasing problems. A simpler way to phase low-angle reflections is to use a weighted-average scattering factor with an unresolved K\( \alpha \) doublet. It seems likely that this method would be successful, but it remains to be tested. The important things for phasing (besides accurate intensities) are at least one large value of \( f'' \) (given here by Cu K\( \beta \)) and a large range of values of \( f' \) (given here by Mo K\( \alpha \) and Cu K\( \alpha \)). Attempts to determine phases with only the three copper wavelengths were not very successful because the range of \( f' \) was not large enough.

Improved estimates of \( \Delta \) can probably be obtained with a recycling procedure. Once the partial structure of the anomalous atoms is determined, calculated values of \( x_2 \) can be used. There are then only two independent unknowns, and the problem of large correlations disappears.

While holmium is a special case, it is not unique. Lanthanum has a similar relationship to Cr K\( \alpha \) and K\( \beta \), while its \( f' \) is close to zero for Cu K\( \alpha \) or Mo K\( \alpha \). Europium used with K\( \alpha \) radiation of cobalt, copper and molybdenum may be an even better combination. Still other combinations exist which may be useful.

We believe that conventional sources merit more attention than they have received for multiple-wavelength phase determination. However, it is
obvious that synchrotron radiation has a strong advantage if convenient access to it can be achieved.

We thank Dr Allan Zalkin and Dr Frederick J. Hollander for helpful assistance. This work was supported by the Fondation Herbette, Université de Lausanne, by the National Science Foundation under grant No. CHE-8217443 and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Facilities of the U.C. Berkeley X-ray Crystallographic Facility (CHEXRAY) were used.

References

Acta Cryst B38, 2155-2159.
VARPRO, Multiple Nonlinear Regression Program (1979). Computer Center, Lawrence Berkeley Laboratory, Berkeley.
Table 1. Data for NaHo(edta).8H₂O

<table>
<thead>
<tr>
<th></th>
<th>Mo Kα</th>
<th>Cu Kβ</th>
<th>Cu Kα₁</th>
<th>Cu Kα₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \lambda, \mu \text{, Å} )</td>
<td>0.7107</td>
<td>1.39222</td>
<td>1.54056</td>
<td>1.54439</td>
</tr>
<tr>
<td>( \mu, \text{cm}^{-1} )</td>
<td>39.7</td>
<td>154</td>
<td>81.5</td>
<td>81.5</td>
</tr>
<tr>
<td>( \frac{\sin \theta}{\lambda}_{\text{min}} )</td>
<td>0.11</td>
<td>0.04</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>( \frac{\sin \theta}{\lambda}_{\text{max}} )</td>
<td>0.60</td>
<td>0.60</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>Number of refl. ([</td>
<td>I</td>
<td>&gt; \sigma(I)])</td>
<td>4843&lt;sup&gt;a&lt;/sup&gt;</td>
<td>6285</td>
</tr>
<tr>
<td>( R )</td>
<td>0.026</td>
<td>0.050</td>
<td>0.098</td>
<td>0.117</td>
</tr>
<tr>
<td>( f' ) (expt.)</td>
<td>---</td>
<td>-12.9(1)</td>
<td>-16.0(2)</td>
<td>-13.9(3)</td>
</tr>
<tr>
<td>( f' ) (theor.)&lt;sup&gt;b&lt;/sup&gt;</td>
<td>-0.71</td>
<td>-11.88</td>
<td>-15.41</td>
<td>-14.09</td>
</tr>
<tr>
<td>( f'' ) (expt.)</td>
<td>4.9(1)</td>
<td>9.3(1)</td>
<td>3.9(2)</td>
<td>3.6(3)</td>
</tr>
<tr>
<td>( f'' ) (theor.)&lt;sup&gt;b&lt;/sup&gt;</td>
<td>4.69</td>
<td>8.75</td>
<td>3.70</td>
<td>3.72</td>
</tr>
</tbody>
</table>

<sup>a</sup>Range of \( h \) limited to 0-12.

<sup>b</sup>Calculated by program of Cromer (1983).

<sup>c</sup>Cromer & Liberman (1970) for Mo Kα₁.
Fig. 1. Cumulative percentage distribution of the reflections as a function of $\varepsilon = |\Delta \varphi - \Delta \varphi_t|$, the error in relative phase: A, Ho salt with conventional X-rays; B, synchrotron data (Templeton, Templeton, Phizackerley & Hodgson, 1982) for Sm salt.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.