Lawrence Berkeley National Laboratory
Recent Work

Title
THE ALPHA AND GAMMA SPECTRA OF Cf246

Permalink
https://escholarship.org/uc/item/3jx3n5v3

Authors
Hummel, J.P.
Stephens, Frank S.
Asaro, Frank
et al.

Publication Date
1954-11-29
Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
Each person who receives this document must sign the cover sheet in the space below. Please return the document to the Information Division. Do not send it to the next person on the list.

<table>
<thead>
<tr>
<th>ROUTE TO</th>
<th>NOTED BY</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMISTRY DIVISION</td>
<td>PM</td>
<td>2-25-55</td>
</tr>
<tr>
<td>BL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>FR</td>
<td>3-14-55</td>
</tr>
</tbody>
</table>
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE ALPHA AND GAMMA SPECTRA OF Cf246

J. P. Hummel, Frank S. Stephens, Jr., Frank Asaro
A. Chetham-Strode, Jr., and I. Perlman

November 29, 1954
THE ALPHA AND GAMMA SPECTRA OF Cf246†

J. P. Hummel, Frank S. Stephens, Jr., Frank Asaro, A. Chetham-Strode, Jr., and I. Perlman
Radiation Laboratory and Department of Chemistry
University of California, Berkeley, California

November 29, 1954

ABSTRACT

The alpha and gamma spectra of Cf246 have been studied with an alpha particle spectrograph and gamma ray scintillation spectrometer. Alpha groups of 6.753 Mev (78 percent) and 6.711 Mev (22 percent) were observed. L x-rays and gamma rays of \approx100 kev (1.4 x 10^{-2} percent) and \approx44 kev were assigned to Cf246. These results are evaluated with respect to the developing theory and systematics of complex alpha spectra and excited states of even-even nuclei.

†This work was performed under the auspices of the U. S. Atomic Energy Commission.
INTRODUCTION

The preparation of Cf^{246} in a state of high radioactive purity can be effected by irradiating a mixture of curium isotopes (Cm^{242-6}) with alpha particles of about 40 Mev energy.\(^1\) (The mixture of curium isotopes is obtained by prolonged neutron irradiation of Pu^{239}.\(^2\)) Of the californium isotopes produced, Cf^{246} has a half life of 35.7 hr,\(^1\) while Cf^{247}, Cf^{244}, and presumably Cf^{245} have half lives sufficiently short\(^1,3\) to allow their complete decay during a period in which the Cf^{246} is not greatly reduced. No appreciable contribution to the radioactivity comes from Cf^{248} because of its relatively long half life (250 d\(^4\)) and low yield since there were only small amounts of Cm^{246} and Cm^{245} in the bombarded curium. Curium 242 would be present as the daughter product of Cf^{246} decay.

The interest in examining the alpha spectrum of Cf^{246} lies largely in extending the range of even-even alpha emitters for which accurate information can be obtained on the nature of the spectroscopic states and the degree of population of these states. The regularities observed in alpha spectra of heavy nuclei and their implications on nuclear structure and alpha decay theory have been reviewed recently.\(^5,6,7\)

The sample of Cf^{246} made available for the present study contained initially 2.9×10^5 alpha disintegrations per minute. Since the transmission of the alpha particle spectrograph is about 4×10^{-5}, it was
necessary to make as long an exposure as possible in order to obtain a reasonable number of alpha tracks. The ratio of peak height to background was about 50 for the main group which makes it impossible to measure alpha groups of abundance lower than several percent. From other spectra of even-even alpha emitters in the region, it was obvious that the transition to the ground state (0+) and first excited state (2+) should be discernible but no others. The sensitivity of gamma-ray detection, however, is such that some information could reasonably be expected from this source on the expected transition to the second excited state (4+). At the time of the first measurements the Cm242 activity was small relative to the Cf246. There was some Cf250 and Cf252 in the sample due to their incomplete removal from the target curium before bombardment. The Cf250 and Cf252 contribute spontaneous fission-gamma ray coincidences. With our detection system the intensity of these coincidences is nearly constant over the energy range under consideration.

EXPERIMENTAL

The Cf246 source was prepared by vacuum sublimation and exposed in the alpha-particle spectrograph according to methods already described. The spectrum so obtained showed, as expected, only two alpha groups characteristic of transitions to the ground state and first excited state of an even-even alpha emitter (see the decay scheme, Fig. 1).

The abundance of the transition to the first excited state could be obtained directly from the alpha spectrum and indirectly by determining the coincidence rate between alpha particles and L x-rays.
This indirect determination comes about from the fact that the first excited state drops to the ground state by an E2 transition which is highly converted in the L shell. The method of making the coincidence measurement and the corrections necessary to transfer these data into the degree of population of the first excited state are discussed elsewhere.

The gamma-ray spectrum was measured with a scintillation spectrometer and besides the L x-rays, peaks at ~100 kev, ~60 kev, and ~44 kev showed up. The 100-kev photon is interpreted as a gamma ray leading from the sparsely populated second excited state to the first excited state. The 44-kev photon is the gamma ray from the first excited state. The 60-kev peak is probably due to Am241 impurity. Because of the high intensity of the Am241 60 kev gamma ray and the low intensities of the Cf246 photons, an extremely small amount of Am241 (80 disintegrations per minute) would give the observed intensity. The gamma-ray spectrum is measured most effectively by α-γ coincidence counting, the details of which are described elsewhere.

The coincidence spectrum for Cf246 is shown in Fig. 2.

RESULTS AND DISCUSSION

Alpha spectrum. Two exposures (22.6-hr and 33-hr, respectively) were made on the alpha particle spectrograph before the sample became too weak. In the first, 5137 tracks were registered: 78 percent in the main group and 22 percent in the group leading to the first excited state. Also by the α-L x-ray coincidence method, the abundance of population of the 2+ (first excited) state was found to be 22 percent.
The energy difference between the two groups was found to be 42.0 kev. When correction is made for the differences in recoil energy, the corresponding gamma-ray transition becomes 42.7 kev. The appearance of the first excited state of Cm242 is also prominent in the β-decay of Am242m. The transition energy has been measured as 42.3 ± 0.2 kev with a bent crystal photon spectrometer (Jaffe10), and from the conversion electron spectrum, the value 42.2 ± 0.3 kev was obtained (Church11). This photon is also seen in the α-γ coincidence spectrum of Cf246 (see Fig. 2), but the energy determination is not as accurate as the three values cited here.

In the second alpha spectrum taken, the photographic plate was also exposed to a source containing the U230 series. The Em218 line at 7.127 Mev12 was taken as the energy standard and from this the main group of Cf246 was found to be 6.753 Mev. When the recoil energy correction is made, the decay energy for Cf246 becomes 6.865 Mev.

Alpha-gamma coincidence spectrum. The photon spectrum in coincidence with Cf246 alpha particles is shown in Fig. 2.

42-kev transition. The conversion coefficient for this transition was determined by the ratio of the abundance of the 42-kev gamma ray to the previously discussed population of the 42-kev state (22 percent). Two determinations gave the L-shell conversion coefficient as 800 and 1200. These values are in the expected range for an E2 transition on the basis of extrapolations from the data of Gellman, Griffith and Stanley13.

100-kev transition. Four determinations gave an average intensity of 1.4×10^{-4} photons per alpha disintegration. Since the
energy of this photon corresponds well with the expected transition from
the 4+ state to the 2+ state, we can assume that it is an E2 transition.
Then if we assume that the conversion coefficient is the same as that
measured for the corresponding transition in the decay of Cm242, the
minimum intensity of population of the 4+ state becomes approximately
8×10^{-4} as indicated in Fig. 1.

One of the current points of interest in alpha-decay theory is to
explain the variation in population of 4+ states by different even-even
alpha emitters. A convenient reference for comparisons is the "hindrance
factor", which expresses the ratio of the observed partial half life for
the alpha transition to that calculated on the basis of the theory which
gives good agreement with the observed half lives for the ground state
transitions. For the Cf246 transition to the 4+ state the minimum
experimental intensity, as mentioned above, is 8×10^{-4}, and this can
be shown to correspond with a hindrance factor of 220. This factor
is probably somewhat too large because the approximations used in
estimating the population of the 4+ state are expected to produce a
value which is too low. The relation between this hindrance factor
and those of corresponding alpha groups of other alpha emitters is
shown in Fig. 3 of another publication. A brief statement on the
possible implications of these trends will also be found there.
REFERENCES

1. Hulet, Thompson, Ghiorso, and Street, Phys. Rev. 84, 366 (1951)
2. We wish to thank Drs. S. G. Thompson and B. G. Harvey for their part in making this sample available.
5. A. Bohr, Rotational States of Atomic Nuclei (Ejnar Munksgaard, Copenhagen, 1954)
8. Asaro, Reynolds, and Perlman, Phys. Rev. 87, 277 (1952)
9. Asaro, Stephens, Thompson, and Perlman, University of California Radiation Laboratory Unclassified Document UCRL-2766 (October 1954)
11. E. Church, private communication (February 1954)
12. Asaro, Slater, and Perlman (unpublished data, 1953)
Fig. 1. Decay scheme for Cf^{246}.
Fig. 2. Alpha-gamma coincidence spectrum of Cf246.