Lawrence Berkeley National Laboratory
Recent Work

Title
GASEOUS THALLIUM (I) METABORATE AND THALLIUM (I) ALUMINUM FLUORIDE

Permalink
https://escholarship.org/uc/item/3k57n53c

Authors
Feather, David H.
Budiler, Alfred.

Publication Date
1973-03-01
GASEOUS THALLIUM (I) METABORATE AND THALLIUM (I) ALUMINUM FLUORIDE

David H. Feather and Alfred Büchler

March 1973

Prepared for the U.S. Atomic Energy Commission under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
GASEOUS THALLIUM (I) METABORATE AND THALLIUM (I) ALUMINUM FLUORIDE

David H. Feather and Alfred Büchler

Inorganic Materials Research Division, Lawrence Berkeley Laboratory, and Department of Materials Science and Engineering, College of Engineering, University of California, Berkeley, California 94720

While all the thallium (I) halides have been studied, only two gaseous ternary compounds of monovalent thallium, thallium (I) nitrate and thallium (I) sulfate, have been reported so far. The purpose of this work was to extend the range of known gaseous ternary compounds of thallium (I) and to compare their mass spectrometric behavior to that of the corresponding alkali compounds. We have therefore examined the vapors above thallium (I) metaborate and an equimolar mixture of thallium (I) fluoride and aluminum fluoride.

Samples of thallium metaborate, thallium fluoride and aluminum fluoride were obtained from Research Organic/Inorganic Chemical Corporation. Mass spectra were run on an Atlas CH-4 mass spectrometer. The samples were contained in platinum-lined nickel effusion cells. Mass spectra obtained are shown in Tables 1 and 2.

The mass spectrum of thallium metaborate (Table 1) is similar to that of the alkali metaborates. Both thallium metaborate monomer, TlBO₂, and dimer, Tl₂(BO₂)₂, are present in the vapor, the latter identified by means of the fragment ion Tl₂BO₂⁺. The different temperature dependence of Tl₂BO₂⁺ and TlBO₂⁺ showed the latter to be the monomer parent ion rather than a dimer fragment. The dimer parent ion Tl₂(BO₂)₂⁺ was not found; it was present to the extent of less than one part in 400 of the fragment ion Tl₂BO₂⁺. It may be noted that for gaseous thallium nitrate
-2-
dimer the fragment ion \(\text{Tl}_2\text{NO}_3^+ \) was the only ion observed. \(^2\) In this respect the two thallium pseudohalides resemble the alkali halides and pseudohalides, whose mass spectra only show dimer fragment ions \(\text{M}_2\text{X}^+ \) and differ from the thallium halides, whose mass spectra contain dimer parent ions \(\text{Tl}_2\text{X}_2^+ \). \(^2\) The monomer-dimer ratio in thallium metabolborate vapor is difficult to establish since the thallium ion, which one would otherwise suppose to be a fragment of the monomer, had an appearance potential of 6 eV showing the presence of free thallium in the vapor.

Turning now to the mass spectrum of the vapor above the \(\text{TlF}-\text{AlF}_3 \) mixture, (Table 2), we see that the mixed thallium aluminum fluoride, \(\text{TlAlF}_4 \), is indeed present. Its existence was in fact suggested by the observation of the corresponding indium compound, \(\text{InAlF}_4 \), in work on the reduction of \(\text{AlF}_3 \) by indium. \(^5\) In addition, the presence of the ion \(\text{Tl}_2\text{AlF}_4^+ \) shows the existence of a higher polymer. In analogy with the assignment of the corresponding ions in the \(\text{LiF}-\text{AlF}_3 \) and \(\text{NaF}-\text{AlF}_3 \) systems, \(^6\) we are inclined to assign this ion to the double dimer \(\text{Tl}_2(\text{AlF}_4)_2 \). The presence of the mixed trimer, \(\text{Tl}_2\text{AlF}_5 \), however, cannot be ruled out. In the case of \(\text{TlAlF}_4 \), the parent ion, \(\text{TlAlF}_4^+ \), is present in the mass spectrum, in contrast to \(\text{LiAlF}_4 \) and \(\text{NaAlF}_4 \), in whose mass spectra only the fragments \(\text{LiAlF}_3^+ \) and \(\text{NaAlF}_3^+ \) are observed. The difference in behavior between the two sets of compounds may be explained by the recent work of Berkowitz. \(^7,8\) In interpreting the photoelectron spectra of \(\text{TlCl} \) and \(\text{TlBr} \) he concluded that the highest-lying orbital is a thallium s-orbital, in agreement with the calculations of Hastie \(^9\) and Cusachs. \(^10\) In Berkowitz's interpretation \(\text{TlCl} \) and \(\text{TlBr} \) are essentially ionic compounds, and removal of the thallium s-electron on ionization will actually
strengthen the ionic bond, the ion formed being effectively Tl^{++}X^-. Removal of a halogen p-electron (the next highest orbital, but with an appearance potential below that of the thallium s-orbital) removes the charge on the halogen and leads to the fragment ion Tl^+.

This analysis may be extended to TlAlF_4 and the alkali aluminum fluorides if we assume that the mixed thallium halide has the same structure as NaAlF_3, which has two bridging fluorine atoms between the sodium and aluminum atoms. Removal of a thallium s-electron leads to the parent ion TlAlF_4^+, whereas no such process is possible in the alkali compounds. Removal of a bridging fluorine p-electron, on the other hand, leads to the fragment ions MAlF_3^+ in both the thallium and the alkali compounds.

The general similarity of the thallium compounds to the corresponding alkali compounds suggests a bridge structure for the thallium halide dimers similar to that of the lithium halide dimers. A linear structure X-Tl-Tl-X is unlikely if the constituent Tl-X units are ionic, and the fact the ion Tl_2^+ is observed in the mass spectrum may be due to simple rearrangement: it has been shown that the ion Cs_2^+ in the mass spectrum of cesium sulfate vapor arises from the dissociative ionization of Cs_2SO_4, in which the cesium atoms are presumably located at opposite ends of the sulfate group.

This work was done under the auspices of the U. S. Atomic Energy Commission.
REFERENCES

5. A. Büchler and J. L. Stauffer, unpublished work.
Table 1. Mass Spectrum of Vapor Above Thallium (I) Metaborate at 634C (70 volt ionizing electrons)

<table>
<thead>
<tr>
<th>Ion</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl⁺</td>
<td>100</td>
</tr>
<tr>
<td>TlO⁺</td>
<td>0.27</td>
</tr>
<tr>
<td>TlBO⁺</td>
<td>0.48</td>
</tr>
<tr>
<td>TlBO₂⁺</td>
<td>2.2</td>
</tr>
<tr>
<td>Tl₂⁺</td>
<td>2.2</td>
</tr>
<tr>
<td>Tl₂O⁺</td>
<td>21.3</td>
</tr>
<tr>
<td>Tl₂BO₂⁺</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Table 2. Mass Spectrum of Vapor Above an Equimolar Thallium (I) Fluoride-Aluminum Fluoride Mixture at 413C (70 volt ionizing electrons)

<table>
<thead>
<tr>
<th>Ion</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl⁺</td>
<td>100</td>
</tr>
<tr>
<td>TlF⁺</td>
<td>8.1</td>
</tr>
<tr>
<td>Tl₂AlF₂⁺</td>
<td>0.09</td>
</tr>
<tr>
<td>Tl₂AlF₃⁺</td>
<td>2.9</td>
</tr>
<tr>
<td>Tl₂AlF₄⁺</td>
<td>0.13</td>
</tr>
<tr>
<td>Tl₂⁺</td>
<td>0.59</td>
</tr>
<tr>
<td>Tl₂F⁺</td>
<td>3.9</td>
</tr>
<tr>
<td>Tl₂F₂⁺</td>
<td>1.1</td>
</tr>
<tr>
<td>Tl₂₂AlF₄⁺</td>
<td>1.3</td>
</tr>
</tbody>
</table>
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.