
UC Merced
UC Merced Previously Published Works

Title
Intraspecific trait variation across scales: implications for understanding global change 
responses

Permalink
https://escholarship.org/uc/item/3kf5g4wj

Journal
Global Change Biology, 22(1)

ISSN
1354-1013

Authors
Moran, Emily V
Hartig, Florian
Bell, David M

Publication Date
2016

DOI
10.1111/gcb.13000
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3kf5g4wj
https://escholarship.org
http://www.cdlib.org/


	 1	

Title:	Intraspecific	trait	variation	across	scales:	implications	for	understanding	1	

global	change	responses	2	

Running	head:	Intraspecific	variation	and	global	change	3	

Authors:	4	

Emily	V.	Moran1	,	Florian	Hartig2,	David	M.	Bell3,		5	

Institutions:	6	

1) UC	Merced,	School	of	Natural	Sciences,	Merced	CA,	95343.			7	

2) University	of	Freiburg,	Department	of	Biometry	and	Environmental	8	

System	Analysis,	79106	Freiburg,	Germany.			9	

3) Pacific	Northwest	Research	Station,	USDA	Forest	Service,	Portland	OR,	10	

97204.			11	

Corresponding	author:		Emily	Moran,	emoran5@ucmerced.edu	12	

Phone:	209-228-2423;		Fax:	NA	13	

Keywords:	Intraspecific	variation;	trait;	global	change;	genetic	variation;	14	

evolution;	population	dynamics;	species	range;	population	differentiation	15	

Paper	type:		Research	review	16	

	17	

	18	

	 	19	



	 2	

Abstract	20	

Recognition	of	the	importance	of	intraspecific	variation	in	ecological	processes	21	

has	been	growing,	but	empirical	studies	and	models	of	global	change	have	only	22	

begun	to	address	this	issue	in	detail.		This	review	discusses	sources	and	patterns	23	

of	intraspecific	trait	variation	and	their	consequences	for	understanding	how	24	

ecological	processes	and	patterns	will	respond	to	global	change.		We	examine	25	

how	current	ecological	models	and	theories	incorporate	intraspecific	variation,	26	

review	existing	data	sources	that	could	help	parameterize	models	that	account	27	

for	intraspecific	variation	in	global	change	predictions,	and	discuss	new	data	that	28	

may	be	needed.		We	provide	guidelines	on	when	it	is	most	important	to	consider	29	

intraspecific	variation,	such	as	when	trait	variation	is	heritable	or	when	non-30	

linear	relationships	are	involved.		We	also	highlight	benefits	and	limitations	of	31	

different	model	types,	and	argue	that	many	common	modeling	approaches	such	32	

as	matrix	population	models	or	global	dynamic	vegetation	models	would	allow	a	33	

stronger	consideration	of	intraspecific	trait	variation	if	the	necessary	data	were	34	

available.	We	recommend	that	existing	data	needs	to	be	made	more	accessible,	35	

and	in	some	case	new	experiments	are	needed	to	disentangle	causes	of	variation.	36	

	 	37	
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	38	

Introduction	39	

Recently,	many	authors	have	stressed	the	importance	of	moving	towards	40	

more	mechanistic	models	to	be	able	to	describe	the	response	of	species	and	41	

ecosystems	to	global	change	(Kearney	&	Porter,	2009;	Chevin	et	al.,	2010;	42	

Pereira	et	al.,	2010;	Schurr	et	al.,	2012).		Current	mechanistic	and	process-based	43	

models	are	typically	based	on	species-level	traits	and	properties	or	even	on	44	

functional	types,	but	some	models	are	beginning	to	account	for	the	fact	that	45	

species’	traits	are	neither	static	nor	homogenous	in	space	or	time	(Bolnick	et	al.,	46	

2011;	Violle	et	al.,	2014).		For	instance,	many	species	exhibit	trait	differences	47	

between	populations,	frequently	taking	the	form	of	geographic	clines	that	48	

correspond	to	environmental	gradients	(Aitken	&	Whitlock,	2013),	and	49	

important	phenotypic	differences	also	exist	between	individuals	within	50	

populations,	and	even	within	sex,	age,	or	size	classes	(Bolnick	et	al.,	2011;	51	

Richardson	et	al.,	2014).		Such	intraspecific	variation	can	strongly	influence	52	

ecological	processes	and	the	conclusions	drawn	from	models	thereof	(Boyce,	53	

1977;	Kendall	&	Fox,	2002;	Grear	&	Elderd,	2008;	Kearney	et	al.,	2009;	Kramer	et	54	

al.,	2010;	Schindler	et	al.,	2010;	Oney	et	al.,	2013).		Understanding	and	55	

incorporating	variation	in	traits	is	therefore	important	for	basic	science,	for	56	

making	predictions	about	global	change	impacts,	and	for	managing	species	57	

affected	by	global	change.		58	

In	this	review,	we	address	the	following	questions:	59	

1. What	are	the	sources	and	patterns	of	intraspecific	trait	variation?	60	

2. When	will	intraspecific	variation	be	crucial	for	ecological	responses	to	61	

environmental	change?	62	
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3. How	do	existing	models	attempt	to	address	trait	variation,	and	have	their	63	

capabilities	to	do	so	been	fully	utilized?	64	

4. Are	there	useful	data	sources	that	have	been	overlooked,	or	new	data	that	65	

must	be	collected?	66	

	67	

We	will	define	“traits”	broadly,	as	including	phenotypic	characters	(e.g.	68	

coat	color),	behavioral	or	growth	characteristics	(e.g.	fast	vs.	slow	growth	rate),	69	

or	individual-level	demographic	rates	(e.g.	expected	number	of	offspring).				70	

	71	

Sources	and	patterns	of	trait	variation	72	

Sources	73	

Intraspecific	trait	variation	may	be	due	to	heritable	differences	74	

between	individuals,	or	it	may	be	due	to	phenotypic	plasticity	in	trait	values	75	

across	varying	environmental	conditions.		Understanding	which	of	these	76	

sources	is	responsible	for	trait	variability	is	crucial	for	predicting	global	change	77	

responses.		If	differences	in	trait	values	within	a	population	are	due	to	genetic	78	

differences	they	will	be	heritable,	and	therefore	population-level	means	will	be	79	

subject	to	change	through	natural	selection	over	generational	timescales.		80	

Plasticity,	on	the	other	hand,	enables	immediate	adjustment	of	phenotypic	traits,	81	

which	can	buffer	a	population	against	rapid	environmental	change.		Plasticity	82	

tends	to	slow	adaptive	evolution	in	the	short	term	by	weakening	selective	83	

pressures,	but	by	preserving	population	size	and	genetic	diversity	may	provide	84	

potential	for	evolutionary	responses	in	the	long	run	(Crispo,	2008).		The	degree	85	

of	plasticity	exhibited	in	a	trait	is	typically	subject	to	genetic	control	and	can	86	

therefore	also	evolve.		Stable	conditions,	for	instance,	can	select	against	plasticity	87	
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if	it	is	costly	(Crispo,	2008).			See	also	Gomez-Mestre	&	Jovani	(2013),	who	88	

developed	a	simple	heuristic	model	to	illustrate	the	potential	interactions	89	

between	plasticity	and	adaptation.	90	

Epigenetic	differences,	which	affect	gene	expression	but	not	the	91	

underlying	genetic	code,	can	contribute	to	both	categories.		They	contribute	to	92	

plastic	responses,	but	some	can	also	be	heritable	over	intermediate	timespans	93	

(~1-5	generations).		For	instance,	differential	DNA	methylation	in	plants	can	94	

affect	traits	such	as	flowering-time	or	drought	tolerance,	and	their	heritability	95	

(Fieldes	&	Amyot,	1999;	Zhang	et	al.,	2013).		Such	heritable	epigenetic	variation	96	

may	aid	population	adaptation	to	global	change,	but	not	all	epigenetic	effects	are	97	

adaptive:	Rats	exposed	to	pesticides	show	negative	fitness	effects	over	at	least	3	98	

generations,	likely	due	to	methylation	changes	(Manikkam	et	al.,	2012).		Broadly	99	

speaking,	any	phenotypic	effect	not	due	to	genetics	might	be	said	to	be	100	

epigenetic.		However,	as	discussed	above,	“plasticity”	refers	to	non-heritable	101	

changes	in	phenotype	due	to	environmental	variation	(Scheiner	&	Goodnight,	102	

1984),	while	the	epigenetic	effects	that	have	received	the	most	research	103	

attention	are	heritable	(Richards,	2011).		As	the	molecular	basis	of	phenotypic	104	

plasticity	becomes	better	understood,	we	may	need	to	develop	new	terms	105	

distinguishing	epigenetic	mechanism	with	short-term	vs.	long-term	effects.	106	

Disentangling	these	different	sources	of	trait	variation	is	often	challenging	107	

(Gienapp	et	al.,	2008).		Plasticity	can	lead	to	trait	variation	between	populations	108	

even	when	they	are	genetically	highly	similar	(Crispo,	2008).		Common	garden	109	

experiments	or	pedigree	studies	are	needed	to	distinguish	plastic	and	heritable	110	

variation	(Wilson	et	al.,	2010;	Aitken	&	Whitlock,	2013;	Blanquart	et	al.,	2013),	111	
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though	distinguishing	heritable	genetic	and	epigenetic	effects	presents	further	112	

challenges	(Richards,	2011).				113	

Moreover,	which	sources	of	variation	are	most	important	in	real	114	

ecological	systems	is	still	poorly	understood.		In	recent	years,	more	researchers	115	

have	begun	to	consider	the	consequences	of	genetic	variation	and	evolutionary	116	

adaptation	in	studies	of	global	change	responses	(Moran	&	Alexander,	2014),	but	117	

epigenetic	mechanisms	and	maternal	effects	are	still	rarely	addressed	(Bossdorf	118	

et	al.,	2008).		For	most	species,	the	cause	of	observed	trait	variation	remains	119	

unknown.				120	

When	genetic	and	plastic	effects	on	trait	values	are	disentangled	for	121	

current	global	change	responses,	the	contribution	of	plasticity	has	been	larger	in	122	

many	systems	(Hoffmann	&	Sgro,	2011),	but	this	likely	reflects	the	relatively	123	

short	timespans	involved.		Heritability	for	traits	strongly	related	to	fitness	(eg.	124	

fecundity)	is	generally	lower	than	for	behavioral	or	morphological	traits,	but	125	

significant	heritability	(and	therefore	potential	for	responses	to	selection)	often	126	

exists	even	in	these	traits	(Mousseau	&	Roff,	1987).		Where	heritable	changes	127	

have	been	observed	in	response	to	global	change,	it	is	generally	in	species	with	128	

short	generation	times,	high	fecundity,	and/or	large	population	sizes	–	the	types	129	

of	species	one	would	expect	to	exhibit	more	rapid	evolutionary	change	(Moran	&	130	

Alexander,	2014).		131	

	132	

Patterns	133	

Within	a	population	or	geographic	area,	trait	variation	can	be	structured	134	

(varying	in	a	consistent	or	predictable	way)	or	unstructured	(random)	with	135	

respect	to	space,	time,	or	kinship.		For	instance,	variation	due	to	sex	differences	136	
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in	mammals	and	birds	would	usually	be	considered	unstructured,	because	137	

stochastic	processes	typically	determine	sex,	as	would	variation	due	to	annual	138	

fluctuations	in	an	environmental	variable	around	a	stable	mean.		Persistent	139	

differences	between	individuals	in	space	or	time	(in	behavior,	growth	rate	etc.)	140	

are	structured	variation.	Such	differences	may	either	be	due	to	heritable	141	

differences,	or	to	persistent	environmental	differences	that	cause	plastic	142	

responses.			Natural	history	data	can	be	useful	in	determining	whether	variation	143	

is	likely	to	be	structured	(Kendall	&	Fox,	2002).		This	can	be	important	–	for	144	

example,	misattributing	structured	variation	to	demographic	stochasticity	can	145	

lead	to	overestimation	of	extinction	probabilities	(Fox	&	Kendall,	2002).	146	

	 Structured	variation	in	traits	across	populations	or	large	geographic	areas	147	

can	often	be	related	to	environmental	gradients	(Figure	1)	or	to	geographic	148	

structure.		If	the	variation	is	heritable	and	dispersal	is	very	low,	lack	of	genetic	149	

variation	may	inhibit	adaptation	to	changing	conditions;	if	dispersal	is	extremely	150	

high,	the	movement	of	alleles	between	heterogeneous	environments	may	151	

counteract	local	selective	pressures	(Aitken	&	Whitlock,	2013).		If	differences	are	152	

due	adaptive	plasticity	(trait	changes	that	increase	fitness	in	the	new	153	

environment),	it	will	facilitate	gene	flow	by	reducing	the	costs	of	dispersal,	154	

whereas	maladaptive	plasticity	(eg.	smaller	size	or	lower	fecundity	when	155	

stressed)	will	do	the	opposite	(Crispo,	2008).			156	

	157	

Influences	of	intraspecific	variation	on	ecological	processes	158	

One	way	that	ecological	processes	can	be	affected	by	trait	variation	is	due	159	

to	non-linearity	in	the	relationship	between	the	variable	trait	and	the	response	of	160	

interest,	which	is	expressed	by	a	mathematical	relationship	called	Jensen’s	161	
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inequality	(Ruel	&	Ayres,	1999;	Bolnick	et	al.,	2011).		This	states	that	when	the	162	

relationship	between	a	random	variable	x	and	a	response	variable	y	is	non-163	

linear,	the	expectation	for	y	differs	depending	on	whether	we	use	the	mean	of	x,	164	

or	the	whole	distribution.		Specifically,	if	the	relationship	y	=	f(x)	is	concave-up,	165	

then	E[y]	>	f(E[x])	and	if	it	is	concave-down	(convex),	then	E[y]<	f(E[x]).		To	give	166	

an	example:	seeds	produced	per	unit	pollen	declines	with	increasing	pollen	167	

deposition;	when	pollen	deposition	varies,	the	average	seeds	per	flower	is	lower	168	

than	predicted	based	on	the	average	pollen	deposited	per	flower	(Richards	et	al.,	169	

2009).		Similarly,	genetic	variation	in	host	insects	that	leads	to	variation	in	170	

number	of	eggs	per	seed	can	stabilize	host-parasitoid	population	dynamics	via	171	

Jensen’s	inequality	(Imura	et	al.,	2003).			172	

Biology	is	rife	with	non-linear	relationships	(Benton	et	al.,	2006),	and	173	

therefore	there	are	many	situations	where	using	the	trait	mean	in	a	process	does	174	

not	lead	to	the	same	result	as	using	the	whole	trait	distribution.		This	can	be	175	

particularly	important	in	predicting	population	growth	and	viability.		For	176	

instance,	unstructured	variation	in	survival	probabilities	or	offspring	number	177	

between	years	typically	reduces	the	long-term	average	growth	rate	in	population	178	

models	(Boyce,	1977),	which	increases	the	extinction	probability	in	small	179	

populations	(Kendall	&	Fox,	2002).		The	form	of	the	non-linear	relationship	180	

determines	how	variation	affects	the	responses.		If	a	matrix	model	is	constructed	181	

with	even	age/size	bins,	survival	for	the	individuals	within	the	bin	will	be	182	

estimated	well	for	a	linear	type	II	survival	curve,	but	for	a	type	III	curve	with	183	

high	juvenile	mortality	the	survival	of	the	younger	classes	will	be	184	

underestimated,	and	for	a	type	I	curve	with	late	mortality	the	survival	of	older	185	
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classes	will	be	overestimated.		This,	in	turn,	leads	to	under-	or	over-estimation	of	186	

population	growth,	respectively	(Grear	&	Elderd,	2008).			187	

The	type	of	variation	most	frequently	included	in	population	models	is	188	

demographic	stochasticity,	which	refers	to	variation	in	population	growth	189	

rates	resulting	from	random	variation	in	survival	or	reproduction	(Bolnick	et	al.,	190	

2011).	This	process	is	most	important	in	small	populations,	because	as	191	

population	size	increases	the	mean	survival	or	reproduction	in	a	given	year	will	192	

approach	the	true	population	mean.		Genetic	drift	resulting	from	demographic	193	

stochasticity	can	lead	to	random	evolutionary	changes	in	traits.			194	

Intraspecific	variation	can	also	have	positive	effects	on	population	growth	195	

or	stability.		The	portfolio	effect,	for	example,	arises	when	intraspecific	or	196	

interspecific	variation	reduce	the	variability	of	population	growth	or	an	197	

ecosystem	service	in	a	temporally	variable	environment	(Bolnick	et	al.,	2011).			198	

For	instance,	Schindler	et	al.	(2010)	estimated	that	asynchrony	between	local	199	

populations	and	variation	within	cohorts	of	Bristol	Bay	salmon	led	to	2.2-fold	200	

lower	variability	in	annual	returns	than	if	the	population	were	homogeneous.		201	

Intraspecific	variation	(in	the	form	of	trait	diversity)	can	also	positively	affect	202	

average	productivity.		This	can	be	due	to	sampling	effects,	whereby	the	larger	203	

the	number	of	species	or	genotypes	included	the	more	likely	it	is	that	one	with	204	

high	productivity	will	be	present	(similar	to	the	portfolio	effect,	but	in	a	spatial	205	

context),	or	to	complementarity	effects,	whereby	species	or	genotypes	use	206	

resources	differently	and	thus	reduce	competition.		For	example,	ecological	207	

experiments	(Crutsinger	et	al.,	2006)	and	restoration	studies	(Bischoff	et	al.,	208	

2010)	suggest	that	intraspecific	genetic	variation	(more	maternal	families	or	209	

clones)	in	plants	will	often	increase	primary	productivity	(eg.	50%	increase	in	210	
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NPP	in	12-genotype	vs.	1-genotype	plantings	of	Solidago	altissima)	and	reduce	211	

variation	in	establishment	success.		Genetic	differences	in	environmental	212	

responses	or	resource	use,	cohort	or	microsite	effects,	and	sub-population	effects	213	

are	all	examples	of	structured	variation,	though	unstructured	variation	could	214	

potentially	contribute	to	these	stabilizing	or	productivity-enhancing	effects.		215	

	216	

Besides	having	implications	for	population-	or	species-level	responses	to	217	

global	change,	intraspecific	variation	may	also	affect	species	interactions	and	218	

community	and	ecosystem	responses.		There	has	been	a	renewed	effort	in	recent	219	

years	to	link	species	traits	to	environmental	responses	and	ecosystem	processes	220	

(Lavorel	&	Garnier,	2002),	and	the	need	to	understand	the	role	of	species	221	

interactions	in	global	change	responses	has	become	increasingly	well	recognized	222	

(Gilman	et	al.,	2010).		Variation	between	individuals	in	environmental	responses,	223	

diet,	etc.	broadens	the	species	niche	for	the	species	as	a	whole	(though	224	

population-	and	individual-level	tolerances	may	be	narrow),	and	broadens	the	225	

range	of	effects	a	species	may	have	on	its	environment,	including	on	other	226	

species.		Through	heritable	or	plastic	effects,	global	change	drivers	have	the	227	

potential	to	alter	species	trait	means	distributions	in	ways	that	affect	species	228	

interactions.			229	

The	amount	of	heritable	variation	in	traits	may	be	particularly	important	230	

for	species	interactions.		Overall,	intraspecific	genetic	diversity	in	parameters	231	

affecting	species	interactions	(eg.	prey	choice)	tends	to	increase	the	number	of	232	

connections	and	decrease	interaction	strength,	which	in	turn	tends	to	increase	233	

the	stability	of	the	network	by	dampening	population	oscillations	and	reducing	234	

the	probability	of	cascading	extinctions	when	a	member	of	the	community	is	lost	235	
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(Fridley	&	Grime,	2010;	Bolnick	et	al.,	2011;	Wolf	&	Weissing,	2012).		Similarly,	236	

mathematical	models	have	shown	that	heritable	variation	in	prey	preference	237	

within	a	predator	population	can	alleviate	apparent	competition	between	prey	238	

species	and	affect	the	dynamics	of	predator	and	prey	populations	(Schreiber	et	239	

al.,	2011)	and	higher	levels	of	heritable	variation	in	both	predator	and	prey	can	240	

lead	to	more	stable	dynamics	(Saloniemi,	1993).		The	emerging	sub-field	of	241	

community	genetics	has	demonstrated	that	genetic	variation	in	a	“foundation	242	

species”	(e.g.	in	phytochemistry	of	a	common	plant)	can	have	cascading	effects	243	

on	the	abundance	and	community	composition	of	soil	and	leaf	arthropods,	244	

nutrient	cycling,	and	even	higher	trophic	levels	(Crutsinger	et	al.,	2006;	Whitham	245	

et	al.,	2008).		For	instance,	Populus	genotypes	in	a	common	garden	experiment	246	

explained	more	than	70%	of	microbial	community	composition	and	78%	of	the	247	

variation	in	microbial	biomass	(Schweitzer	et	al.,	2008).	The	amount	of	variation	248	

in	plastic	responses	to	global	change	factors,	including	shifts	in	timing	and	body	249	

size,	could	also	affect	species	interactions.		For	instance,	if	a	plant	and	a	250	

pollinator	shift	their	phenology	different	amounts	in	response	to	climate	change,	251	

this	could	result	in	a	mismatch	in	timing	that	may	negatively	affect	one	or	both	252	

populations	(Gilman	et	al.,	2010)	–	but	if	either	population	exhibits	variation	in	253	

the	extent	of	the	shift,	this	mismatch	would	be	alleviated.	254	

Evolutionary	processes	not	only	can	alter	trait	means	and	variability	255	

(Figure	2D),	but	in	some	cases	can	affect	population	dynamics	directly.		In	‘hard	256	

selection’,	there	is	a	threshold	that	individuals	must	pass	in	order	to	survive	or	257	

reproduce	(e.g.,	surviving	a	minimum	temperature)	independent	of	population	258	

size.		The	removal	of	individuals	that	do	not	pass	the	threshold	can	have	a	strong	259	

impact	on	population	size	and	persistence	(Saccheri	&	Hanski,	2006).		If	a	260	
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population	is	exposed	to	altered	environmental	conditions,	hard	selection	can	261	

reduce	its	maximum	population	growth	rate	below	replacement	levels.		If	the	262	

population	evolves	a	higher	intrinsic	rate	of	population	increase	(rmax)	in	the	new	263	

environment	before	it	goes	extinct,	then	it	can	increase	again;	this	is	called	264	

evolutionary	rescue	(Kinnison	&	Hairston	Jr.,	2007;	Aitken	&	Whitlock,	2013).		265	

In	‘soft	selection’,	the	strength	of	selection	is	frequency	and/or	density	266	

dependent	(e.g.	the	largest	20%	of	individuals	survive),	and	thus	selection	may	267	

not	directly	affect	population	size	–	though	it	can	affect	population	cycles	if,	for	268	

example,	the	competing	genotypes	have	reproductive	rates	that	respond	269	

differently	to	their	own	density	(Saccheri	&	Hanski,	2006).		For	colonizing	270	

populations,	small	evolutionary	increases	in	rmax	in	the	first	few	generations	can	271	

increase	the	probability	of	establishment	by	enabling	super-exponential	272	

population	growth	(Kinnison	&	Hairston	Jr.,	2007).		This	seems	to	have	occurred	273	

in	some	invasive	species.		For	instance,	invasive	populations	of	salmon	in	New	274	

Zealand	accumulated	changes	in	a	variety	of	traits	over	26	generations	that	more	275	

than	doubled	survival	and	fecundity	relative	to	non-local	genotypes	(Kinnison	&	276	

Hairston	Jr.,	2007).			277	

Shifts	in	the	mean	trait	value	of	a	population	may	change	the	selective	278	

environment	experienced	by	co-occurring	species,	resulting	in	eco-evolutionary	279	

interactions	(Post	&	Palkovacs,	2009).		Such	eco-evolutionary	interactions	can	280	

alter	competitive	and	trophic	dynamics.		Several	notable	examples	come	from	281	

cases	of	introduced	species	or	biological	control.		Lankau	and	Strauss	(2007)	282	

found	that	genetic	variation	in	Brassica	nigra’s	production	of	sinigrin,	an	283	

allelopathic	chemical,	promoted	community	diversity,	and	vice	versa.		High-284	

sinigrin	plants	did	well	in	heterospecific	(newly-invaded)	but	not	conspecific	285	
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neighborhoods,	causing	low-sinigrin	plants	to	tend	to	increase	in	areas	286	

dominated	by	B.	nigra,	finally	enabling	other	species	to	re-invade	low-sinigrin	287	

patches	of	B.	nigra	where	there	was	a	1.5	to	8-fold	increase	in	seedling	density	288	

compared	to	high-sinigrin	patches.		In	communities	invaded	by	the	related	289	

Allaria	petiolata,	some	resident	species	also	exhibit	evolution	of	increased	290	

tolerance	to	sinigrin,	exhibiting	up	to	a	2.8-fold	difference	in	response	to	291	

competition	(Lankau,	2012).			292	

Starting	in	the	1960’s,	many	models	have	examined	the	effect	of	evolution	293	

on	the	dynamics	of	two-species	systems	and	have	found	that	evolution	can	either	294	

stabilize	or	destabilize	interactions	(Fussman	et	al.,	2007;	Hartig	et	al.,	2014).		295	

However,	the	ecological	assumptions	in	these	models	tend	to	be	relatively	simple	296	

and	there	has	been	limited	work	on	multi-species	systems	(Fussman	et	al.,	297	

2007).		One	of	the	best	documented	empirical	examples	is	that	of	myxoma	virus	298	

and	rabbits	in	Australia:	the	virus	was	introduced	as	a	biological	control	but,	as	299	

has	been	observed	in	other	host-parasite	systems,	evolution	led	to	both	reduced	300	

virulence	of	the	virus	and	reduced	susceptibility	of	the	host	(Fussman	et	al.,	301	

2007),	dampening	oscillations	and	making	population	crashes	less	likely.	302	

	303	

Dispersal	is	a	further	crucial	component	for	understanding	the	effects	of	304	

trait	variability	on	global	change	responses	within	species	and	communities,	as	it	305	

affects	both	the	probability	of	range	shifts	and	population	expansion	as	306	

well	as	the	potential	for	evolution	(Aitken	et	al.,	2008;	Kubisch	et	al.,	2014).		307	

The	interaction	between	dispersal	and	evolution,	coupled	with	interspecific	308	

interactions,	will	likely	determine	the	extent	to	which	species	respond	to	climate	309	
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change	via	either	range	shifts	or	local	adaptation	(Brooker	et	al.,	2007;	Aitken	et	310	

al.,	2008;	Atkins	&	Travis,	2010;	Bocedi	et	al.,	2013).	311	

Dispersal	ability	is	a	trait	that	can	evolve	and	exhibit	plasticity	itself	312	

(Ronce,	2007).		Variation	in	dispersal	affects	population	spread	rates.		Dispersers	313	

are	likely	to	be	a	non-random	subset	of	the	population	in	terms	of	their	behavior	314	

(Wolf	&	Weissing,	2012),	size,	or	other	traits	(Nathan	et	al.,	2011).		This	may	315	

result	in	important	structured	variation	between	new	and	old	populations,	and	316	

can	result	in	selection	on	dispersal	traits	(Shine	et	al.,	2011).		Such	increases	in	317	

dispersal	ability	have	been	documented	in	the	invasive	cane	toad	and	invasive	318	

plants,	as	well	as	in	insects	undergoing	climate-linked	range	expansions,	and	can	319	

accelerate	range	shifts	(Shine	et	al.,	2011).		Conversely,	if	most	dispersers	have	320	

low	survival	due	to	unsuitability	of	the	matrix	between	habitat	patches,	or	if	poor	321	

dispersers	are	left	behind,	selection	or	trait	sorting	can	favor	reduced	dispersal	322	

ability	(Shine	et	al.,	2011;	Travis	et	al.,	2012;	Moran	&	Alexander,	2014).			323	

However,	these	changes	in	dispersal	traits	may	be	transitory	on	a	population	324	

scale,	as	dispersal	ability	can	trade	off	with	other	traits	(Travis	et	al.,	2012),	such	325	

as	competitive	ability,	that	are	more	important	in	high-density	populations.		326	

Besides	evolving	itself,	dispersal	ability	strongly	affects	the	amount	of	327	

local	genetic	variation	in	populations.		This	local	variation	tends	to	increase	the	328	

speed	of	evolutionary	responses	because	alleles	advantageous	in	new	329	

environment	may	already	be	present	at	moderate	frequencies	(Barrett	&	330	

Schluter,	2007;	Wolf	&	Weissing,	2012).			Because	species	that	have	small	or	331	

highly	fragmented	populations	and	low	genetic	diversity	may	have	limited	332	

potential	for	adaptation	to	changing	future	conditions,	managers	are	increasingly	333	

considering	“genetic	restoration”	or	assisted	movement	to	boost	local	genetic	334	
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diversity	(Hoffmann	&	Sgro,	2011;	Aitken	&	Whitlock,	2013).		The	direction	of	335	

gene	flow	also	matters:	gene	flow	from	historically	warmer	areas	and	between	336	

areas	of	similar	historical	climate	may	increase	the	probability	that	alleles	337	

advantageous	under	climate	change	will	be	present;	gene	flow	from	the	range	338	

center	toward	the	trailing	edge,	however,	is	likely	to	be	unfavorable	(Moran	&	339	

Alexander,	2014).			340	

	341	

Modeling	approaches	and	current	applications	incorporating	intraspecific	342	

variation		343	

Population	models	344	

Three	common	approaches	for	modeling	trait	variability	in	local	345	

populations	are	matrix	models	(MM),	integral	projection	models	(IPMs),	and	346	

individual-based	models	(IBMs).		All	three	can	incorporate	unstructured	347	

variation	by	adding	stochastic	effects	to	account	for	“random”	environmental	348	

variation	or	demographic	stochasticity.		All	can	also	include	population-349	

ecological	relationships	such	as	density	dependence.		They	differ	more	strongly	350	

in	their	ability	to	include	structured	variation.		All	approaches	can	be	351	

incorporated	into	landscape-	or	range-wide	models,	as	discussed	in	the	next	352	

section.	353	

Matrix	models	are	an	extension	of	classical	population	models	–	instead	354	

of	modeling	one	population	with	uniform	trait	values	they	divide	a	population	355	

into	several	age	or	size	classes,	each	of	which	is	uniform	in	its	trait	values.		A	356	

transition	matrix	represents	fecundity,	mortality	and	the	transition	between	357	

classes.		The	obvious	limitation	of	these	models	is	that	they	neglect	variation	in	358	

demographic	rates	within	classes	(Boyce,	1977).		Particularly	if	there	is	size-359	



	 16	

dependent	growth	or	growth	correlations	within	classes	(2B),	this	can	lead	to	360	

errors	in	prediction	(Pfister	&	Stevens,	2003).		Careful	use	of	natural	history	to	361	

define	age	or	stage	divisions	(Figure	2A)	will	reduce,	but	may	not	eliminate,	this	362	

problem	(Grear	&	Elderd,	2008).		363	

Matrix	models	can	include	structured	variation	in	phenotypic	traits,	even	364	

heritable	variation,	but	only	if	the	traits	are	discrete,	and	the	mode	of	inheritance	365	

simple.		For	instance,	Kruger	and	Lindstrom	(2001)	divided	buzzards	into	three	366	

color	morphs	which	differed	in	reproductive	success.		In	stage-based	models,	the	367	

distribution	of	ages	within	a	stage	or	variation	in	the	length	of	time	an	individual	368	

occupies	a	stage	can	affect	dynamics,	especially	transient	dynamics	(de	Valpine	369	

et	al.,	2014).	370	

Integral	projection	models	(IPMs)	can	be	viewed	as	an	extension	of	371	

matrix	models,	where	differences	within	a	population	are	modeled	by	372	

continuous	distributions	instead	of	discrete	classes	(Ellner	&		Rees,	2007).	373	

Compared	to	matrix	models,	this	makes	it	easier	to	incorporate	multiple	374	

differences	between	individuals,	such	as	differences	within	a	size	or	age	class	375	

(Zuidema	et	al.,	2010;	de	Valpine	et	al.,	2014).		376	

Heritability	can	be	included	in	more	complex	IPMs	by	introducing	a	377	

distribution	of	trait	values	within	an	age	class,	and	making	this	distribution	in	378	

offspring	traits	dependent	on	parental	traits	(Coulson	et	al.,	2010).	Changes	in	379	

the	environment	(Hoffmann	&	Merila,	1999)	and	in	the	amount	of	genetic	380	

variation	in	a	population	due	to	immigration,	selection,	or	bottlenecks	(Bryant	et	381	

al.,	1986;	van	Straalen	&	Timmermans,	2002;	Lavergne	&	Molofsky,	2007)	can	382	

affect	heritability.		Model	projections	based	on	a	fixed	heritability	estimate	383	

should	therefore	only	be	applied	over	short	time	periods.		While	cumulative	384	
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effects	(such	as	survival	effects	of	past	reproduction)	are	typically	not	included	385	

in	an	IPM,	age-class	models	can	identify	differences	in	individual	growth	rates	386	

because	fast	growing	individuals	will	be	unusually	large	for	their	age.		For	387	

instance,	Jansen	et	al.	(2012)	found	that	in	a	tropical	understory	palm	growth	388	

differences	between	individuals	persisted	over	a	lifetime	and	that	fast	growers	389	

had	a	1.8-fold	greater	contribution	to	population	growth.		IPMs	can	also	be	used	390	

to	explore	trait	evolution	using	an	evolutionarily	stable	strategy	(ESS)	approach,	391	

though	this	does	not	account	for	transitory	dynamics	(Ellner	&	Rees,	2007).	392	

Individual-based	models	(IBMs),	as	the	name	suggests,	model	a	393	

population	by	describing	each	individual	separately,	using	state	variables	such	as	394	

age,	size,	location,	genotype,	and	fecundity	(Grimm	&	Railsback,	2005).		This	395	

allows	tracking	cumulative	changes	over	the	lifecycle	of	each	individual	(e.g.	396	

increasing	size	or	reproductive	history),	as	well	as	any	conceivable	variation	397	

between	individuals,	including	genetic	variation	in	environmental	responses.		398	

Besides	evolution,	they	can	also	incorporate	spatial	heterogeneity	and	individual	399	

movement	(DeAngelis	&	Mooij,	2005;	Dytham	et	al.,	2014).		400	

There	are	a	number	of	additional	advantages	associated	with	an	401	

individual-based	approach.		Like	real	populations,	IBMs	have	a	discrete	number	402	

of	individuals	rather	than	a	continuous	value,	making	them	naturally	suitable	for	403	

capturing	effects	of	demographic	stochasticity	in	small	populations,	as	well	as	for	404	

simulating	spatial	dynamics	within	a	population.		Also,	they	allow	one	to	405	

explicitly	model	allelic	frequency	and	diversity,	avoiding	the	problem	of	406	

assuming	constant	heritability.		For	instance,	Kuparinen	et	al.	(2010)	simulated	407	

the	evolution	of	growing-season	timing	in	Pinus	and	Betula,	using	a	simple	multi-408	
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locus	model	of	bud-burst	and	bud-set	date,	over	100	years	of	climate	change,	and	409	

found	that	a	higher	adult	mortality	rate	reduced	evolutionary	lags.		410	

Due	to	these	advantages,	and	supported	by	growing	computing	power	411	

which	makes	it	possible	to	simulate	large	numbers	of	individuals,	IBMs	have	412	

become	increasingly	popular.		A	common	application	is	individual-based	forest	413	

gap	models	that	project	the	influence	of	environmental	factors	on	productivity	414	

and	species	composition	(Smith	et	al.,	2001).		Individual-based	models	are	also	415	

used	for	fisheries	models	and	for	population	viability	analysis	(DeAngelis	&	416	

Mooij,	2005;	Frank	et	al.,	2011).		Comparing	IBMs	with	different	levels	of	detail	417	

to	data	from	real	systems	can	help	to	identify	which	types	of	variation	are	most	418	

important	in	these	systems	(DeAngelis	&	Mooij,	2005;	Benton,	2012).		IBM	419	

simulations	can	also	be	used	to	test	when	the	simplifying	assumptions	of	other	420	

model	classes	are	likely	to	lead	to	problems	(Pfister	&	Stevens,	2003).		421	

	422	

Modelling	landscape-	or	range-scale	dynamics		423	

In	many	global	change	applications,	the	focus	is	not	so	much	on	424	

describing	the	change	in	local	populations,	but	rather	on	capturing	spatial	425	

structure	and	large-scale	dynamics.		For	this	purpose,	two	approaches	exist	that	426	

allow	including	trait	variability.			The	first	consists	of	using	known	spatial	427	

extensions	of	the	above-described	process-based	population	models.		The	second	428	

is	to	extend	widely	used	statistical	approaches	such	as	correlative	species-429	

distribution	models	to	include	trait	variability.		We	cover	both	options	in	this	430	

section,	as	well	as	the	application	of	these	concepts	in	dynamic	vegetation	431	

models.	432	

	433	
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Metapopulation	or	metacommunity	models	are	extensions	of	non-434	

spatial	population	models	that	describe	spatial	structure	through	assuming	a	435	

number	of	connected	local	populations	(Ovaskainen	&	Hanski,	2004).		Within	436	

each	local	population	(patch),	population	dynamics	may	be	modeled	using	any	of	437	

the	approaches	previously	described.		For	example,	the	CD	FISH	model,	a	438	

simulator	incorporating	population	genetics,	demography,	and	stream	439	

connectivity,	has	shown	how	landscape-level	connectivity	in	stream	systems	can	440	

constrain	population	vulnerability	to	environmental	change	in	salmonid	species	441	

(Landguth	et	al.,	2014).		Spatial	Integral	Projection	Models	(SIPMs)	combine	442	

IPMs	with	models	of	dispersal	to	predict	spread	across	a	landscape	(Jongejans	et	443	

al.,	2011),	which	can	be	useful	in	understanding	the	spread	of	invasive	species	or	444	

native	species	under	climate	change.		In	principle,	this	approach	allows	one	to	445	

naturally	scale-up	the	effects	of	intra-specific	variation	within	and	between	446	

populations	to	examine	its	impact	on	larger	scales.		In	practice,	the	447	

computational	demands	of	this	approach	often	limit	the	size	of	the	landscape	448	

that	can	be	simulated.	449	

	450	

Species	distribution	models	(SDMs)	aim	to	predict	the	occurrence	451	

probability	of	a	species	given	environmental	variables	and	therefore	the	limits	452	

and	size	of	its	geographic	range.		The	simplest	and	still	most	common	approach	453	

is	to	correlate	presences	(and	absences	if	available)	with	environmental	454	

variables.		Various	criticisms	have	been	against	correlative	SDMs,	mostly	455	

relating	to	the	fact	that	the	realized	niche	(where	the	species	does	occur)	can	456	

differ	from	the	fundamental	niche	(where	it	could	occur)	for	a	number	of	457	

reasons,	including	disequilibrium	with	the	environment,	biotic	interactions,	and	458	
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dispersal	and	source-sink	dynamics	(Guisan	&	Thuiller,	2005).		Still,	correlative	459	

SDMs	are	widely	used	because	they	make	use	of	the	museum	or	herbarium	460	

records	and	climate	data	that	are	easily	available	(Moran	&	Alexander,	2014).			461	

Due	to	the	challenges	of	using	correlative	SDMs	to	predict	range	462	

dynamics,	particularly	in	the	presence	of	biotic	interactions,	intraspecific	463	

variability	and	evolutionary	potential,	there	has	been	a	steady	movement	464	

towards	including	more	processes	in	these	models	(Dormann	et	al.,	2012).		For	465	

example,	physiological	SDMs	make	use	of	knowledge	about	physiological	limits	466	

(Porter	et	al.,	2002;	Buckley,	2008;	Rödder	et	al.,	2009;	Buckley	et	al.,	2011)	and	467	

behavior	(Kearney	et	al.,	2009).		While	most	physiological	SDMs	to	date	have	468	

been	applied	to	ectothermic	organisms	or	plants,	known	relationships	of	body	469	

size	to	metabolic	rate	and/or	heat	exchange	(Yarbrough,	1971)could	be	more	470	

widely	applied	to	birds	or	mammals	as	well.		Hybrid	SDMs	add	a	dispersal	471	

model	on	top	of	a	classical	SDM	(De	Cáceres	&	Brotons,	2012)(Marion	et	al.,	472	

2012),	while	Dynamic	Range	Models	include	both	explicit	population	dynamics	473	

and	dispersal	(Schurr	et	al.,	2012).		SDMs	can	also	be	“stacked”	to	examine	effects	474	

of	environmental	changes	on	biodiversity,	either	assuming	that	species	475	

distributions	are	independent	(Guisan	&	Rahbeck	2010)	or	interacting	(Clark	et	476	

al.,	2013).	477	

In	all	such	extensions	of	classical	SDMs,	intraspecific	differences	can	be	478	

included	in	principle,	but	such	applications	are	still	rare.		When	intraspecific	479	

differences	are	included,	the	most	common	approach	is	to	describe	differences	480	

in	the	environmental	response	of	subpopulations	by	fitting	separate	SDMs	to	481	

each	subpopulation	across	a	species’	range.		This	has	mainly	been	done	in	trees,	482	

for	which	good	provenance	(common	garden)	study	data	are	often	available	483	
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(Savolainen	et	al.,	2007).		An	example	is	the	Phenofit	model,	which	predicts	tree	484	

presence	based	on	the	link	between	phenology	and	reproductive	success,	can	485	

allow	different	populations	different	responses	(Chuine	&	Beaubien,	2001).		486	

Incorporating	intraspecific	population	variation	in	that	way	can	alter	predictions	487	

of	global	change	responses,	making	them	either	more	(Valladares	et	al.,	2014)	or	488	

less	(Garzon	et	al.,	2011)	severe.			For	instance,	incorporating	population-level	489	

differences	in	Pinus	contorta	yielded	similar	results	to	a	species-level	model	for	490	

current	distribution,	but	the	models	incorporating	genetic	diversity	projected	491	

less	than	half	as	much	range	loss	even	without	migration	(Oney	et	al.,	2013).		492	

Ideally,	such	studies	will	be	based	on	or	complemented	by	data	confirming	493	

genetic	differences	in	environmental	responses,	as	apparent	differences	between	494	

subpopulations	could	also	be	caused	by	biotic	interactions	or	other	non-genetic	495	

factors.	496	

	497	

There	are	multiple	examples	in	the	recent	literature	of	metapopulation	or	498	

SDM	models	being	used	to	investigate	the	potential	impact	of	evolution	on	global	499	

change	responses.		For	instance,	using	sequentially	updated	SDMs,	Urban	et	al.	500	

(2007)	showed	that	the	maximum	annual	temperature	of	areas	occupied	by	the	501	

invasive	cane	toad	(Chaunus	[Bufo]	marinus)	had	increased	from	1975	to	2005,	502	

interpreted	by	the	authors	as	niche	expansion	into	increasingly	extreme	habitats.		503	

Models	can	also	identify	when	such	adaptation	could	alter	dynamics.		Kearney	et	504	

al.	(2009)	developed	a	mechanistic	niche	model	incorporating	a	quantitative	505	

genetic	model	to	investigate	whether	evolution	of	egg	desiccation	resistance	in	506	

the	dengue	mosquito	Aedes	aegypti	might	enable	it	to	expand	its	range,	and	507	

found	that	it	would	take	17.4%	less	time	to	reach	Darwin	under	climate	change	508	
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with	a	heritability	0.5	vs.	0.15.		Similarly,	a	dynamic	vegetation	model	developed	509	

by	Kramer	et	al.	(2010)	to	explore	climate	change	responses	in	European	beech	510	

incorporated	a	quantitative	genetic	submodel	for	budburst	and	stomatal	511	

conductance,	and	found	that	adaptive	changes	could	occur	at	the	leading	and	512	

trailing	edge	over	just	2-3	generations.		Interactions	between	landscape	features,	513	

the	evolution	of	dispersal	traits,	and	spread	rates	can	also	be	investigated	with	514	

IBMs	(Travis	et	al.,	2012).	515	

An	important	caveat	is	that	most	models	that	aim	to	project	the	effects	of	516	

evolutions,	with	a	few	exceptions	(Kramer	et	al.,	2010),	have	not	been	517	

systematically	validated,	for	example	by	reproducing	the	current	pattern	of	local	518	

adaptation.		We	suggest	that	results	should	therefore	not	be	interpreted	as	519	

predictions,	but	rather	as	indicators	that	suggest	a	potential	impact	of	evolution	520	

on	environmental	responses.	It	is	also	unclear	how	well	the	true	genetic	521	

structure	of	ecologically	important	traits	are	approximated	by	the	assumptions	522	

made	in	particular	models	(e.g.	ten	two-allele	loci),	and	it	is	increasingly	523	

recognized	that	models	of	species	presence	or	persistence	need	to	take	into	524	

account	phenotypic	plasticity	(Chevin	et	al.,	2010;	Valladares	et	al.,	2014).	525	

	526	

Dynamic	global	vegetation	models	(DGVMs)	are	individual-	or	527	

population-based	population	models	that	have	a	focus	on	predicting	the	528	

composition	and	dynamics	of	the	vegetation	by	describing	physiological	529	

processes	such	as	photosynthesis	and	water	uptake,	biotic	interactions,	and	530	

disturbances.		In	principle,	the	structure	of	these	models	is	well	suited	to	assess	531	

the	effects	of	intraspecific	variability	in	those	processes.		However,	due	to	data	532	

limitations	and	computational	constraints,	most	DGVMs	currently	still	describe	533	
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vegetation	dynamics	and	community	interactions	in	terms	of	broad	functional	534	

types	that	summarize	a	potentially	large	group	of	similar	species.		Hence,	535	

potential	for	improvement	exists	regarding	the	representation	of	interspecific	as	536	

well	as	intraspecific	trait	differences(Hartig	et	al.,	2012).			537	

In	recent	years,	various	studies	have	considered	options	to	include	trait	538	

variability	in	DGVMs.		One	approach	is	motivated	by	the	observation	that	539	

environmental	drivers	explain	52%	of	global	variation	in	traits	(van	Bodegom	et	540	

al.,	2014).		Allowing	traits	to	vary	within	PFTs	following	observed	trait-climate	541	

relationships	can	therefore	improve	the	match	of	predicted	to	observed	542	

vegetation	types	(Verheijen	et	al.,	2013).	Similarly,	Stahl	(2014)	demonstrated	543	

that	a	few	easily-measured	species-level	traits	could	help	predict	environmental	544	

range	limits	in	trees,	which	could	impose	useful	constraints	on	a	DGVM.		Rödder	545	

et	al.	(2009)	found	that	including	physiological	limits	in	an	SDM	for	slider	turtles	546	

enabled	better	prediction	of	their	invasive	range;	including	similar	limits	on	547	

vegetation	types	could	provide	similar	benefits	in	DGVMs.	Trait	variation	could	548	

also	be	assumed	to	arise	from	a	large	potential	for	plasticity	(Nicotra	et	al.,	2010)	549	

or	genetic	variation	(Kramer	et	al.,	2010;	Valladares	et	al.,	2014).		Adaptive	550	

global	dynamic	vegetation	models	construct	communities	of	trait	combinations	551	

by	filtering	those	traits	that	are	most	competitive	and	able	to	coexist	in	a	given	552	

environment	(Scheiter	et	al.,	2013).			553	

	554	

To	conclude	the	review	of	the	state-of-the-art	in	the	field	of	modelling	555	

trait	variability:	all	commonly	used	population	model	types	could	accommodate	556	

trait	variability	to	a	much	greater	degree	than	is	the	current	practice.		When	trait	557	

variability	is	included,	conclusions	can	be	substantially	altered.		The	inclusion	of	558	
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trait	variability	has	been	limited	by	computational	and	data	constraints.		The	559	

former	constraint	is	easing	as	computers	become	more	powerful,	the	latter	will	560	

be	discussed	in	the	next	section.		Finally,	we	emphasize	that	no	one	modeling	561	

approach	is	ideal	for	all	situations,	but	that	model	choice	rather	depends	on	how	562	

the	model	will	be	used	and	whether	there	is	sufficient	data	and/or	563	

understanding	of	process	to	parameterize	and	justify	a	more	complex	model.	564	

	565	

Data	and	methods	for	parameterizing	models	that	include	trait	variation	566	

and	trait	evolution	567	

Recent	advances	in	modeling	techniques	(see	above)	provide	increasing	568	

flexibility	to	ecologists	and	evolutionary	biologists	to	model	and	understand	the	569	

consequences	of	trait	variation.		However,	they	also	highlight	the	need	for	570	

gathering	new	data	that	allows	more	direct	estimates	of	structured	and	571	

unstructured	trait	variation,	and	the	need	of	making	existing	data	better	572	

available	to	researchers.	573	

Data	sources	574	

Especially	at	the	local	scale,	useful	data	for	estimating	variation	in	575	

important	traits	or	demographic	rates	often	already	exist.		For	example,	data	on	576	

phenotype,	growth,	fecundity,	and	survival	are	typically	collected	at	the	577	

individual	level	(Clark	et	al.,	2011),	enabling	one	to	construct	trait	distributions.		578	

If	multiple	measurements	are	available	for	each	individual,	structured	variation	579	

(e.g.	individuals	that	consistently	grow	faster	or	slower)	can	be	distinguished	580	

from	unstructured	variation.		Such	longitudinal	data	can	also	be	used	to	581	

disentangle	plastic	versus	evolutionary	responses	to	global	change,	using	582	

approaches	such	as	the	‘animal	model’	(Gienapp	et	al.,	2008)	–	especially	if	family	583	
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relationships	are	also	known.		For	instance,	phenotypic	plasticity	in	red	squirrels	584	

accounted	for	62%	of	an	18-day	advance	in	average	birth	date,	while	13%	was	585	

attributable	to	evolutionary	change	(Berteaux	et	al.,	2004).				586	

However,	data	are	rarely	synthesized	in	this	manner,	and	instead	are	587	

usually	aggregated	for	analysis	–	for	instance,	into	species-level	means	and	588	

variances	(Clark	et	al.,	2011).		Unless	the	original	data	are	included	as	an	589	

appendix,	it	is	usually	impossible	to	obtain	the	individual-level	measurements	590	

from	the	published	literature,	which	greatly	complicates	meta-analysis	and	591	

means	that	information	can	easily	be	lost.		Fortunately,	journals	and	funding	592	

agencies	have	been	encouraging	or,	more	recently,	requiring	researchers	to	593	

archive	data	in	a	more	accessible	format.		Trait	databases	are	currently	being	594	

constructed	for	many	taxa.			Plants	seem	to	be	better	represented	than	animals	595	

(but	see	the	linked	trait	databases	at	http://scales.ckff.si/scaletool/).		The	TRY	596	

database,	for	instance,	contains	5.6	million	trait	entries	for	100,000	plant	species	597	

around	the	world,	and	preliminary	analyses	showed	that	up	to	40%	of	overall	598	

variation	in	a	trait	can	be	intraspecific	(Kattge	et	al.,	2011).		Such	data	can	be	599	

used	to	better	define	plant	functional	types,	and	to	give	an	idea	of	the	range	of	600	

values	a	trait	may	take	within	a	species,	though	for	many	species	it	is	as	yet	too	601	

patchy	to,	for	example,	compare	trait	distributions	between	multiple	populations	602	

of	a	species.	603	

Large-scale	observational	networks	can	also	provide	useful	data.		Again,	604	

this	kind	of	data	tends	to	be	more	abundant	for	plants	than	for	animals.		For	605	

instance,	Forest	Inventory	and	Analysis	(FIA)	censuses	have	tracked	tree	sizes	606	

and	identities	in	plots	across	the	United	States	for	decades,	and	such	data	can	be	607	

used	to	examine	variation	in	global	change	responses	between	life	stages,	species	608	
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types,	or	regions,	or	to	parameterize	individual-based	forest	models	(Canham	et	609	

al.,	2006;	Bell	et	al.,	2014).		The	new	National	Ecological	Observatory	Network	610	

(NEON),	now	coming	online,	while	not	explicitly	geared	to	investigate	611	

intraspecific	variation,	will	be	collecting	data	such	as	size	and	reproductive	612	

status	for	select	species,	phenology,	soil	microbial	metagenomes,	as	well	as	613	

detailed	measurements	of	the	physical	environment	(Keller,	2010).		Data	on	614	

plants’	plastic	phenological	responses	to	climate	can	be	obtained	from	both	615	

observation	networks	(eg.	https://www.usanpn.org/)	and	meta-databases.	616	

However,	to	fully	investigate	the	role	of	intraspecific	variation	in	species’	617	

environmental	responses,	new	data	specifically	collected	for	this	purpose	are	618	

needed.		In	addition	to	the	need	for	accessible	trait-variation	data	for	a	broader	619	

range	of	species,	some	research	questions,	such	as	those	relating	to	the	role	of	620	

evolution	in	global	change	responses,	require	specialized	experiments	or	621	

observations.		For	instance,	while	provenance	study	data	can	be	useful	for	622	

understanding	tree	responses	to	climate,	these	studies	rarely	included	very	long-623	

distance	transfers,	or	populations	from	or	test	sites	at	the	environmental	limits	624	

(Leites	et	al.,	2012).		Another	important	consideration	is	that	covariation	in	traits	625	

can	be	important	for	population	and	eco-evolutionary	dynamics,	so	sampling	626	

schemes	should	be	designed	to	make	calculation	of	covariances	possible	-	long-627	

term	demographic	data	are	particularly	valuable	(Saether	&	Bakke,	2000).				628	

Theoretical	models	can	suggest	where	it	is	important	to	consider	629	

variation,	and	therefore	where	more	data	is	required.		For	instance,	key	factors	630	

affecting	the	potential	rate	of	evolutionary	change,	and	therefore	the	probability	631	

of	extinction	or	persistence	in	a	population	facing	environmental	change,	include	632	

demographic	properties	of	populations	(e.g.	generation	time	and	maximum	633	
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population	growth	rate),	the	strength	of	selection,	and	the	available	genetic	and	634	

environmental	variance	in	the	key	traits	(Chevin	et	al.,	2010).		They	can	also	635	

suggest	when	the	costs	of	selection	might	lead	to	extinction	(Burger	&	Lynch,	636	

1995).	Gienapp	et	al.	(2013)	provide	a	good	example	of	applying	such	models	to	637	

real	populations.		Another	key	area	in	which	more	data	is	needed	to	understand	638	

global	change	responses	is	range	shifts,	as	it	is	unknown	in	most	cases	whether	639	

species	ranges	are	currently	limited	by	abiotic	factors,	biotic	interactions,	640	

dispersal,	or	lack	of	genetic	variation	(Sexton	et	al.,	2009).	641	

Distinguishing	genetic	(or	epigenetic)	variation	from	plastic	responses	to	642	

the	environment	tends	to	require	either	detailed,	long-term	observational	data	643	

that	enables	one	to	build	a	pedigree	(Wilson	et	al.,	2010)	or	common-garden	644	

experiments	in	which	different	genotypes	are	reared	in	one	or	more	common	645	

environments	(Blanquart	et	al.,	2013).		Unlike	the	incidental	individual-level	data	646	

discussed	above,	which	may	be	able	to	generally	distinguish	structured	vs.	647	

unstructured	variation,	these	types	of	studies	are	usually	specifically	designed	to	648	

investigate	the	genetic	components	of	intraspecific	variation.		They	are	thus	649	

extremely	valuable	for	understanding	how	and	when	to	include	genetic	variation	650	

in	models	of	environmental	responses.		However,	because	of	high	cost	in	time	651	

and	money,	these	studies	are	rarer	than	short-term	observational	trait	652	

measurements,	and	have	similar	issues	of	accessibility	if	the	data	have	not	been	653	

archived.	654	

If	we	could	better	identify	the	genetic	basis	of	the	trait(s)	of	interest,	655	

extrapolating	heritabilities	outside	of	tested	environments	would	become	more	656	

feasible.		Genome-wide	association	studies	(GWAS),	usually	making	use	of	single-657	

nucleotide	polymorphisms	(SNPs)	are	becoming	more	widely	used	as	a	means	of	658	
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identifying	candidate	genes	for	particular	traits	of	interest.		SNP	variation	can	be	659	

correlated	either	with	variation	in	phenotype	(e.g.	water	use	efficiency),	or	with	660	

variation	in	environment	(e.g.	climatic	water	deficit)	(Neale	&	Kremer,	2011).		661	

Results	are	usually	qualitatively	consistent	with	other	approaches.			However,	662	

the	amount	of	variation	explained	is	typically	lower	than	the	total	heritability	663	

because	rare	variants	unique	to	local	families	are	often	missed,	multiple	664	

functional	alleles	may	exist,	and	linkage	disequilibrium	and	epistasis	may	665	

interfere	with	the	analysis	(Brachi	et	al.,	2011).		Some	of	the	missing	heritability	666	

may	also	be	attributable	to	epigenetic	variation	(Bossdorf	et	al.,	2008).		A	range-667	

wide	sample	will	have	low	power	to	detect	significant	associations	with	668	

phenotype	if	adaptive	alleles	are	locally	common	but	globally	rare,	so	sampling	669	

must	be	structured	to	account	for	this	(Brachi	et	al.,	2011).		Methods	for	670	

incorporating	realistic	functional	genetic	submodels	into	models	of	species’	671	

responses	to	global	change	are	still	in	the	early	stages	of	development.			672	

Neutral	genetic	variation	(e.g.	microsatellites),	while	not	always	closely	673	

correlated	with	functional	variation	(Holderegger	et	al.,	2006),	is	useful	for	674	

estimating	the	degree	of	gene	flow	between	populations,	hybridization,	or		675	

dispersal	ability	(Aldrich	et	al.,	2003;	Ashley,	2010;	Moran	&	Clark,	2012).		676	

Dispersal	ability	and	population	connectivity	can	also	be	estimated	based	on	677	

physical	traits	in	systems	for	which	there	are	good	mechanistic	models,	such	as	678	

wind	dispersal	of	seeds	(Kuparinen,	2006),	via	inverse	modeling	of	observations	679	

of	dispersed	individuals	(Jones	&	Muller-Landau,	2008),	or	through	tracking	of	680	

tagged	individuals.		Regardless	of	the	method,	it	is	advisable	to	take	into	account	681	

intraspecific	variation	–	for	instance,	considering	that	adult	trees	may	vary	in	682	

seed	production.			683	
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	684	

A	further	challenge	connected	to	data	on	trait	variability	is	statistical	685	

analysis	and	the	connection	of	these	data	to	models.	Many	of	the	data	types	we	686	

have	discussed	above	should	probably	be	treated	with	hierarchical	statistical	687	

models	that	allow	including	underlying	dependencies	between	traits	as	well	as	688	

spatial,	taxonomic	and	phylogenetic	structure	in	the	data.		Such	multilevel	689	

models	describe	how	individual	responses	vary	according	to	the	context,	help	690	

avoid	over-fitting	because	they	don’t	use	independent	“individual”	parameters,	691	

and	enable	the	proper	propagation	of	uncertainty	from	parameters	to	692	

predictions	(Clark,	2003).			If	vital	rate	calculations	are	based	on	capture-693	

recapture	methods,	it	may	also	be	important	to	account	for	size-	or	stage-effects	694	

on	capture	or	detection	probabilities	(Punt	et	al.,	2006).		695	

For	process-based	models	such	as	IPMs,	DRMs	(Dynamic	Range	Models),	696	

or	DGVMs,	data	can	be	used	in	two	ways:	one	can	use	statistical	approaches	to	697	

infer	individual	parameters	or	subsets	of	the	model	parameters	first,	and	then	698	

use	the	process-based	model	to	calculate	the	consequences	of	those	parameter	699	

estimates.		An	alternative	is	to	infer	model	parameters	inversely	for	the	entire	700	

model	simultaneously,	using	the	raw	observations.		For	DRMs	and	SDMs,	for	701	

example,	this	is	often	still	possible	in	a	hierarchical	Bayesian	approach	(Bykova	702	

et	al.,	2012;	Marion	et	al.,	2012).		For	more	complex	models	such	as	DGVMs,	it	703	

may	become	necessary	to	resort	to	simulation-based	inference	methods	to	704	

calibrate	model	parameters	(Hartig	et	al.,	2011).		Bayesian	approaches	allow	705	

mixing	parameter	estimates	from	independent	analysis	and	from	calibration,	706	

which	allows	a	flexible	mix	of	both	approaches	(Hartig	et	al.,	2012).		707	

	708	
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Conclusions	709	

When	variation	matters	710	

Generally,	intraspecific	variation	is	likely	to	be	important	for	711	

understanding	responses	to	global	change	a)	for	phenotypic	traits	that	affect	712	

demography,	b)	when	the	relationship	of	interest	is	a	non-linear	function	of	the	713	

trait	(Jensen’s	inequality),	c)	in	small	populations,	where	demographic	714	

stochasticity	can	cause	mean	demographic	rates	or	phenotypic	traits	to	fluctuate,	715	

d)	when	variation	in	the	trait	of	interest	is	structured	(because	structured	716	

variation	cannot	be	accounted	for	merely	by	adding	stochasticity	to	a	model),	717	

and	e)	if	the	timescale	of	interest	spans	multiple	generations,	and	the	trait	is	718	

likely	to	be	under	directional	selection	(e.g.	drought	tolerance	in	a	warming	719	

environment).	720	

Mechanistic	models	can	be	helpful	in	identifying	which	traits	or	721	

demographic	rates	have	the	largest	effect	on	a	process	of	interest,	and	where	722	

variation	might	be	most	important.		For	instance,	Nathan	et	al.	(2011)	found	that	723	

for	wind-dispersed	trees,	the	plant	traits	most	important	for	migration	rate	724	

tended	to	be	1)	age	at	maturity,	2)	post-dispersal	survival,	3)	seed	terminal	725	

velocity,	4)	fecundity,	5)	tree	height,	and	6)	time	between	seed	crops.		726	

Conversely,	natural	history	data	can	suggest	what	traits	should	be	allowed	to	727	

vary	in	models:	in	Pinus	sylvestris,	for	instance,	there	is	little	variation	in	seed	728	

wing	loading	because	seed	mass	and	wing	size	are	correlated,	but	isolated	trees	729	

have	more	seeds	than	those	in	dense	populations	(Debain	et	al.,	2003).				730	

		Incorporating	variation	in	global	change	models	731	

Although	models	differ	in	their	ability	to	include	trait	variation,	it	seems	732	

from	our	analysis	that	the	opportunity	for	including	and	analyzing	trait	733	
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variability	hasn’t	been	fully	explored	or	exploited	in	any	of	the	modeling	734	

approaches	we	considered.		The	main	reason	seems	the	lack	of	data	and	735	

computational	restrictions.		As	both	limitations	should	ease	in	the	coming	years,	736	

we	hope	that	these	capabilities	will	become	more	widely	used.	737	

Data	needs	for	the	future	738	

Computational	limits	can	be	expected	to	improve	without	active	effort	of	739	

the	ecological	community,	but	the	limits	on	data	will	not.		Existing	data	collected	740	

at	the	individual	level	should	be	more	frequently	used	to	investigate	intraspecific	741	

variation.		The	growing	availability	of	databases	and	data	archives	mean	that	742	

future	meta-analyses	and	models	will	be	able	to	rely	less	heavily	on	published	743	

trait	statistics	and	therefore	will	be	able	to	address	variation	more	accurately.		744	

However,	for	distinguishing	causes	of	structured	variation	that	may	have	745	

different	effects	(e.g.	genetic	vs.	environmental)	more	specialized	experiments	746	

are	required.		Data	from	these	variation-focused	studies	also	needs	to	be	made	747	

more	widely	available.	748	

Summary	749	

Intraspecific	variation	has	been	gaining	attention	in	ecological	theory.		Empirical	750	

studies	quantify	and	classify	variation	in	real	populations,	while	developments	in	751	

modeling	techniques	enable	the	effects	of	variation	to	be	assessed	in	more	752	

sophisticated	ways.		Successfully	integrating	theoretical	insights	with	these	new	753	

data	and	modeling	techniques	will	be	crucial	for	making	robust	predictions	of	754	

species	responses	to	global	change.		755	
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Figure	Captions	1118	

	Figure	1:		At	the	landscape	scale	(top),	trait	variation	is	shaped	by	large-scale	1119	

environmental	gradients.	Within	local	sites	(bottom),	phenotypic	variation	in	1120	

each	species	is	shaped	by	genetic	variation	and	by	plastic	responses	to	the	local	1121	

biotic	and	abiotic	environment.		This	variation	affects	species	interactions	with	1122	

one	another	and	with	the	environment,	ultimately	impacting	individual	fitness.		1123	
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Differences	in	fitness	feed	back	to	affect	genetic	variation.		Local	genetic	1124	

variation	is	also	affected	by	dispersal	between	populations	(white	arrows	at	top).	1125	

Figure	2:	A)	Variation	in	a	trait	deriving	from	developmental	processes	(e.g.	1126	

changes	in	offspring	number	with	size	or	age)	can	be	accounted	for	–	for	1127	

example,	by	defining	age/size	classes	to	minimize	intra-class	variation	(dashed	1128	

lines).		However,	variation	in	natural	populations	is	not	so	simple.	B)	If	growth	1129	

rate	and	offspring	number	both	depend	on	current	size,	then	small	differences	in	1130	

initial	size	can	cause	the	relationship	between	age	and	fecundity	to	vary	between	1131	

individuals.		In	this	example,	larger	individuals	grow	faster.		C)	Even	without	1132	

such	growth	correlations,	individuals	can	differ	in	the	relationship	between	the	1133	

predictor	and	response	variables,	affecting	the	shape	of	the	function.		D)	If	such	1134	

differences	are	heritable,	then	trait	distributions	and	the	population	processes	1135	

that	depend	on	them	may	change	over	time.	1136	
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