Lawrence Berkeley National Laboratory

Recent Work

Title
MONTHLY PROGRESS REPORT FOR JUNE CONTROL TECHNOLOGY FOR IN-SITU OIL SHALE RETORTS

Permalink
https://escholarship.org/uc/item/3m0892pv

Authors
Persoff, Peter
Hall, Bill
Mehran, Mohsen.

Publication Date
1981-07-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
July 20, 1981

TO: Charles Grua, Brian Harney, and Art Hartstein
FROM: Peter Persoff, Bill Hall, and Mohsen Mehran
RE: Monthly Progress Report for June
 Control Technology for In-Situ Oil Shale Retorts
 LBID-423

TASK 3. BARRIER OPTIONS

Evaluation of Surface Retorted Spent Shale for Cementing and Pozzolanicity

An attractive option for disposal of surface related spent shales is using them as construction materials or as ingredients in blended cements. To explore this possibility, we are testing two samples of spent shale for pozzolanicity (ASTM C 311) and cementing (ASTM C 109). In the test for pozzolanicity, the strength of a mortar cube made with portland cement is compared to one made with 35% of the cement replaced with spent shale. The ratio of strengths of the two cubes is termed "pozzolanic activity index". To meet current standards for pozzolans, this index must be ≥ 0.75 (cement + spent shale strength : cement only strength) and the spent shale must also meet certain requirements of chemical analysis and fineness. The pozzolanic activity indices of the two spent shales tested were 0.65 and 0.73, failing this test. Other spent shales will be evaluated when they are received.

Surface Disposal of Spent Shale

Literature review on air and water quality impacts of spent shale disposal is continuing. In the laboratory, particle size distributions of spent shale samples are being determined by sedimentation velocity, using the method described by Galehouse (1971), while equipment for permeability measurement on compacted spent shale has been ordered.

Permeability Measurements on Spent Shale Grouts

Permeability measurements have been completed on one specimen each of grouts R-2, R-3, and R-4. Formulae of these grouts are shown in Table 1. These grouts contain only spent shale and 1/4 of 1% lignosulfonate
fluidizer; R-4 also contains 9 \(\frac{1}{2} \) Wyodak fly ash (Class C) and \(\frac{1}{2} \) reagent gypsum. The results of these measurements are shown in Figure 1. Tests of duplicate specimens are planned.

Penetration of Grout Through Rubble

Experimental work on this phase of the project is completed and a final report is in preparation.

TASK 5. LEACHING OPTIONS

Leaching of Organics from Spent Shale

Experimental leaching work is now complete. Samples of leachate from the large column runs have been submitted for analysis for major ions and for organic characterization.

Work continues on fitting the experimental total organic carbon and electrical conductivity data to the leaching and transport model. We have modeled the particles as cylinders with solute transport occurring only in the radial direction, which corresponds to bedding planes. This conforms to the observed anisotropy of permeability of raw and spent shale. With this modification, one column run has given a good fit of TOC data to the model; work is continuing on the fitting of data from other runs.

Chapter drafts of the final report are now being prepared.

TASK 6. GEOHYDROLOGIC MODIFICATION

Solute Transport Model Development

Work continued on the development of a model for simultaneous fluid and mass transport with unsaturated flow. The model, as modified for this work by the exclusion of stress calculations, was verified this month for heat or solute transport. Attention was next directed to the problem of a sharp concentration front moving through the flow medium. Large concentration gradients can cause instability in the calculations; one method for overcoming this problem is to apply weighting functions to the upstream concentrations. This is now being implemented in the program.
<table>
<thead>
<tr>
<th></th>
<th>R-2</th>
<th>R-3</th>
<th>R-4</th>
<th>R-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lurgi Spent Shale, g</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Craig Fly Ash (Class F), g</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Wyodak Fly Ash (Class C), g</td>
<td>0</td>
<td>0</td>
<td>9.5</td>
<td>0</td>
</tr>
<tr>
<td>Gypsum, g</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Lignosulfonate Fluidizer, C2-503</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lignosulfonate Fluidizer, C2-512</td>
<td>0</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Water</td>
<td>74.8</td>
<td>71.8</td>
<td>69.1</td>
<td>63.5</td>
</tr>
</tbody>
</table>
REFERENCE

PRESSURE DROP THROUGH SPECIMEN

- △ 30 psi
- ○ 40 psi
- □ 50 psi

GROUT
- R-2
- R-3
- R-4

COEFFICIENT OF PERMEABILITY, CM/SEC +

CONFINING PRESSURE, PSI
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.