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Abstract: Behavioral syndromes are widely recognized as important for ecol-

ogy and evolution, but most predictions about ecological impacts are based on con-
ceptual models and are therefore imprecise. Borrowing insights from the theory of de-
mographic heterogeneity, we derived insights about the population-dynamic effects of
behavioral syndromes. If some individuals are consistently more aggressive than oth-
ers, not just in interspecific contests, but also in foraging, mating, and anti-predator
behavior, then population dynamics could be affected by the resulting heterogeneity
in demographic rates. We modeled a population with a boldness–aggressiveness syn-
drome (with the individual’s trait constant through life), showing that the mortality
cost of boldness causes aggressive individuals to die earlier, on average, than their
non-aggressive siblings. The equilibrium frequency of the aggressive type is strongly
affected by the mortality cost of boldness, but not directly by the reproductive bene-
fit of aggressiveness. Introducing aggressive types into a homogeneous non-aggressive
population increases the average per-capita mortality rate at equilibrium; under many
conditions, this reduces the equilibrium density. One such condition is that the repro-
ductive benefit of aggression is frequency dependent and the population has evolved
to equalize the expected fitness of the two types. Finally, if the intensity of aggres-
siveness can evolve, then the population is likely to evolve to an evolutionarily stable
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trait value under biologically reasonable assumptions. This analysis shows how a
formal model can predict both how a syndrome affects population dynamics and how
the population processes constrain evolution of the trait.

Keywords: Behavioral syndrome; demographic heterogeneity; population dy-
namics; equilibrium; boldness–aggression tradeoff

Lay summary: Aggression may be good for the individual but bad for the
group. In many species, some individuals have an aggressive “personality” that helps
in some circumstances (beating out rivals for a mate) but not in others (staring down
a predator). Using mathematical models, we show that the evolution of personalities
to a mixture that maximizes individual fitness can reduce the population’s overall
abundance. This may increase the risk that the population goes extinct.
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Introduction
Individual behavioral variation is now recognized as important for ecology and evo-
lution (e.g., Dall et al., 2012). Of particular interest are systematic behavioral
differences among individuals that are consistently manifested through time; these
are often called animal personalities (Wolf and Weissing, 2012). Often species also
manifest behavioral syndromes, in which two or more behavioral traits covary across
individuals (e.g., Sih et al., 2004); these have been observed in a range of taxa, includ-
ing mammals, birds, fish, and a variety of invertebrates (e.g., Sih and Watters, 2005;
Riechert and Hedrick, 1993; Gosling, 2001). In a species with a behavioral syndrome,
an individual is classified as having a particular behavioral type (BT), often quantified
along axes such as aggression, activity, sociability, or fearfulness. In a population ex-
pressing a behavioral syndrome, individuals appear to manifest maladaptive behavior
in some ecological contexts: for example, while an aggressive individual may be more
effective at mating, its associated boldness makes it more vulnerable to predation (Sih
et al., 2004). Proximally, these behavioral correlations can be understood in terms
of the architecture of behavior (Wolf and Weissing, 2010); in particular, they might
be caused by genetic correlations, which in turn may arise from pleiotropy, linkage
disequilibrium caused by a past history of correlated selection, or other molecular
mechanisms such as physically linked regulatory regions (Dochtermann and Dinge-
manse, 2013). Additive genetic variance can lead to behavioral types being heritable
(e.g., Dingemanse et al., 2002), such that BT frequency may change in response to
selection. A number of studies (e.g., (Botero et al., 2010; Dubois et al., 2010; Hous-
ton, 2010; Luttbeg and Sih, 2010; Mathot and Dall, 2013; McElreath and Strimling,
2006; McNamara et al., 2009; Wolf et al., 2008, 2007) have considered the kinds of
underlying mechanisms that might lead to the evolution of BTs; building on these
studies, the present work assumes that distinct BTs exist within a population, and
explores the demographic consequences of having multiple BTs in a population.

Sih et al. (2012) and Wolf and Weissing (2012) hypothesized a variety of ecolog-
ical consequences of behavioral syndromes, including effects on population dynamics.
Aggressive behavior might stabilize density-dependent equilibria, through a shift from
scramble to interference competition (Sih et al., 2012); a similar effect may emerge
if aggressive individuals cannibalize less aggressive individuals (Pruitt et al., 2008;
Andersson et al., 2007). In contrast, increasing frequencies of aggressive individuals
may destabilize an equilibrium if they have a faster “pace of life” (Réale et al., 2010),
if temporal behavioral correlations introduce time lags in the population’s response
to fluctuating environmental conditions (Sih et al., 2012), or if frequency-dependence
leads to coupled oscillations of BT frequency and population abundance (Sinervo and
Calsbeek, 2006). Finally, behavioral syndromes may affect the intensity of density
dependence, with potential impacts on equilibrium density: interaction rates may
increase if aggressive individuals are more active (Pintor et al., 2009) and hence en-
counter conspecifics more frequently (Sih et al., 2012), but they may decrease if the
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various behavioral types use different resources and habitats (Wolf and Weissing,
2012). Intriguing as these hypotheses are, few are based on formal population models
(a notable exception is the study by Fogarty et al., 2011, showing how heterogeneity
in a sociality syndrome could affect invasion speed), and thus we do not know the
range of conditions over which they hold.

There is some empirical evidence suggesting that behavioral syndromes may
modify demographic rates such as birth and mortality rates. For example, a review
by Biro and Stamps (2008) found that aggressiveness and boldness were consistently
associated with increased birth rate, and a meta-analysis by Smith and Blumstein
(2008) found that aggression was positively associated with birth rate and nega-
tively associated with survival. These studies involved small and idiosyncratic sets
of species, so we cannot draw strong conclusions about the generality of the results.
However, when such effects occur, behavioral syndromes will lead to among-individual
variation in demographic rates, which has come to be called “demographic hetero-
geneity” in population dynamics (e.g., Fox et al., 2006).

Theoretical studies linking behavioral and life history heterogeneity have mostly
examined how the latter can generate the former. For example, Wolf et al. (2007)
describe a model in which individuals may choose to delay reproduction in hope of
finding a more favorable environment situation. If the fitness functions can main-
tain a stable polymorphism of life history strategies, the heterogeneity in life history
selects for correlated behaviors across individuals. In a conceptual model, Stamps
(2007) suggests that personality and or behavioral syndromes might create or main-
tain among-individual heterogeneity in the position along a growth-mortality tradeoff,
with heterogeneity among individuals in their “preferred” growth rate being driven
by non-behavioral factors. However, the position on the tradeoff is assumed to be
fitness-neutral, so potential impacts of behavioral variation on population dynamics
or evolution are not explored.

There is a body of quantitative theory in population ecology showing that,
depending on within-population correlation structure (Engen et al., 1998) and the
underlying stochastic process, demographic heterogeneity can change the variance in
both demographic outcomes and in the population growth rate due to demographic
stochasticity (Vindenes et al., 2008; Kendall and Fox, 2003). Furthermore, persis-
tent survival heterogeneity (i.e., phenotypic variation that creates lifelong differences
in instantaneous or annual mortality risk) in long-lived organisms can increase the
population’s density-independent growth rate (Kendall et al., 2011), increase its equi-
librium density (Stover et al., 2012), and reduce its extinction risk (Conner andWhite,
1999). In contrast, persistent birth rate heterogeneity alone has more limited effects
on dynamics (Kendall et al., 2011; Stover et al., 2012). The differential effects of
heterogeneity in the two types of vital rates can be understood by recognizing that
differences in survival accumulate multiplicatively with age: as a cohort ages, the
more “frail” individuals tend to die off and the mean survival of the cohort increases.
This “cohort selection” (Vaupel and Yashin, 1985) means that the expected survival
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(averaged across all age classes in the population) is greater than would be found in a
population with the same baseline value but no heterogeneity in survival. Differences
in birth rates, however, accumulate only additively, and cohort selection on birth rate
will only occur if birth rate is correlated with annual survival rate.

A number of studies use formal theoretical models to investigate the conditions
needed for the evolution of BT polymorphisms. Variation in metabolic rate, thought
to be the likely basis for BT polymorphisms in some early studies, has been shown
to have a complex relationship with BTs (Houston, 2010; Mathot and Dall, 2013).
Luttbeg and Sih (2010) asked what sorts of ecological strategies might lead to coex-
istence of multiple BTs and showed that one plausible scenario was state-dependent
safety (i.e., individuals with superior resources can best cope with predation risk, a
positive feedback). Alternatives involving negative feedbacks (caution by those with
more resources because they have more to lose, and boldness by those with fewer
resources, to avoid starvation) cannot, they found, lead to stable coexistence of mul-
tiple BTs. Still other studies have considered conditions necessary for the evolution of
behavioral consistency (McElreath and Strimling, 2006; Wolf et al., 2008, 2011; Wolf
and McNamara, 2012), how variation in individual quality can lead to BT polymor-
phisms (Botero et al., 2010), and how particular frequency-dependent scenarios can
lead to BT polymorphisms (Dubois et al., 2010). We build on these results by asking
a different question: given that BTs have evolved—by whatever mechanism—what
are the demographic consequences for the population as a whole?

Models of demographic heterogeneity lead us to expect that any behavioral
syndrome that introduces persistent heterogeneity in survival will have impacts on
the low-density population growth rate and on equilibrium abundance, in ways not
addressed by Sih et al. (2012) or Wolf and Weissing (2012). Here, we develop a
population model that incorporates a syndrome in which aggressive individuals are
more successful at reproducing, but experience greater mortality (e.g., because of
energetic costs of aggression, or because of greater exposure to predation); this cre-
ates a within-population pace-of-life syndrome (POLS) (Réale et al., 2010) in which
an individual’s behavioral trait is associated with its expected “speed” of life his-
tory. The notion that POLS might vary within populations is not novel (Réale et al.,
2010); however, we present the first quantitative model of population dynamics to
examine how variation in POLS within a population can affect ecological dynamics
and evolutionary outcomes. Using this model, we show four quite general results.
First, the equilibrium BT frequency is directly controlled by the mortality cost of
aggressiveness but is affected only indirectly by the reproductive benefit of aggression
(via a parent-offspring correlation). Second, a population with a polymorphism for
behavioral types will typically have a different density-dependent equilibrium than
one made up entirely of the non-aggressive BT, and the polymorphic equilibrium is
most often lower. Such effects on density could affect the species’ local extinction risk
and influence on the ecological community. Third, if parents evolve to produce an off-
spring BT distribution that equalizes the expected fitness of both types (as has been
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found by Pruitt and Goodnight (2014) in a social spider), then the equilibrium pop-
ulation abundance will always be lower than that for a monomorphic, non-aggressive
population. Finally, we show that selection on the strength of the aggression trait may
lead to a stable evolutionarily singular value (stable ESS); while the resulting level
of aggressiveness depends on details of model functions, the existence and stability
of the ESS are nearly guaranteed if the mortality cost is an accelerating function of
aggressiveness. By establishing quantitative links between population dynamics and
behavioral syndromes we hope to open up new realms of empirical inquiry in both
fields.

Model description
For simplicity of exposition, we modeled a population with two behavioral types,
using the subscripts a and n to identify aggressive and non-aggressive individuals, re-
spectively. As has been documented in various species (e.g., three-spined stickleback;
Huntingford, 1976), aggressive individuals can monopolize mates or good territories,
and thus have a higher birth rate, β: all else being equal, βa > βn. The other compo-
nent of the syndrome is that aggressive individuals are bolder in contexts that may
increase their mortality risk; thus, we model non-aggressives as having death rate µ
and aggressives as having death rate (1 + γ)µ, where γ > 0 is the additional risk
born by the aggressive BT. Thus, aggressive individuals have a fitness advantage over
non-aggressive individuals if

βa − (1 + γ)µ > βn − µ (1)

or

βa − βn > γµ. (2)
Table 1 provides a reference for all symbols used in the paper.

If aggressive individuals always hold a fitness advantage, then, if there is an
additive genetic component to the syndrome, we would expect the aggressive BT to
become fixed. Thus, to model a population that maintains multiple BTs (as is often
observed in natural populations), we must either invoke a genetic mechanism such
as heterozygote advantage (which has not been demonstrated empirically), assume
there is no heritable component to the syndrome (which contradicts empirical ev-
idence), or assume that the fitness difference between the BTs varies with density
and/or frequency. We adopt the latter assumption in our analysis. In particular, we
adopt the plausible assumption that aggressive individuals lose reproductive fitness
by interacting with one another (e.g., Pruitt and Riechert, 2009; Lichtenstein and
Pruitt, 2015). Thus, defining the frequency of aggressive BTs in the population as

wa = Na

Na +Nn

, (3)
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Table 1: Symbols used in this paper.

Symbol Definition

Variables, parameters, and indices in model

N Population abundance

wa Frequency of aggressive BT1 in population

π Frequency of aggressive BT among newborns

β Birth rate

µ Death rate

γ Proportional increase in death rate experienced by aggressive individuals

α Intensity of aggressive trait

a Subscript to indicate the aggressive BT

n Subscript to indicate the non-aggressive BT

Quantities and symbols used in model analysis

x∗ Asterisk: Superscript indicating that quantity x is evaluated at

demographic equilibrium (dN/dt = 0)

x̄ Overbar indicates the mean of quantity x across the population
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Table 1: (cont.)

Symbol Definition

N∗
0 Equilibrium abundance of monomorphic non-aggressive population

w̃a Frequency of aggressive BT in population at demographic equilibrium when

average birth rates equal average death rates

ŵa Frequency of aggressive BT in population at demographic equilibrium when

differences between birth rates equal differences between death rates

Quantities and symbols used in ESS analysis

R Subscript indicating resident population

I Subscript indicating invader population

B Birth rate of invader in environment created by the resident population

sx(y) Invasion exponent: per-capita growth rate of invader with phenotype y in

environment created by resident with phenotype x

1Behavioral type
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the birth rate of both BTs declines with wa:

∂βi

∂wa

< 0, (4)

but that of the aggressive BT does so faster than that of the non-aggressive BT:

− ∂βa

∂wa

> −∂βn

∂wa

. (5)

Finally, we assume that the birth rate of both BTs declines with density in the
same way:

∂βa

∂N
= ∂βn

∂N
< 0, (6)

where N = Na + Nb is the total population size. An example of birth rate functions
displaying these qualitative features is illustrated in Figure 1.

It is, of course, biologically plausible that frequency or density-dependence could
instead (or in addition) occur in the death rate, or that the density-dependence is
frequency dependent. We chose these particular assumptions to better draw upon the
insights provided by the models in Stover et al. (2012). However, we do not expect
that alternate assumptions about density- and frequency-dependence will qualita-
tively change our conclusions.

For the model to be explicitly about the boldness–aggressiveness behavioral
syndrome, we must specify constraints and tradeoffs on the various functions and pa-
rameters (for notational simplicity, we assume a perfect correlation between boldness
and aggression). We characterize the phenotype of the aggressive behavioral type
with the parameter α (which we call aggressiveness), and we assume that it evolves
slowly (allowing us to treat it as fixed in analyses of population dynamics). We let
the birth rates depend on α as well as on the frequency of the aggressive BT, wa,
and density, N, and assume that increasing the aggressiveness parameter increases
the birth rate difference between the two BTs at a given frequency and density:

∂

∂α
[βa (α,wa, N) − βn (α,wa, N)] > 0. (7)

Furthermore, we expect that mortality is a function of α, so that increasing the
aggressiveness parameter will also increase boldness, resulting in a greater mortality
penalty:

∂

∂α
γ(α) > 0. (8)

This tradeoff is needed to prevent runaway selection on the aggressiveness parameter.
We need one more component to build the population model: the frequency of

each BT among the newborns. Behavioral syndromes have been demonstrated to be
heritable (Dingemanse et al., 2002), but the underlying mechanisms have not been
described. Therefore we assume simply that a certain fraction, πa, of an aggressive
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individual’s offspring are aggressive; 1 − πa of them are non-aggressive. Likewise, a
fraction πn of a non-aggressive individual’s offspring are non-aggressive (πa and πn

need not have the same value). The explicit functional forms of πa and πn depend
on the details of the inheritance mechanisms, and even with simple two-sex genetic
models (e.g., one locus and two alleles with dominance, or quantitative variation
in an underlying latent trait) the functions will be quite complex (for example, if
the behavior is controlled by an underlying continuous latent trait, πa and πn will
depend on the frequency of aggressives in the population; Falconer, 1989). However,
under a wide range of genetic mechanisms and mating systems, it is reasonable to
assume that the rate at which a BT reproduces itself increases with the frequency
of the BT; only when inheritance is near-perfect (e.g., parthenogenic with mutation
or strong assortative mating) will the rates be independent of BT frequency (Crow
and Kimura, 1970; O’Donald, 1980; Holsinger, 1991; Hartl and Clark, 1997). Thus
we assume

∂

∂wa

πa ≥ 0 (9)

∂

∂wa

πn ≤ 0. (10)

We can now write the population model:

dNa

dt
= πa(wa)Naβa(α,wa, N) + [1 − πn(wa)]Nnβn(α,wa, N) − µ [1 + γ(α)]Na

dNn

dt
= πn(wa)Nnβn(α,wa, N) + [1 − πa(wa)]Naβa(α,wa, N) − µNn.

(11)

It is sometimes convenient to first analyze a model in which the fraction of newborns
that are aggressive is always a fixed value, which we call π. While our general anal-
ysis does not require this assumption, there may be cases in which this is a valid
description of the biology, as when an individual’s BT is a plastic response to the de-
velopmental environment (including controls imposed by the parents). Even in this
case, the frequency of each BT among an individual’s offspring (π) and the magni-
tude of aggression in the aggressive BT (α) may still be under selection. Under this
simplifying assumption, πa(wa) = 1 − πn(wa) ≡ π, and eqns. (11) can be written

dNa

dt
= π [Naβa(α,wa, N) +Nnβn(α,wa, N)] − µ(1 + γ)Na (12)

dNn

dt
= (1 − π) [Naβa(α,wa, N) +Nnβn(α,wa, N)] − µNn, (13)

where π is the fraction of offspring with the aggressive BT.
These models differ structurally from the model of Stover et al. (2012) in three

important ways: the flexible function for the fraction of newborns in each BT, which
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Figure 1: Example of density- and frequency-dependent birth rates that could arise
from an aggression syndrome. Birth rates of both aggressive (heavy lines) and non-
aggressive (thin lines) individuals decline with the frequency of aggressives in the
population, but the relative advantage of aggression declines with increasing frequency
of the aggressive BT. Birth rates of both behavioral types also decline with overall
density (low density shown in solid lines, high density with dashed lines).

allows us to include both BT heritability and adaptive control of newborn BT fre-
quency; birth rate functions that are both more flexible (the Stover model assumed
linear density dependence in which the heterogeneity parameter affected both the
slope and intercept) and allow for frequency dependence; and association of the “base-
line” death rate with the non-aggressive BT rather than with the average across BTs.
Nevertheless, many insights and analysis techniques can be carried over from Stover
et al. (2012).

Note that some of inequalities (1–2) and (4–8) might be relaxed (become equal-
ities) under special circumstances such as low density. However, it is reasonable to
assume that they apply when the population is near its equilibrium density, which is
where we conduct our analysis.

Model analysis
There are a number of questions we want to answer about the model. First, for a
given level of aggression, α, with associated boldness cost γ(α), what is the equi-
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librium frequency of the aggressive BT (w∗
a)? Second, is the associated equilibrium

abundance (N∗) greater or less than the equilibrium abundance that would be found
in a population made up only of non-aggressive individuals (N∗

0 )? Third, is there
an evolutionarily singular strategy (ESS) for the fraction of newborns that have the
aggressive BT (π)? The value of the ESS approach here is that it describes a pre-
dicted state to which populations tend in the long run, by its definition: an ESS is a
strategy that, if fixed in a population, cannot be invaded by an alternative strategy
that begins at low frequency. Finally, given a tradeoff between the benefits and costs
of aggression, is there an ESS for α?

As written, equations (11) are too general to explicitly solve for N∗ and w∗
a.

Even with the simplest form of the birth rate functions (linear dependence on density
and frequency), the formulas for the equilibrium are too complex to provide much
insight. However, we can get some qualitative (if sometimes vague) answers to these
questions by looking at the model from different perspectives. For example, rather
than attempting to examine four-dimensional figures (birth rates as a function of
total population size, the fraction of aggressives in the population, and the measure
of aggressiveness), in Fig. 1 we examine a two-dimensional slice: for fixed α, we focus
on how wa, the frequency of aggressives, might affect birth rates at two population
densities. Much of the analysis below uses a similar heuristic approach.

Equilibrium frequency of the aggressive BT
We can find the equilibrium BT frequency through a judicious manipulation of eqs.
(12) and (13). We divide both sides of eq. (12) by π and both sides of eq. (13) by
1 − π, and then subtract the second resulting equation from the first. This gives

1
1 − π

dNn

dt
− 1
π

dNa

dt
= µ

[
(1 + γ)Na

π
− Nn

1 − π

]
. (14)

At equilibrium, both dNn

dt
and dNa

dt
are zero; applying this to eq. (14) and rearranging

gives
w∗

a ≡ N∗
a

N∗
a +N∗

n

= π

π + (1 + γ)(1 − π) , (15)

where the stars indicate that the model is being evaluated at equilibrium. Thus the
aggressive BT’s equilibrium frequency depends only on its birth frequency and the
mortality cost of boldness; increasing γ reduces the frequency of aggressives in the
population relative to their frequency at birth (Fig. 2). This result is a consequence of
cohort selection (Kendall et al., 2011): as a cohort of newborns ages, the aggressive
BTs die faster, and so their frequency in the cohort declines. At equilibrium, the
population growth rate is zero, and so the age and BT distributions of the population
match the life table of a cohort. Thus, the aggressive BT frequency in the population
is found by averaging the frequency over all ages in a cohort, weighting by the fraction
surviving to a given age, which will be less than the frequency at birth.
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Figure 2: Equilibrium frequency of the aggressive BT in the population (w∗
a) as a

function of the mortality cost of aggression (γ). The curves are for different values of
the aggressive BT frequency at birth (π), at equal intervals from 0.1 to 0.9.
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Note that if the population is growing, then the age structure will tend to be
biased towards younger individuals, relative to the equilibrium population. Younger
cohorts have a higher frequency of aggressive BTs, since they have not been subject
to so much cohort selection, and so a growing population will tend to have a higher
aggressive BT frequency than will be found at equilibrium. By a similar argument, a
population that is declining from above the equilibrium will have a lower aggressive
BT frequency than the population will have at equilibrium.

When the BT is heritable, we can still analyze the model at the demographic
equilibrium, where πa (w∗

a) and πn (w∗
a) are constant. Here, we can write

π∗ = πa (w∗
a)N∗

aβ
∗
a + [1 − πn (w∗

a)]N∗
nβ

∗
n

N∗
aβ

∗
a +N∗

nβ
∗
n

= πa (w∗
a)w∗

aβ
∗
a + [1 − πn (w∗

a)] (1 − w∗
a) β∗

n

w∗
aβ

∗
a + (1 − w∗

a) β∗
n

, (16)

where β∗
i are the birth rates evaluated at w∗

a and N∗. Inserting eq. (16) into eq.
(15) and solving for w∗

a will give the equilibrium frequency. Unfortunately, for most
inheritance functions this will not be analytically tractable, but it will still be true
that the frequency of aggressive BTs will be lower in the population as a whole than
among the newborns. In fact we can be more specific: at equilibrium, the average
death rate in the population is the harmonic mean of the newborn death rates, as
was shown by Stover et al. (2012).

Note that if a second gender carries the genes for the behavioral syndrome but
does not express them, that gender will not be subject to cohort selection. Thus, the
non-expressing gender will have a genotype frequency that matches that of newborns
(and differs from that of the expressing gender). This substantially complicates the
expression for the inheritance functions, but does not qualitatively change the funda-
mental result above.

Aggression’s effect on the equilibrium population density
As a point of reference, we take the equilibrium density of a population made up of
only non-aggressive individuals (which we call N∗

0 ), and we ask whether a population
with both BTs has a population equilibrium that is larger or smaller than this refer-
ence. N∗

0 is defined as the density at which the non-aggressive birth rate matches its
death rate: βn (0, N∗

0 ) = µ (in this section we are holding α constant so we suppress
it for notational simplicity). If, near wa = 0, the aggressive BT’s birth rate is lower
than its death rate, then the aggressive BT cannot invade the population, and so
we focus on the situation where βa (0, N∗

0 ) > µ(1 + γ). Increasing the aggressive BT
frequency, wa, while holding N = N∗

0 constant leads to declines in the birth rates of
both BTs, but does not affect the death rates of either BT (because birth rates are
density-dependent but death rates are not; Fig. 3). We can also define average birth

14



and death rates:

β̄ (wa, N) = waβa (wa, N) + (1 − wa)βn(wa, N) (17)
µ̄(wa) = waµ(1 + γ) + (1 − wa)µ

= µ(1 + waγ). (18)

While the death rates of each BT are constant, the average death rate increases
linearly with wa because the aggressive type has a greater death rate. The average
birth rate may show more complex patterns, because birth rates can also be density-
dependent. In general, given constraints (5) and (6), the average birth rate will be
maximized for a positive value of wa and its derivative with respect to wa will be
greatest at wa = 0, as shown in Fig. 3. At N = N∗

0 , the average birth and death
rates are equal at wa = 0. If the aggressive BT enters the population at low frequency
(so wa > 0), then, given the model assumptions there are three general cases we might
see.

Case 1. First, the average birth rate might be greater than the average death rate
for all values of wa. This would require that the average birth rate increases quite
rapidly with wa. In particular, inspection of Fig. 3 reveals that this case requires that
the birth rate increase faster than the death rate when the aggressive BT is rare and
that the aggressive BT’s birth rate exceeds its death rate even when wa = 1. This
can be shown to require:

− ∂βn

∂wa

∣∣∣∣∣
wa=0

< βa(0, N∗
0 ) − βn(0, N∗

0 ) + µγ (19)

βa(1, N∗
0 ) > µ(1 + γ). (20)

Case 2. The average birth rate might be less than the average death rate for all
values of wa. This would require that the non-aggressive birth rate decline sufficiently
rapidly with wa when the aggressive BT is rare. In particular:

− ∂βn

∂wa

∣∣∣∣∣
wa=0

> βa(0, N∗
0 ) − βn(0, N∗

0 ) + µγ. (21)

Case 3. The average birth rate might be larger than the average death rate for
small wa and be less than the average death rate for large wa as is illustrated in Fig.
3. The average birth and death rates are equal at an intermediate value of wa which
we call w̃a.

In all three cases, if the population is found at BT frequency wa and total
abundance N∗

0 , then abundance will increase if β̄ (wa, N
∗
0 ) > µ̄(wa) and decrease if

β̄ (wa, N
∗
0 ) < µ(wa) (of course, wa will then change dynamically as well). Now, we

know that at equilibrium, the equilibrium BT frequency is w∗
a, defined by eq. (15).

15



We also know that at equilibrium, where N = N∗, the average birth and death rates
must be equal. Therefore, it is only possible for N∗ = N∗

0 under the conditions
of case 3 and when w∗

a = w̃a. If β̄ (w∗
a, N

∗
0 ) > µ̄(w∗

a), then N∗ > N∗
0 ; likewise, if

β̄ (w∗
a, N

∗
0 ) < µ̄(w∗

a), then N∗ < N∗
0 .

Thus, the introduction of the aggressive behavioral syndrome into a naive pop-
ulation will increase the equilibrium abundance only if the aggressive BT has a very
strong fitness advantage (taking into account the boldness cost) even at high frequen-
cies (case 1) or if the equilibrium frequency of the aggressive BT is relatively low
(case 3). Under case 2 or most circumstances of case 3 the syndrome will reduce the
equilibrium abundance.

Evolution of the birth frequency of the aggressive BT
For a given set of demographic parameters and inheritance functions, (N∗, w∗

a) is the
demographic equilibrium of the population model. However, it will not, in general,
eliminate the fitness differences between the two BTs. To see this, suppose that case
3 applies and that w∗

a = w̃a, so that the demographic equilibrium is at (N∗
0 , w̃a),

as shown in Fig. 3. At this point, the average birth rate equals the average death
rate. However, the birth and death rates are not equal for either of the BTs. In
particular, the non-aggressive BT must have negative net fitness, because its net
fitness when N = N∗

0 is zero only when wa = 0 and declines with increasing aggressive
BT frequency. To achieve zero net fitness at the population level, the aggressive BT
must have positive fitness. At the demographic equilibrium, the population growth
rate is zero, and the reproductive value at birth for each BT is its birth rate divided by
its death rate. At the equilibrium in Fig. 3, these are unequal. Just as Fisher (1930)
showed with regard to the evolution of primary sex ratios, there will be selection on
parents to increase the frequency of the type with the higher reproductive value (here,
the aggressive BT) among their offspring.

If the inheritance function is purely genetic, with a fixed genetic architecture,
then there is no way to respond to selection at this particular demographic equi-
librium. However, if there are environmental influences (expressed directly or via
epigenetic mechanisms) on an individual’s BT, then parents may be able to increase
the frequency of the aggressive BT among their offspring, effectively changing the
inheritance function (for example, androgen levels in egg yolk can influence offspring
behavior, although this has not yet been explicitly linked to a behavioral syndrome;
Ruuskanen and Laaksonen, 2010). Increasing the frequency of aggressives among
newborns π will, in turn, increase the demographic equilibrium w∗

a to a value greater
than w̃a. As shown in the previous section, this will lead to an equilibrium density
that is less than N∗

0 . As long as the birth rates of the two BTs respond in the same
way to density, then at this new equilibrium, under the conditions of case 3, there will
be a wa > w̃a, which we call ŵa, that satisfies eq. (1)—that is, the differences between
the birth rates match the differences between the death rates. At the associated de-
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Figure 3: Birth and mortality rates of the aggressive BT (heavy lines), the non-
aggressive BT (thin lines), and the population average (grey lines), as a function of wa,
the frequency of aggressive BTs in the population. The overall population density is at
the demographic equilibrium for a population made up of only non-aggressive BTs (at
wa = 0, non-aggressive birth rate equals non-aggressive mortality rate). The vertical
line indicates w̃a, the positive frequency of aggressives that would reach demographic
equilibrium at the same density (average birth rate equals average mortality rate). If
0 < wa < w̃a then the average birth rate exceeds the average mortality rate and the
population would grow until it reaches demographic equilibrium at a higher density
(lowering the birth rate curves; see Fig. 1). If wa > w̃a then the average birth rate is
less than the average mortality rate and the population would decline until it reaches
demographic equilibrium at a lower density.
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Figure 4: Birth and mortality rates of the aggressive BT (heavy lines), the non-
aggressive BT (thin lines), and the population average (grey lines), as a function of
wa, the frequency of aggressive BTs in the population. The overall density is at the
demographic equilibrium for wa = ŵa, the frequency of aggressives at which the two
BTs have equal relative fitness (the difference in fecundities equals the difference in
mortalities). Because ŵa > w̃a, this demographic equilibrium is at a density lower
than that of the non-aggressive-only equilibrium, allowing the frequency-dependent
fecundities to be elevated.

mographic equilibrium then not only do births match deaths for the population as a
whole but also for each of the BTs (Fig. 4). Further increases in wa lead to a fitness
advantage for the non-aggressive BT, so ŵa is the evolutionarily stable BT frequency.
An analogous argument applies in case 2.

In contrast, in case 1, where βa(1, N∗
0 ) > µ(1 + γ), there is no frequency at

which the two BTs have equal fitness at a demographic equilibrium (mathematically,
ŵa > 1), so the evolutionarily stable BT frequency is 1 (fixation of the aggressive
BT). Only in this last situation (at which we would no longer recognize a syndrome,
as there is no behavioral variation) would evolution to a stable BT frequency result in
a demographic equilibrium density that is larger than the density of a non-aggressive
population (N∗

0 ).
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ESS for aggressiveness
In addition to the BT frequency, the strength of the aggressiveness trait (α) might
itself be subject to selection. Incorporating an explicit genetic model for α would add
a great deal of complexity to the model, so we instead take an adaptive dynamics
approach, and look for an evolutionarily singular strategy (ESS) for aggressiveness
(Geritz et al., 1998). In particular, we focus on the conditions allowing a resident
population (with a given aggressiveness parameter, αR) that is at demographic equi-
librium can be invaded by a population with a different aggressiveness parameter
(αI). We start by stating the results, and then give the mathematical derivation.

To our existing model, we need to add one new quantity: the birth rate of
an aggressive individual with trait αI in the presence of a given abundance and BT
frequency of a resident population with trait αR. We call this Ba (αI , αR, w

∗
a, N

∗);
note that it will not be the same as the resident birth rate, βa (αR, w

∗
a, N

∗). We also
assume that the resident evolves to a birth rate frequency that equalizes the fitnesses
of the two BTs, so that w∗

a = ŵa.
The evolutionarily singular strategy, α∗, is the value of aggressiveness that sat-

isfies the condition
∂Ba

∂αI

= µ
∂γ

∂α
(22)

when evaluated at αI = αR = α. In other words, from the invader’s perspective, the
birth rate benefits of increased aggression are exactly matched by the death rate costs
when the invader and resident traits are identical.

The ESS is “ESS-stable,” meaning that a resident population that is at the ESS
cannot be invaded (Geritz et al., 1998), if

∂B2
a

∂α2
I

< µ
∂2γ

∂α2 . (23)

In particular, under the biologically reasonable assumption of diminishing returns
to reproduction from increased aggression (making the left hand side negative), this
condition will always be met if the the mortality cost is linear or accelerating in the
aggression trait.

However, ESS-stability does not guarantee that the ESS can be reached through
successive mutations of a resident population that is not at the ESS. This requires
an additional property, called “convergence stability” (Geritz et al., 1998), and the
ESS is called a convergence stable strategy (CSS; Diekmann 2004). Unfortunately,
the formal conditions for the ESS to be convergence stable in this model require
additional information, such as the relative sensitivity of the invader and resident
birth rates to changes in the resident BT frequency and the inheritance mechanisms
that determine the BT frequency in the invader population. While the condition
can easily be calculated if functional forms are assumed, the general expression is
sufficiently complex as to be non-informative. However, it seems clear that, if α = 0
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is not an ESS (that is, a mutant with slight aggressiveness can invade a population
with none), then the existence of one or more ESSs at positive values of α will ensure
that at least one of them is convergence-stable.

Mathematical derivations

The analysis of an ESS focuses on the invasion exponent sx(y), which is the low-
density per-capita growth rate of an invader with trait value y in the environment
created by a resident population at equilibrium and having trait value x (the notation
here follows Geritz et al. 1998 and Diekmann 2004). In the present context, x = αR

and y = αI . The analysis proceeds by looking at derivatives of s evaluated at y = x.
In particular, the condition for x to be an ESS is

c2 ≡ ∂

∂y
sx(y)

∣∣∣∣∣
y=x

= 0, (24)

and the condition for ESS-stability is

c22 ≡ ∂2

∂y2 sx(y)
∣∣∣∣∣
y=x

< 0. (25)

To calculate the invasion exponent we write out the dynamics of the invader
population. Since the invader is rare, we assume that only the resident population
N∗ impacts the invader’s reproduction and that individuals of both populations are
unaffected by the invader’s aggressiveness or BT frequency:

dN (I)
a

dt
= πa(w(I)

a )N (I)
a Ba (αI , αR, w

∗
a, N

∗) +
[
1 − πn(w(I)

a )
]
N (I)

n Bn (αI , αR, w
∗
a, N

∗)

−µ [1 + γI ]N (I)
a (26)

dN (I)
n

dt
= πn(w(I)

a )N (I)
n Bn (αI , αR, w

∗
a, N

∗) +
[
1 − πa(w(I)

a )
]
N (I)

a Ba (αI , αR, w
∗
a, N

∗)

−µN (I)
n , (27)

where w(I)
a is the aggressive BT frequency among invaders (which might affect the

BT frequency at birth) and γI ≡ γ (αI) is the death rate penalty of the invader
aggressives. Adding these together and dividing by N (I) = N (I)

a +N (I)
n gives

sx(y) = w(I)
a [Ba − µ (1 + γI)] +

(
1 − w(I)

a

)
[Bn − µ] . (28)

It is quite reasonable to assume that the invader non-aggressive BT is identical to
that of the resident, so that Bn = βn. Furthermore, if we assume the resident is at the
fitness equalizing frequency, such that βn = µ, then the second term is zero, leaving

sx(y) = w(I)
a [Ba − µ (1 + γI)] . (29)
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The first derivative is

∂

∂y
sx(y) = ∂w(I)

a

∂αI

[Ba − µ (1 + γI)] + w(I)
a

[
∂

∂αI

Ba − ∂

∂αI

µ (1 + γI)
]
. (30)

When αI = αR, it is quite reasonable to assume that Ba = βa and γI = γR. Again, if
we assume the resident is at the fitness equalizing frequency then βa = µ (1 + γR) and
the first term is zero. As long as w(I)

a > 0, this leads directly to the ESS condition in
eq. (22).

The second derivative is

∂2

∂y2 sx(y) = ∂2w(I)
a

∂α2
I

[Ba − µ (1 + γI)] + 2∂w
(I)
a

∂αI

[
∂

∂αI

Ba − ∂

∂αI

µ (1 + γI)
]

+w(I)
a

[
∂2

∂α2
I

Ba − ∂2

∂α2
I

µ (1 + γI)
]
. (31)

As above, when αI = αR, then the first term is zero. Furthermore, if the resident is
at an ESS, then the second term is also zero (the quantity in brackets is just c2). As
long as w(I)

a > 0, this leads directly to the ESS-stability condition in eq. (23).

Discussion
We have developed a model that links behavioral and population processes by not-
ing that the fitness associated with a particular behavior translates into demogra-
phy—birth and death rates—at the population level. Applied to behavioral syn-
dromes, this allows us to draw on existing theoretical frameworks (demographic het-
erogeneity and adaptive dynamics) to make a number of predictions about ecological
and evolutionary outcomes, including the factors that control the frequency of the
behavioral types in the population, the effect of the syndrome on equilibrium abun-
dance, and how selection should drive the evolution of both the distribution of the
behavioral types among offspring and the overall intensity of the trait in each be-
havioral type. We applied the model to the boldness–aggression syndrome, but the
general approach should apply to any syndrome with identifiable fitness consequences.

In the boldness–aggression syndrome, the behavioral types differ in both their
birth rates and their death rates. To a scientist not steeped in demographic theory,
it may come as a surprise that the effects these two sources of heterogeneity are not
commensurate. For example, we showed that when the population growth rate is zero,
the frequency of the two behavioral types depends only on the frequency of the types
among newborns and the relative death rates of the types—not on the differences in
birth rates (note that if there are genetically, epigenetically (e.g., Francis et al., 1999;
Weaver et al., 2004) or environmentally induced correlations between the behavioral
types of parents and their offspring, then the differences in birth rate will have an
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indirect effect via their effect on the distribution of newborn types). This occurs
because mortality heterogeneity results in cohort selection, in which the composition
of a cohort changes as the cohort ages (Vaupel and Yashin, 1985), whereas birth rate
heterogeneity does not. One way of developing some intuition about this is to think
about lifetime reproductive success (LRS) in a simple life history in which a BT’s
birth (β) and death (µ) rates are both age-independent. Here, for an individual with
BT i, the expected LRS is simply βiLi, where Li is the BT’s expected longevity.
In a population with heterogeneous birth rates, the mean LRS can be found by
using the mean of the BT-specific birth rates, and is unaffected by the amount of
heterogeneity. Likewise, in a population with heterogeneous death rates, the mean
LRS can be found by using the mean of the phenotypic-specific longevities. However,
an individual’s expected longevity is an inverse function of its mortality rate: Li =
1/µi. This nonlinear relationship means that the average longevity in the population
will not be the same as the longevity of an individual with an “average” mortality
rate; Jensen’s inequality (Zens and Peart, 2003) tells us that heterogeneity in µ will
cause the population mean longevity to be larger than the longevity with the mean
death rate, with the discrepancy increasing as the magnitude of the heterogeneity
gets larger. This translates directly into effects on mean LRS. This fundamental
distinction between birth and mortality heterogeneity persists even with age- and
environment-dependent vital rates, as long as there is some degree of within-individual
auto-correlation in vital rates, as would be caused by consistent expression of a given
behavior.

We found that the boldness–aggression syndrome often leads to a reduction
in equilibrium abundance relative to a population made up of only non-aggressive
types. This occurs because of the intersection of two factors. First, as the fre-
quency of the aggressive BT increases, the mean death rate in the population also
increases, reflecting the higher risk associated with boldness. Second, increasing the
aggressive BT frequency increases the mean birth rate (for a fixed abundance) when
the aggressive BT is rare (because the aggressives have higher birth rates), but the
frequency-dependent depression of the birth rate drives down the mean birth rate
when the aggressive type is more common. Once the frequency is high enough that
the mean birth rate (at the non-aggressive equilibrium density) is below the mean
death rate, then an equilibrium can only be reached if the density-dependence in the
birth rate is relaxed by settling to a lower abundance. Note that, while our model
incorporates density- and frequency-dependence in the birth rate only, qualitatively
similar results would obtain if one or both dependencies were in mortality. This affect
on equilibrium density means that the behavioral syndrome may increase the popu-
lation’s local extinction risk, with implications for conservation and metapopulation
dynamics. It may also reduce the species’ trophic and facilitative impacts on other
members of the ecological community.

Even at the demographic equilibrium, the two BTs will not necessarily have
equal fitness. When they do not, there will be selection to increase the proportion of
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the more fit BT. If there is a response to this selection (whether through plasticity or
evolutionary change), the BT frequency will move towards a value where both BTs
have the same fitness. We have shown that this frequency equilibrium will always be
at a value that results in a reduced equilibrium abundance, relative to a purely non-
aggressive population. In density-dependent populations, selection maximizes the
equilibrium abundance (often thought of as the carrying capacity, K), if fitness is not
frequency dependent (Charlesworth, 1980). But because of the frequency-dependence
of fitness of each BT in our model, behavioral evolution reduces abundance and
thus increases the risk of population-level extinction due to stochastic fluctuations or
exclusion by a competitor that can persist at lower resource densities (Webb, 2003).

How does aggressiveness (α) evolve? Our results show that there may be an
evolutionarily stable value, but predicting where that will occur requires an under-
standing of the fitness of an invader with one aggressiveness level in a population of
residents with a different aggressiveness. It may be reasonable that the outcome of
the interaction between two aggressive individuals with different levels of aggressive-
ness only depends on the difference between the two α’s. Thus, the left hand side of
eq. (22)—the derivative of the invader birth rate with respect to the invader aggres-
siveness, evaluated where the invader and resident have the same aggressiveness—will
be independent of the resident aggressiveness level. However, changing the resident
aggressiveness level will also, in general, change the resident’s equilibrium density and
BT frequency; by analogy to the analysis comparing polymorphic and monomorphic
populations, we might expect that increasing aggressiveness will decrease N∗ and in-
crease w∗. We cannot say much in general about how these will impact the invader
birth rate, especially as the predicted changes are likely to have opposite effects. If
the effects balance out, then the left hand side of eq. (22) will be a constant, and
an ESS will only exist if the right hand side is non-constant—that is, the death rate
cost is a nonlinear function of aggressiveness. Turning to the stability condition, it
is reasonable to assume that the invader birth rate has diminishing returns to ag-
gressiveness, making the right hand side of inequality (23) negative. Thus, if the
mortality cost is an accelerating function of aggressiveness, then both the existence
of the ESS and its stability will be guaranteed.

We have modeled the behavioral syndrome as a dichotomous trait, in large part
for ease of analysis and exposition, but a trait such as aggressiveness may take on a
continuous range of values. In simple models of demographic heterogeneity (without
density-dependence, frequency-dependence, or inheritance), a continuous distribution
of death rates has been shown to have virtually identical effects on population dynam-
ics as a dichotomous trait, the key value being the variance of death rates (Kendall
et al., 2011). In models with density dependence, a key value for two-type models is
the harmonic mean death rate among individuals in a newborn cohort (Stover et al.,
2012); one might expect this to generalize to continuous trait distributions, but this
has not been tested. Frequency-dependence in continuous traits has to be handled
with care; the simplest approach is to assume a strict hierarchy, so that the fitness of
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an individual with aggressiveness trait αi only depends on the frequency of individuals
with traits greater than αi.

Some qualitative predictions that derive from our model are described in Table
2. Nevertheless, applying this theoretical framework to particular species will require
explicit functional forms for the density- and frequency-dependence in vital rates, as
well as behavioral effects on these functions. These can be estimated empirically in
focal populations, but further generalization will require a more mechanistic under-
standing of the underlying physiological bases of behavior (which generates the behav-
ioral correlations) and the factors that link behaviors to fitness. A predictive theory
also needs a mechanistic basis for the newborn behavioral type distribution—e.g.,
what are the roles of genetics, parental effects, and plasticity? Where the genetic
mechanisms are known, we would need to develop explicit inheritance models us-
ing population genetics (Charlesworth, 1980) or quantitative genetics (Barfield et al.,
2011); the latter would probably be most appropriate when the behavioral trait is
continuously distributed. These are all areas where empirical research needs to guide
model development. Such models could be used to understand the causes and con-
sequences of phenomena such as the reduced fitness of heterotypic matings across a
boldness syndrome in guppies (Ariyomo and Watt, 2013).

The population model used here is very simple; in particular, it does not have
age- or size-structure, and assumes that environmental conditions are constant. These
factors can generate time-lags in feedback loops (because of the time to reach ma-
turity) and fluctuating selection (e.g., fluctuations in predator populations, or in
populations of alternate prey, which might lead to fluctuations in the relative cost of
boldness as well as in overall mortality rates), respectively, and so may prevent the
population from settling down to an ecological or evolutionary equilibrium. However,
except in long-lived species, these are likely to be second-order effects that primar-
ily affect quantitative rather than qualitative predictions. Of greater import, the
model does not account for differences between sexes. Some species exhibit sexual
dimorphism in behavioral traits (e.g., Pruitt et al., 2011; Han et al., 2015), and while
individuals of the sex that does not express the syndrome do not experience the direct
fitness effects, they may still influence the behavioral types of their offspring via genes
or parental effects. If the frequency of aggressive BTs is below the level where both
types have equal fitness and there is a genetic contribution to behavior, then indi-
viduals of the non-expressing sex could increase their fitness by preferentially mating
with aggressive individuals. This would put the syndrome under sexual selection,
and would further increase the birth rate advantage of aggression without necessarily
increasing the boldness cost (Logue et al., 2009).

A recent essay on “data-free papers” in the behavioral syndromes literature
(DiRienzo and Montiglio, 2015) suggests that such papers (encompassing syntheses
of older theories as well as novel conceptual frameworks, terminologies, or statisti-
cal approaches) are contributing relatively little to our understanding of the subject
(although Davis et al. (2015) argue that data-free papers sometimes contribute sub-

24



Table 2: Qualitative predictions about populations exhibiting a boldness-aggression
tradeoff that derive from the theory developed in this paper.

Prediction Rationale

Compared with a population at a BT

frequency that equalizes fitness between

the types, an artificial population made

up solely of non-aggressive individuals

will, under identical environmental

conditions, grow to a larger equilibrium

abundance.

Corollary of the result that introducing

an aggressive BT to a non-aggressive

population will lower equilibrium

abundance at the fitness-equalizing BT

frequency.

The aggressive BT in populations growing

in low-predation environments will

exhibit stronger aggressive tendencies

than the aggressive BT in high-predation

environments.1

Reduced boldness cost at a given

aggressiveness level will allow evolution to

higher aggressiveness. Assumes local

evolution of aggressiveness trait.

Quantitative predictions will require a model that is tailored to the empirical sys-

tem being studied. Deviations from the model’s qualitative assumptions about

density- and frequency-dependence will require new analysis to confirm that the

predictions apply.
1 Assumes that the boldness cost is a consequence of heightened vulnerability to

predation.
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Table 2: Qualitative predictions. . . (cont.)

Prediction Rationale

Populations in low-predation

environments will have a higher

aggressive BT frequency and may,

depending on the strength of the boldness

cost and the contribution of predation to

overall mortality, have a lower equilibrium

abundance than high-predation

populations.1

Low predation reduces µ, reducing

mortality difference between BTs; this

moves the fitness-equalizing frequency to

a greater fraction of aggressives, where

the birth-rate difference is also lower. For

a given density, this reduces mean birth

rate; if baseline mortality is not much

affected by predation then reduced birth

rate may exceed reduced mean death

rate, requiring reduced density to attain

demographic equilibrium. Assumes local

adaption to fitness-equalizing BT

frequency.

Populations in which aggression is under

sexual selection will have an increased BT

frequency and reduced equilibrium

abundance relative to otherwise identical

populations without sexual selection

Sexual selection increases difference in

birth rates without affecting difference in

death rate; thus fitness-equalizing BT

frequency will be a greater fraction of

aggressives. Effect on equilibrium density

follows directly from this. Assumes no

differences in aggressiveness trait.
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stantially to the conceptual framework of the field). Notably absent from the critique
byDiRienzo and Montiglio (2015) are formal models; this is perhaps due to their
relative paucity (we have found only one model linking behavioral syndromes to pop-
ulation dynamics; Fogarty et al. 2011). However, DiRienzo and Montiglio (2015)
suggest (correctly, in our view) that formal models are an important avenue (along
with empirical study) to effectively study the speculative links suggested by verbal
conceptual frameworks. The work here represents such a contribution. In particular,
our findings that the equilibrium frequency of the aggressive behavioral type depends
strongly on the mortality cost of boldness and that the equilibrium population abun-
dance is negatively related to the frequency of the aggressive BT could only have been
derived from a model that translates the fitness consequences to the individual into
birth and death rates, and included dynamic feedbacks via density-dependence and
frequency-dependence. Indeed, these feedbacks help shape the fitness landscape in
which the behavioral syndrome evolves in such a way that understanding the optimal
balance between the level of individual behavioral traits and the BT frequencies within
the population requires explicit modeling of the species’ population ecology. Mak-
ing quantitative predictions about specific systems will require tailoring the model to
those systems; such species-specific models can then be used, for example, to predict
and explain patterns observed in common garden experiments with animals drawn
from different selective environments. We hope that this paper will stimulate studies
that integrate empirical observation and formal modeling.
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