
https://escholarship.org/uc/item/3np2042j

Kanitpanyacharoen, W
Merkel, S
Miyagi, L
et al.

2017-09-15

10.1016/j.actamat.2017.05.056

Peer reviewed
Corrigendum to “Significance of mechanical twinning in hexagonal metals at high pressure” [Acta Mater. 60 (2012) 430–442]

W. Kanitpanyacharoen a, S. Merkel b, L. Miyagi c, P. Kaercher d, C.N. Tomé e, Y. Wang f, H.-R. Wenk g, *

a Department of Geology, Chulalongkorn University, Bangkok, Thailand
b Unité Matériaux et Transformations, CNRS, Université Lille 1, Villeneuve d’Ascq, France
c Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
d Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
e Los Alamos National Laboratory, Los Alamos, NM, USA
f Advanced Photon Source, Argonne, IL, USA
g Department of Earth and Planetary Science, University of California, Berkeley, CA, USA

We became aware of uncertainties about lattice parameters for osmium in Table 1 and B.K. Godwal (with the Department of Earth and Planetary Science at UC Berkeley) has reanalyzed the radial diamond anvil cell diffraction data, measured in situ at high pressure and compressive stress, with the Moment Pole Stress model in an advanced MAUD Rietveld technique (Wenk et al., 2014), taking into account lattice distortion under stress.

The new results compare much better with data from hydrostatic experiments (Godwal et al., 2012). Since the emphasis of the paper was on mechanical twinning, we did not pay much attention to lattice distortion. Note that standard deviations are based on the Rietveld fit.

References


DOI of original article: http://dx.doi.org/10.1016/j.actamat.2011.07.055.

* Corresponding author.
E-mail address: wenk@berkeley.edu (H.-R. Wenk).

http://dx.doi.org/10.1016/j.actamat.2017.05.056
1359-6454/© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: W. Kanitpanyacharoen, et al., Corrigendum to “Significance of mechanical twinning in hexagonal metals at high pressure” [Acta Mater. 60 (2012) 430–442], Acta Materialia (2017), http://dx.doi.org/10.1016/j.actamat.2017.05.056