Title
RESONANCES IN THE ELASTIC SCATTERING OF PROTONS

Permalink
https://escholarship.org/uc/item/3p9886pc

Author
Kinsey, B.B.

Publication Date
1955-04-21
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
RESONANCES IN THE ELASTIC SCATTERING OF PROTONS

B. B. Kinsey

April 21, 1955

Printed for the U.S. Atomic Energy Commission
The purpose of this note is to report the existence of nuclear resonances of an unusual type in carbon and oxygen. These resonances were found during a search for anomalies in the elastic scattering of protons using the 32-Mev linear accelerator of this laboratory. The apparatus was that used by Eisberg and Igo. The protons scattered elastically from a thin target (about 20 mg/cm²) were detected by a plastic scintillator and counted after pulse-height analysis. The experimental procedure consisted in fixing the angle of scattering near the first minimum of the diffraction pattern and plotting the counting rate against the energy of the incident proton beam, which was altered by absorption in polystyrene. Smooth variations of the counting rate with the proton energy were found with most targets. These variations correspond to the slow displacement of the maxima and minima of the diffraction pattern. In carbon and in oxygen, however, the smooth curve is interrupted by a sharp peak which rises about 20 percent above the mean counting rate in its immediate vicinity. In carbon the energy of the peak is 22.5 ± 0.3 Mev; the width at half maximum is about 1.5 Mev. The results obtained with a polystyrene foil of about 15 mg/cm² are shown in Fig. 1. The effect on the diffraction pattern is shown in Fig. 2; the minimum is filled in near the peak of the resonance and regains its normal shape within 1 Mev on either side of it. The oxygen resonance was first found in a comparison of the elastic scattering of silicon and silica. The data shown in Fig. 3 were obtained with a gaseous target. The peak is at 18.6 ± 0.3 Mev, and the width is about 1.3 Mev. The oxygen resonance is well marked for angles near the minimum of the diffraction pattern but is too small to be detected when the counting rate, at other angles, rises much above this minimum value. In carbon and oxygen no other resonance was found in a proton energy range of 14 to 31.5 Mev. A search for similar resonance in B, N, F, Al, Si, S, Ca, Fe, and Cu, over the same energy range, gave no result. This does not exclude

* Now at Atomic Energy Research Establishment, Harwell, England
the existence of resonances in these nuclei, for the method is effective only for resonances which are neither too narrow (less than 200 kev) nor too broad (more than 3 Mev). The measured widths are close to the natural widths for they are large compared with both the proton energy loss in the targets--400 kev and 100 kev, for carbon and oxygen, respectively--and the spread in energy of the proton beam--about 100 kev.²

It is unlikely that the resonances found in carbon and oxygen are size resonances, because they are much sharper than would be expected theoretically and because no resonance was found in nitrogen, which lies intermediate in atomic weight. Now in carbon there is no anomaly in the cross section³ of the C⁰⁲(p, pn) C¹⁰ reaction near 23 Mev. The observed effect, therefore, demonstrates, in a narrow energy range, an increase in the probability of elastic re-emission of the proton. This is a characteristic to be expected of a single-particle state. It is unlikely, however, that the resonance is caused by a state with an independent existence at this high excitation energy; it is more probable that its characteristics are distributed over many levels of the usual kind.

The author is much indebted to Mr. Robert Watt and Lt. Troy Stone for assistance in these measurements; to Dr. R. Finke for advice and discussion; to Mr. William Gantz for assistance with electronics; and to Professor E. O. Lawrence and the Atomic Energy Commission for the privilege of working at the Radiation Laboratory.
REFERENCES

3. Aamodt, Peterson, and Phillips, Phys. Rev. 88, 739 (1952)

CAPTIONS FOR FIGURES

Fig. 1 Resonance in the elastic scattering of protons from carbon at 60°.

Fig. 2 Angular distribution of protons scattered elastically from carbon, at the peak of the resonance (squares), and above (triangles) and below it (circles).

Fig. 3 Resonance in the elastic scattering of protons from oxygen at various angles.
CARBON $\theta = 60^\circ$
CARBON

- △ 24.3 Mev
- ■ 22.5 Mev
- ● 20.7 Mev

COUNTS PER UNIT CHARGE

θ°