Title
The Art and Science of Magnet Design--Selected Notes of Klaus Halbach

Permalink
https://escholarship.org/uc/item/3pj7841r

Author
Turek, S.

Publication Date
1994-12-02
The Art and Science of Magnet Design

Selected Notes of
Klaus Halbach

February 1995
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

PUB-755
This is the second of two volumes published in conjunction with the Halbach Symposium on Magnet Technology held at Lawrence Berkeley Laboratory on February 3, 1995, in honor of Klaus Halbach's 70th birthday.

Volume 1 (LBL PUB 754), A Festschrift in Honor of Klaus Halbach, contains technical papers and personal remembrances written by Dr. Halbach's colleagues expressly for the Halbach Symposium and dedicated to him.
The Art and Science of Magnet Design
Selected Notes of Klaus Halbach

February 1995
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Preface

This volume contains a compilation of 57 notes written by Dr. Klaus Halbach selected from his collection of over 1650 such documents. It provides an historic snapshot of the evolution of magnet technology and related fields as the notes range from as early as 1965 to the present, and is intended to show the breadth of Dr. Halbach’s interest and ability that have long been an inspiration to his many friends and colleagues.

As Halbach is an experimental physicist whose scientific interests span many areas, and who does his most innovative work with pencil and paper rather than at the workbench or with a computer, the vast majority of the notes in this volume were handwritten and their content varies greatly—some reflect original work or work for a specific project, while others are mere clarifications of mathematical calculations or design specifications. As we converted the notes to electronic form, some were superficially edited and corrected, while others were extensively re-written to reflect current knowledge and notation.

The notes are organized under five categories which reflect their primary content: Beam Position Monitors (bpm), Current Sheet Electron Magnets (csem), Magnet Theory (mth), Undulators and Wigglers (u-w), and Miscellaneous (misc). Within the category, they are presented chronologically starting from the most recent note and working backwards in time. The note number, listed in the Table of Contents and at the bottom of each note’s first page, comes from a database we have created which includes the titles of the entire collection of notes, and a recently added sixth category, Conformal Transformations (ctr). The appendixes contain a table of all the notes in the database and a list of Dr. Halbach’s publications.

The extensive use of hand-written notes by Dr. Halbach leads us to believe that there may be many that were sent to colleagues which were not retained in Dr. Halbach’s files, and thus are missing from the database. If you happen to have a note of scientific interest from Dr. Halbach and believe it to be an original, we would appreciate receiving a copy.

Brian M. Kincaid
Simonetta Turek

November 1994
Table of Contents

Halbach Geometries

<table>
<thead>
<tr>
<th>Beam Position Monitors</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact, Complete Proofs of Reciprocity Theorems for Electrostatic and Magnetostatic Beam Monitors</td>
<td>0022bpm</td>
</tr>
</tbody>
</table>

Current Sheet Electron Magnets

<table>
<thead>
<tr>
<th>Current Sheet Electron Magnets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral for Excess Flux Calculation</td>
<td>0336csem</td>
</tr>
<tr>
<td>H* at End of CSEM Block</td>
<td>0335csem</td>
</tr>
<tr>
<td>Summary of Excess Flux Formulae for Gm3, Gm18, and Gm40</td>
<td>0332csem</td>
</tr>
<tr>
<td>Anti-Symmetric Undulator to Make Vertically Polarized or Circularly Polarized Light</td>
<td>0208csem</td>
</tr>
<tr>
<td>Hybrid Undulator with Superimposed Quadrupole Field</td>
<td>0187csem</td>
</tr>
<tr>
<td>Excess Flux into Gm13</td>
<td>0183csem</td>
</tr>
<tr>
<td>Flux Distribution Symmetry Theorem</td>
<td>0143csem</td>
</tr>
<tr>
<td>Stored Energy in CSEM</td>
<td>0142csem</td>
</tr>
<tr>
<td>Earnshaw's Theorem for Non-Permeable Material</td>
<td>0076csem</td>
</tr>
<tr>
<td>Harmonics Produced by Rectangular REC Block</td>
<td>0059csem</td>
</tr>
<tr>
<td>A Possible REC Undulator for SSRL</td>
<td>0038csem</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A Simple Derivation of the Lorentz Transformation Without Talking about Light</td>
<td>0287misc</td>
</tr>
<tr>
<td>Dimensional Analysis of Trajectory of Non-Relativistic Charged Particles in Stationary Electric and Magnetic Fields</td>
<td>0278misc</td>
</tr>
<tr>
<td>Analog Integrator Dynamics</td>
<td>0267misc</td>
</tr>
<tr>
<td>Local Interpolation with Continuous Function and its First N Derivatives</td>
<td>0177misc</td>
</tr>
<tr>
<td>Linear Least Squares with Erroneous Matrix</td>
<td>0038misc</td>
</tr>
<tr>
<td>Matrix Describing Second Order Effects to Second Order in One Dimension</td>
<td>0006misc</td>
</tr>
</tbody>
</table>

v
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curvature of 2D Magnetic Field Lines and Scalar Potential Lines</td>
<td>59</td>
</tr>
<tr>
<td>Fringe Field Model Function for Dipoles</td>
<td>63</td>
</tr>
<tr>
<td>Comments about RAYTRACE</td>
<td>65</td>
</tr>
<tr>
<td>Stored Energy in H-Magnet for $\mu = \infty$</td>
<td>69</td>
</tr>
<tr>
<td>H-Magnet with Minimal Yoke Flux Density</td>
<td>73</td>
</tr>
<tr>
<td>Dipole with Small Gap Bypass</td>
<td>75</td>
</tr>
<tr>
<td>Boundary Condition at Iron-Air Interface for AC and Application to 2-Dimensional Cylinder</td>
<td>77</td>
</tr>
<tr>
<td>Flux into a Rectangular Box</td>
<td>81</td>
</tr>
<tr>
<td>Propagation of Fast Perturbation in Dipole</td>
<td>83</td>
</tr>
<tr>
<td>Description of the Properties of an Ellipse</td>
<td>87</td>
</tr>
<tr>
<td>Characterization of Dipole Fringe Fields with Field Integrals</td>
<td>91</td>
</tr>
<tr>
<td>Penetration of Solenoidal Field through Conducting Shell</td>
<td>95</td>
</tr>
<tr>
<td>Rogowski Dipole</td>
<td>99</td>
</tr>
<tr>
<td>Rogowski Quadrupole: Formulation of Problem</td>
<td>101</td>
</tr>
<tr>
<td>Eddy Currents for Fast Permanent Magnet Magnetization</td>
<td>103</td>
</tr>
<tr>
<td>Change of Determinant for Small Changes of One Element of the Matrix that Describes a System that is Least Squares Optimized with Restraints and has Least Squares Limitations on Parameters</td>
<td>109</td>
</tr>
<tr>
<td>Sensitivity of Solution of Linear Equations to Change of an Individual Matrix Element</td>
<td>111</td>
</tr>
<tr>
<td>Fourier Analysis of Numerical Data</td>
<td>113</td>
</tr>
<tr>
<td>Curvature of Field Lines in a Quadrupole</td>
<td>117</td>
</tr>
<tr>
<td>Skin Effect in Fe</td>
<td>119</td>
</tr>
<tr>
<td>Magnetic Field Energy Calculations</td>
<td>125</td>
</tr>
</tbody>
</table>
Undulator-Wiggler

Scalar Potential for 3D Fields in "Business Region" of Insertion Device with Finite Width Poles 0144u-w 129
Magnetic Measurement and Data Reduction to Identify Some Specific Error Field Consequences 0142u-w 133
Least Square Fit of \(f(z) \) with \(a + bz \) in \(0 \leq z \leq 1 \) 0141u-w 141
Normalization Factors \(\varepsilon_1 \) and \(\varepsilon_2 \) for Comparison of First and Second Order Phase Shifts, with Analytical Model of \(b(z) \) 0140u-w 143
Comparison of First and Second Order Contributions of Error Fields to Phase Shift 0139u-w 147
Connection Between Undulator Field Errors and Optical Phase 0138u-w 149
\(\rho, A_0/B_1 \) for Hybrid Insertion Device 0137u-w 151
Simple Analytical Model for Fields from One Pole of Hybrid Insertion Device 0136u-w 153
Wiggler Parameter \(K \) Definitions 0135u-w 157
NPOLE 0134u-w 159
Error of Flux Calculation for Finite Pole Width with Excess Flux Coefficient 0133u-w 169
Excess Flux into Pole and Flux into Side of Gm40 0131u-w 175
Flux Transport along Axial Direction of Electro-Magnetic Wiggler 0129u-w 179
3D Scalar Potential for Saturation-Caused Fields in the Insertion Device 0125u-w 187
Scalar Potential for 3D Insertion Device Fields 0124u-w 189
Gradient Measurement in Insertion Device 0120u-w 191
Undulator Trajectory and Radiation 0101u-w 193
Mathematical Representation of Undulator and Wiggler Fields 0055u-w 195

Appendix A - Publications of Klaus Halbach A-1

Appendix B - Notes of Klaus Halbach B-1
Halbach Geometries

The Halbach Geometries, referred to in the notes as Gm, are a collection of simple geometric shapes, simple function representations, and 2-dimensional electromagnetic geometries for which conformal mapping calculations have been done to compute basic features such as capacitance, excess flux, etc. For examples of calculations of excess flux, see documents 0336csem (p. 5), 0332csem (p. 11), 0183csem (p. 23), and 0131u-w (p. 175).

The following two pages summarize Dr. Halbach's representations and shorthand notations of his "Geometries." The reader is encouraged to refer back to them when encountering such abbreviations as Gm3 or Gm21 while reading the notes. (Note: Not all the Halbach Geometries are referenced in this collection.)
Exact, Complete Proofs of Reciprocity Theorems for Electrostatic and Magnetostatic Beam Monitors

The following is an exercise in Maxwell's equations in a region that is bounded by perfect metal walls and contains nothing but moving electric charges.

\[\nabla \times \mathbf{H} = \mathbf{j} + \dot{\mathbf{D}} \quad \text{and} \quad \nabla \cdot \mathbf{H} = 0, \quad (1.1), (1.2) \]

where \(\mathbf{j} \) comes from the moving charges represented by charge density \(\rho(x, y, z, t) \) in the beam, and

\[\nabla \times \mathbf{E} = -\dot{\mathbf{B}} \quad \text{and} \quad \nabla \cdot \mathbf{D} = \rho, \quad (2.1), (2.2) \]

We integrate all equations over time, starting before the front-end wake fields begin, and ending after the end wake fields and RF are gone.

\[\int \dot{\mathbf{D}} dt = 0 \quad \text{and} \quad \int \dot{\mathbf{B}} dt = 0, \]

\[\nabla \times \mathbf{\mathcal{H}} = \mathbf{J} \quad \text{and} \quad \nabla \cdot \mathbf{\mathcal{H}} = 0, \quad (3.1), (3.2) \]

\[\nabla \times \nabla = 0 \quad \text{and} \quad \nabla \cdot \nabla = R. \quad (4.1), (4.2) \]

The new symbols stand for integrals over time at every \(x, y, z \).

Electrostatic Pick-up.

The beam with \(R \) produces \(V_1(x, y, z) \), with \(V_1 = 0 \) on wall everywhere, including on the electrode. An electrode on \(V_{20} \) produces \(V_2(x, y, z) \), with \(V_2 = 0 \) on wall except on the electrode*.

Using (4.1) and (4.2) we notice that \(V_2 \) is the actual potential and \(V_1 \) is the integrated potential over time. With \(\mathcal{H} = -\Delta V \),

\[
U = \int \nabla \cdot (V_1 \nabla V_2 - V_2 \nabla V_1) \, dv
= \int \left(V_1 \nabla \cdot \nabla V_2 - V_2 \nabla \cdot \nabla V_1 \right) \, dv
= \int V_2 R \, dv.
\]

December, 1986. Note 0022bpm.
* For subscript 2, the quantities are not averaged over time but are time independent, as are all time integrated quantities.
But it is also true that, for the charge \(q_e \),

\[
U = \int (V_1 \nabla V_2 - V_2 \nabla V_1) \cdot da = V_2 \cdot Q \quad \text{with} \quad Q = \int q_e dt,
\]

induced by electrons on electrode.

The total charge in the bunch, \(Q_B \), is related to \(\rho(x, y, z, t) \) through

\[
\int \rho dt da = \frac{Q_B}{v},
\]

\[
\int R v da = \int \rho dt v da = \int \frac{Q_B'}{da},
\]

\[
Q \cdot V_{20} = \frac{1}{v} \int V_2 Q_B' dv = \frac{1}{v} \int Q_B V_2 dz,
\]

where \(Q_B' \) is independent of \(z \), and is the charge going through area \(da \), divided by \(da \). The units for \([Q_B] = A \text{ sec} \), and \([Q] = A \text{ sec}^2 \).

Magnetostatic Pick-up.

We use (3.1) and (3.2). The beam with \(J \) produces \(A_1(x, y, z) \), and \(H_1(x, y, z) \). In the coil, the flux from \(J \) integrated over \(t \) is

\[
\Phi_2 = \int \mu_0 H_1 \cdot da = \int \nabla \times A_1 \cdot da = \mu_0 \oint A_1 \cdot ds.
\]

In addition, we use a coil with a current, \(I_2 \), that produces \(A_2(x, y, z) \), \(H_2(x, y, z) \).

We now use, equivalently to the electrostatic case,

\[
U = \int \nabla \cdot (A_1 \times H_2 - A_2 \times H_1) dv,
\]

where \(A_1 \) is the integrated vector potential, and \(A_2 \) is the actual potential associated with \(I_2 \).

\[
\nabla \cdot A_1 \times H_2 = H_2 \cdot \nabla \times A_1 - A_1 \cdot \nabla \times H_2 = H_2 \cdot H_1 - A_1 \cdot J_2,
\]

thus,

\[
U = \int (A_2 \cdot J_1 - A_1 \cdot J_2) dv.
\]

With

\[
J_1 = J_1 e_z \quad \text{and} \quad \int J_1 da = \int j_1 dadt = Q_B,
\]

\[2\]
we get

\[\int A_2 \cdot J_1 \, dv = Q_B \cdot \int A_2 \, dz, \]

\[\int A_1 \cdot J_2 \, dv = I_2 \int A_1 \cdot ds = I_2 \Phi_2 / \mu_0, \]

and get

\[U = Q_B \cdot \int A_2 \, dz - I_2 \Phi_2 / \mu_0 = \int (A_1 \times \mathcal{H}_2 - A_2 \times \mathcal{H}_1) \cdot da \]

with the last integral taken over the "superconducting" wall.

In the vicinity of the wall we use \(\mathcal{H} = -\nabla V \). Thus,

\[U = \int (A_2 \times \nabla V_1 - A_1 \times \nabla V_2) \cdot da. \]

In general, \(\nabla \times (V_1 A_2) = V_1 \nabla \times A_2 - A_2 \times \nabla V_1 \), thus

\[U = \int (V_1 \nabla \times A_2 - V_2 \nabla \times A_1) \cdot da = \int (V_1 \mathcal{H}_2 - V_2 \mathcal{H}_1) \cdot da = 0. \]

The last integral vanishes because on the superconducting wall the component of \(\mathcal{H} \) perpendicular to the wall (i.e. parallel to \(da \)) is zero. We therefore get

\[\Phi_2 = \mu_0 Q_B \int A_2 \, dz / I_2. \]

The units are \([\Phi_2] = \mu_0 A \text{ m sec}, [A_2] = A, [\mu_0 Q_B \int A_2 \, dz / I_2] = \mu_0 A \text{ m sec} \). It is important to notice that \(\Phi_2 \) is the integrated flux, and the flux is the integrated induced voltage.
Integral for Excess Flux Calculation

\[J = \int_{t_1}^{t_2} \frac{f(t)}{(t - t_1)^{n_1}(t_3 - t)^{n_3}} \, dt \]

We have shown in an earlier note that for \(n_1 = n_3 = 1/2 \),

\[J = 3 \int_{-1}^{1} \frac{f(t)}{\sqrt{4 - x^2}} \, dx, \quad t = \frac{1}{4} (2(t_2 + t_1) + (t_2 - t_1) x(3 - x^2)) \, . \]

For \(n_1, n_3 \neq 1/2 \), the approach that gave the above equation becomes very complicated, especially if one wants to have generally valid and simple integration. For the general case, we use (arbitrarily, for simplicity)

\[t_2 = 1/2(t_3 + t_1) \quad \text{and} \quad J = J_1 + J_3 \]

where

\[J_1 = \int_{t_1}^{t_2} G(t) \, dt \quad \text{and} \quad J_3 = \int_{t_2}^{t_3} G(t) \, dt \, . \]

We solve for \(J_1 \):

\[A \, dx = (t - t_1)^{-n_1}, \quad A \, x = \frac{(t - t_1)^{m_1}}{m_1} \quad \text{and} \quad A = \frac{(t_2 - t_1)^{m_1}}{m_1} \quad \text{when} \quad x(t_2) = 1, \]

with

\[m_1 = 1 - n_1 \quad \text{and} \quad p_1 = \frac{1}{m_1} \]

\[t = t_1 + (t_2 - t_1) x^{p_1}, \quad t_3 - t = (t_2 - t_1)(2 - x^{p_1}). \]

Thus,

\[J_1 = \frac{(t_2 - t_1)^{m_1}}{m_1(t_2 - t_1)^{n_3}} \int_{0}^{1} \frac{f(t)}{(2 - x^{p_1})^{n_3}} \, dx \]

\[= \frac{(t_2 - t_1)^{1 - n_1 - n_3}}{1 - n_1} \int_{0}^{1} \frac{f(t)}{(2 - x^{p_1})^{n_3}} \, dx. \]

Equivalently, solving for J_3:

$$-B \, dx = (t_3 - t)^{n_3} \, dt, \quad Bx = \frac{(t_3 - t)^{m_3}}{m_3} \quad \text{and} \quad B = \frac{(t_2 - t_1)^{m_3}}{m_3},$$

$$t = t_3 - (t_2 - t_1)x^{p_3} \quad \text{and} \quad t - t_1 = (t_2 - t_1)(2 - x^{p_3}).$$

Thus,

$$J_3 = \frac{(t_2 - t_1)^{1-n_1-n_3}}{1-n_3} \int_0^1 \frac{f(t) \, dx}{(2 - x^{p_3})^{n_1}}.$$

We may now conclude that

$$J = \int_{t_1}^{t_2} \frac{f(t)}{(t - t_1)^{n_1}(t - t_3)^{n_3}} \, dt$$

$$= (t_2 - t_1)^{1-n_1-n_3} \left\{ \int_0^1 \frac{f(t_1 + \Delta t x^{1-n_1}) \, dx}{(2 - x^{1-n_1})^{n_3}(1-n_1)} + \int_0^1 \frac{f(t_3 - \Delta t x^{1-n_3}) \, dx}{(2 - x^{1-n_3})^{n_1}(1-n_3)} \right\}.$$

We examine a specific case of excess flux in the pole in the geometry of Figure 1,

![Figure 1](image)

where,

$$\pi E_{12} = \frac{1}{n_1} \ln((n_1 + n_2)I_1),$$

$$n_1 = \frac{\alpha}{\pi} \quad \text{and} \quad n_2 = \frac{\beta}{\pi},$$

6
\[I_1 = \int_0^1 \frac{dt}{t^{n_1}(1-t)^{1-(n_1+n_2)}} \]

\[= \left(\frac{1}{2} \right)^{n_2} \left\{ \frac{1}{1-n_1} \int_0^1 \frac{dx}{(2-x^{1-n_1})^{1-(n_1+n_2)}} + \frac{1}{n_1+n_2} \int_0^1 \frac{dx}{(2-x^{n_1+n_2})^{n_1}} \right\}. \]

We may conclude that \(I_2 = (I_1)_{n_1 \leftrightarrow n_2} \). Further, the expression \(I_1 \frac{\sin \alpha}{\alpha} = I_2 \frac{\sin \beta}{\beta} \) should be true. This is a non-trivial assertion and comes from a derivation of the expression for \(E_{12} \) in an earlier note.
H^* at End of CSEM Block

Figure 1.

$H^*(z) = \frac{I}{2\pi i} \cdot \frac{1}{z - z_0} \rightarrow -\frac{I'}{2\pi i} \ln \frac{z}{z + x_3} \cdot \frac{z - z_2}{z - z_1}$.

In the vicinity of $z = 0$,

$H^* = -\frac{H_c}{2\pi i} \ln \frac{z x_2}{z_1 x_3}$,

where

$\frac{z_1 x_3}{x_2} = \frac{i y_1 x_3}{y_1 - x_3} = \frac{y_1 x_3}{y_1 + i x_3} = \frac{x_3}{1 + i x_3/y_1} = x_4 e^{-i\alpha}$,

$x_4 = \sqrt{1 + x_3^2/y_1^2} = x_3 \cos \alpha \quad \text{and} \quad z = re^{i\phi}$.

Thus,

$H^* = -\frac{H_c}{2\pi i} \ln \frac{re^{i(\phi + \alpha)}}{x_4} = -\frac{H_c}{2\pi i} \left(\phi + \alpha + i \ln \frac{x_4}{r} \right)$.

Field “blows up” at $r = 0$. Thus, for scaling purposes, at location where $\ln \frac{x_4}{r} = 2\pi$, $r = x_4 e^{-2\pi} = x_4 \cdot 1.9 \times 10^{-3}$.

There is a strong local field perpendicular to the “current sheet side”, which is not problematic when easy axis is parallel to the “current sheet side”. It is easier to see with charge sheet, and it leads to the same answer.

Interesting damage results for block not magnetized in either a perpendicular or parallel direction to the sides.

No damage will result in corner A, but there is a potential of demagnetization at corner B, and at symmetrically located corners.
Summary of Excess Flux Formulae for Gm3, Gm18 and Gm40

Unless otherwise noted, the following definitions hold for all geometries in this Note

\[F = \pi \frac{\Delta A}{V_0}, \quad n = \frac{\alpha}{\pi}, \quad \text{and} \quad a = \frac{h_2}{h_1}. \]

\[F_{01} = (1 + b) \int_{0}^{1} \frac{1 - x^n}{(1 - x)(b + x)} dx, \quad (1) \]

\[F_{23} = F_{01} + \ln b, \quad \text{with} \quad b = a^{1/n}. \quad (2) \]

For Figures 2, 3, and 4 (Gm18 and Gm40) \(\alpha = \pi/2. \)

\[F_{01} = \ln \frac{1 + 1/a^2}{4} + 2a \arctan \frac{1}{a}, \quad (3) \]

\[F_{23} = \ln \frac{1 + a^2}{4} + 2a \arctan \frac{1}{a}, \quad (4) \]

We summarize here the sum of excess fluxes for (1) and (3). For (1), we get

\[
(F_{01}(a) + F_{01}(1/a)) = (1 + b)^2 \int_0^1 \frac{(1 - x^n)(1 + x)}{(1 - x)(b + x)(1 + xb)} \, dx. \tag{1D}
\]

And for (3), we have

\[
(F_{01}(a) + F_{01}(1/a)) = 2 \ln \frac{a + 1/a}{4} + 2a \arctan(1/a) + 2(1/a) \arctan a. \tag{3D}
\]

\[
F_{34} = \ln(1 + a^2) + 2a \arctan(1/a), \tag{5}
\]

\[
F_{12} = 2 \ln \left(a + \sqrt{1 + a^2} \right), \tag{6}
\]

\[
F_{01} = F_{34} - F_{12}. \tag{7}
\]

Figure 3.

Continued on following page.
\[F_{-11} = \ln(1 + a^2) + 2a \arctan(1/a), \quad (8) \]
\[F_{67} = \ln \frac{1 + a^2}{2a \left(a + \sqrt{1 + a^2} \right)} + 2a \arctan \frac{1}{a}, \quad (9) \]
\[F_{56} = \ln \frac{\sqrt{1 + a^2} (a + \sqrt{1 + a^2})}{2} + \frac{1}{a} \arctan a, \quad (10) \]
\[F_{567} = \ln \frac{\left(\sqrt{1 + a^2} \right)^3}{4a} + 2a \arctan \frac{1}{a} + \frac{1}{a} \arctan a, \quad (11) \]
\[F_{234} = \ln \frac{\sqrt{1 + 1/a^2}}{4} + \frac{1}{a} \arctan a. \quad (12) \]
Anti-Symmetric Undulator to Make Vertically Polarized or Circularly Polarized Light

\[-V = \frac{B_0}{k_0} \sin k_0 z \cosh k_0 y, \]

(1)

with fields anti-symmetric to the midplane \(y = 0 \).

\[B_z = B_0 \cosh k_0 y \cos k_0 z \quad \text{and} \quad B_y = B_0 \sinh k_0 y \sin k_0 z \]

(2)

in direction \(\delta \) relative to the \(z \)-axis.

\[\lambda_u = \lambda_0 / \cos \delta, \]

(3.1)

\[B_{\perp} = B_0 \cosh k_0 y \sin \delta \cos k_0 z, \]

(3.2)

\[B_y = B_0 \sinh k_0 y \sin k_0 z. \]

(3.3)

Linearly Polarized Light.

Let \(y = 0, B_y = 0 \),

\[B_2 = \sin \delta B_0 = \sin \delta B_0 \left(\frac{g}{\lambda_u} \cdot \frac{1}{\cos \delta} \right). \]

(4)

By the above \(B_0 \) is indicated the achievable \(B_0 \) as a function of \(g / \lambda_0 \), where \(\lambda_0 \) is the period in the \(z \)-direction, and \(g \) is the magnet gap.

To have a better understanding, we look at the pure CSEM undulator:

$$B_0 = B_3 e^{-\pi g / \lambda_0},$$

with B_3 equal to the product of $2B_r$, the segmentation factor and the finite height factor.

$$B_2 = B_3 \sin \delta e^{-a / \cos \delta}, \quad \text{with} \quad a = \pi g / \lambda_u.$$ \hspace{1cm} (5.1)

We optimize with δ for given g / λ_u. With $B_2' = 0$,

$$\cos \delta - a \tan^2 \delta = 0.$$

Instead of solving for given a, we make a table of a vs. δ.

$$a = \frac{\cos^3 \delta}{\sin^2 \delta}. \hspace{1cm} (5.2)$$

$$B_2 = B_3 \sin \delta e^{-\cot^2 \delta} = B_3 y.$$ \hspace{1cm} (5.3)

Compared to a “normal” undulator:

$$B_{2n} = B_3 e^{-a} = B_3 e^{-\cos \delta / \tan^2 \delta} = B_3 y,$$ \hspace{1cm} (5.4)

$$\frac{B_2}{B_{2n}} = \sin \delta e^{-\cot^2 \delta} e^{\cos \delta \cot^2 \delta} = \frac{y}{y_0}. \hspace{1cm} (5.5)$$

<table>
<thead>
<tr>
<th>δ</th>
<th>g / λ_u</th>
<th>y</th>
<th>y / y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.00</td>
<td>0.83</td>
<td>0.02</td>
<td>0.33</td>
</tr>
<tr>
<td>35.00</td>
<td>0.53</td>
<td>0.07</td>
<td>0.40</td>
</tr>
<tr>
<td>40.00</td>
<td>0.35</td>
<td>0.16</td>
<td>0.46</td>
</tr>
<tr>
<td>45.00</td>
<td>0.23</td>
<td>0.26</td>
<td>0.53</td>
</tr>
<tr>
<td>50.00</td>
<td>0.14</td>
<td>0.38</td>
<td>0.60</td>
</tr>
<tr>
<td>55.00</td>
<td>0.09</td>
<td>0.50</td>
<td>0.66</td>
</tr>
<tr>
<td>60.00</td>
<td>0.05</td>
<td>0.62</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Table 1.
Circularly Polarized Light.

We set \(y = y_1 \), and \(k_0 y_1 = \beta \). From (3.2) and (3.3), we see we need to satisfy \(\cosh \beta \sin \delta = \sinh \beta \) for the helical undulator action, thus

\[
\sin \delta = \tanh \beta, \tag{6.1}
\]

or

\[
\cos \delta = \sqrt{1 - \tanh^2 \beta} = 1 / \cosh \beta, \tag{6.2}
\]

or

\[
\tan \delta = \sinh \beta, \tag{6.3}
\]

\[
B_u = B_0 \sinh \beta = B_0 \tan \delta = B_0 \left(\frac{g/\lambda_u}{\cos \delta} \right) \tan \delta. \tag{7}
\]

We assess the reasonableness and feasibility of the above analysis.

Clearly,

\[
\epsilon = \frac{2y_1}{g} \tag{8.1}
\]

is an important parameter.

\[
\beta = \frac{2\pi y_1}{\lambda_0} = \frac{2y_1}{g} \cdot \pi \cdot \frac{g}{\lambda_u \cos \delta},
\]

and for \(p = g/\lambda_u \),

\[
\beta = \epsilon p \frac{\pi}{\cos \delta} = \epsilon \frac{a}{\cos \delta}, \tag{8.2}
\]

\[
\epsilon = \frac{\beta \cos \delta}{a}. \tag{8.3}
\]

The indicated procedure is as follows. Given \(p = g/\lambda_u \) and \(B_0(g/\lambda_0) = B_0(p/\cos \delta) \), we optimize \(B_u \) with \(\delta \) and get \(\epsilon \) from (8.3).

For a pure REC undulator,

\[
B_0 = B_3 e^{-a/\cos \delta} \quad \text{with} \quad a = \pi g/\lambda_u = \pi p,
\]

\[
B_u = B_3 \tan \delta \cdot e^{-a/\cos \delta}.
\]

With \(B'_u = 0 \),

\[
\frac{1}{\cos^2 \delta} - a \tan \delta \cdot \frac{\sin \delta}{\cos^2 \delta} = 0,
\]

17
\[
\frac{\sin^2 \delta}{\cos \delta} = a \frac{1 - \cos^2 \delta}{\cos \delta} = 1,
\]

\[
\cos \delta = -\frac{1}{2a} + \sqrt{\frac{1}{4a^2} + 1}.
\]

(9.1)

For \(\cosh \beta = 1/\cos \delta\),

\[
\beta = \ln \left(\sqrt{\cosh^2 \beta - 1} + \cosh \beta \right).
\]

(9.2)

\[
\varepsilon = \beta \cos \frac{\delta}{a}.
\]

(9.3)

\[
\frac{B_u}{B_3} = \tan \delta \cdot e^{-a/\cos \delta}.
\]

(9.4)

For extreme "legal" \(\varepsilon = 1\):

\[
\beta \cos \frac{\delta}{a} = \sin^2 \delta \cdot \beta = \sin^2 \delta \cdot \ln \left(\sqrt{1 + \tan^2 \delta} + \tan \delta \right) = \sin^2 \delta \cdot \ln \frac{1 + \sin \delta}{\cos \delta},
\]

\[
\beta = 60.27^\circ, \quad g/\lambda_u = .21, \quad \text{and} \quad B_u/B_3 = .46.
\]
Hybrid Undulator with Superimposed Quadrupole Field

With the electron beam in the z-direction, and the midplane the zx-plane, the normal undulator fields can be described by

\[B_z = iB_y = B_1^* = iF_1 = iB_1 \cos k(z + iy). \]

For the complex potential \(F_1 = A_1 + V_1 \), with \(A_1 \) and \(V_1 \) the vector and scalar potentials respectively, it follows that

\[F_1 = \frac{B_1}{k} \sin k(z + iy) \quad \text{and} \quad V_1 = \frac{B_1}{k} \cos kz \sinh ky. \]

The desired normal quadrupole fields are given by

\[B_0^* = iF_0' = iB_0'z \quad F_0 = \frac{1}{2} B_0'z^2, \quad \text{and} \quad V_0 = B_0'xy. \]

For the scalar potential and the combined undulator and quadrupole fields, we therefore have

\[V = V_1 + V_0 = \frac{B_1}{k} \cos kz \sinh ky + B_0'xy. \]

Setting this equal to a constant gives the associated surface of a pole made with infinitely permeable material. With \(y_0 \) the half-gap of the pole at \(z = x = 0 \),

\[0 = \cos kz \sinh ky - \sinh k'y_0 + \frac{B_0'}{kB_1} kxky. \]

With the following substitutions:

\[a = \cos kz, \quad \mathcal{E} = \frac{B_0'}{kB_1}, \quad u = kx, \quad \text{and} \quad v = ky, \]

we arrive at the following equation for the ideal 3D pole:

\[a \sinh v - \sinh v_0 + \mathcal{E}uv = G = 0. \]

To understand what this means, we look at some derived quantities:

\[y' = \frac{dy}{dx} = -\frac{G_x'}{G_y'} = -\frac{G_u'}{G_v'} = -\frac{\mathcal{E}v}{a \cosh v + \mathcal{E}u} \]

is the slope of the pole in the xy-plane. For $x = z = 0$ it is reduced to

$$y_0' = -\frac{B_0'y_0/B_1}{\cosh v_0} = -\frac{\mathcal{E}v_0}{\cosh v_0}.$$

Looking at the slope just above the axis of the system, i.e. for $x = 0$,

$$a \sinh v_1 = \sinh v_0,$$

and

$$y' = -\frac{\mathcal{E}v_1}{a \cosh v_1},$$

where the subscript 1 refers to the case of $x = 0$ and z equal to anything. For $z = 0$ this reduces to

$$y' = -\frac{B_0'y_0/B_1}{\cosh v_0} = -\frac{\mathcal{E}v_0}{\cosh v_0}.$$

Eliminating $a = \cos k z$ gives

$$y' = -\frac{\mathcal{E}v_1 \tanh v_1}{\sinh v_0}.$$

For the curvature of the pole in the xy-plane we need

$$y'' = \frac{\partial y'}{\partial x} \frac{dy}{dx} \frac{\partial y'}{\partial y}$$

$$= k \left(\frac{\partial y'}{\partial u} + y' \frac{\partial y'}{\partial v} \right)$$

$$= k \left(\frac{\mathcal{E}^2 v}{(a \cosh v + \mathcal{E} u)^2} + \frac{\mathcal{E}^2 v}{(a \cosh v + \mathcal{E} u)} \frac{a \cosh v + \mathcal{E} u - a v \sinh v}{(a \cosh v + \mathcal{E} u)^2} \right).$$

For $u = 0$, this reduces to

$$y'' = \frac{k \mathcal{E}^2 v_1 a}{a^3 \cosh^3 v_1} (2 \cosh v_1 - v_1 \sinh v_1)$$

$$= \mathcal{E}^2 k \frac{v_1 \tanh^2 v_1}{\sinh^2 v_0} (2 - v_1 \tanh v_1).$$

We let $|y'| \ll 1$, and therefore $\sqrt{1 + (y')^2} \approx 1$. With radius of curvature R, we get

$$\frac{1}{k \mathcal{E}^2} \frac{\sinh^2 v_0}{v_1 \tanh^2 v_1 (2 - v_1 \tanh v_1)} = R = \frac{\mathcal{E}^2}{v_0 v_1 \tanh^2 v_1 (2 - v_1 \tanh v_1)}.$$
For $v_1 = v_0$, and $y'_0 = -\varepsilon v_0 / \cosh v_0$:

\[
R_0 = \frac{y_0}{\varepsilon^2} \cdot \frac{\cosh^2 v_0}{v^2_0(2 - v_0 \tanh v_0)} = \frac{y_0}{(y'_0)^2} \cdot \frac{1}{\frac{v^2_0(2 - v_0 \tanh v_0)}{v'_0(2 - v_0 \tanh v_0)}}.
\]

We make the following assignments:

\[
\frac{1}{k\varepsilon^2} = \frac{kB^2_0}{(B'_0)^2} = \frac{B^2}{y^2_0(B'_0)^2} v_0 \quad \text{and} \quad b = \frac{B_0^2}{y^2_0(B'_0)^2},
\]

and re-write

\[
R = y_0 b \cdot \frac{v_0}{v_1} \cdot \frac{\sinh^2 v_0}{\tanh^2 v_1(2 - v_1 \tanh v_1)},
\]

where for $2 - v \tanh v = 0$, $v = \frac{2\pi y}{\lambda} = 2.0653$.

21
Excess Flux into Gm13

For the above graph,
\[\frac{\alpha}{\pi} = n_1, \quad \frac{\beta}{\pi} = n_2, \quad \text{and} \quad n_1 + n_2 = n_3. \]

The conformal map is described by
\[\dot{z} = a \frac{t^{n_3}}{(t-1)^{1+n_2}}, \quad a \in \mathbb{R}. \]

From
\[\pi \dot{F} = \frac{1}{t-1} \]
follows \[\pi F = \ln(t-1). \]

We describe the flux into surface 2 of Figure 1 as
\[\Phi_2 = -\frac{1}{\pi} \ln(1 - t_1) = \int_{s_0}^{s_1} \frac{ds}{\beta s} + \Delta A_2. \]

Thus
\[\beta \Delta A_2 = -n_2 \ln(1 - t_1) - \ln \left(1 + \frac{s_1 - s_0}{s_0} \right) \]
\[= \ln \left(\frac{(1 - t_1)^{-n_2}}{1 + \frac{a}{s_0} \int_0^{t_1} \frac{t^{n_3} dt}{(1-t)^{1+n_2}}} \right) \]

September, 1983. Note 0183cem.
and by l'Hôpital's Rule,

\[
\ln \frac{n_2(1 - t_1)^{-n_2-1}}{a t_1^{n_3} (1 - t_1)^{-n_2-1}} = \ln \frac{n_2 s_0}{a},
\]

and therefore

\[
\Delta A_2 = \frac{1}{\beta} \ln \left(\frac{h \beta}{\pi a \sin \beta} \right). \tag{1}
\]

We need to calculate \(h/a\), and we begin with

\[
y_1 = h + a \sin \beta \int_0^{t_1} \frac{t^{n_3} dt}{(1 - t)^{n_2+1}}. \tag{2}
\]

We now calculate \(y_1\) by going around the singularity at \(t = 1\) on circle with \(\varrho = \varrho_1 = 1 - t_1\), that is

\[
t = 1 + \varrho_1 e^{i \varphi} \quad \text{and} \quad dt = i \varrho_1 e^{i \varphi} d\varphi,
\]

and thus

\[
y_1 = \Im i \varrho_1 a \int_0^{\pi} \frac{(1 + \varrho_1 e^{i \varphi})^{n_3}}{\varrho_1^{1+n_2} e^{i \varphi (1+n_2)}} e^{i \varphi} d\varphi
\]

\[
= \Im \frac{ia}{\varrho_1^{n_2}} \int_0^{\pi} (1 + \varrho_1 e^{i \varphi})^{n_3} e^{-in_2 \varphi} d\varphi.
\]

For \(\varrho_1\) sufficiently small,

\[
y_1 = \Im \frac{ia}{\varrho_1^{n_2}} \frac{e^{-in_2 \pi} - 1}{-in_2} = \frac{a \sin \beta}{n_2 \varrho_1^{n_2}}.
\]

Re-writing (2) with \(t = 1 - \varrho\)

\[
y_1 = h + a \sin \beta \int_{\varrho_1}^{1} \frac{(1 - \varrho)^{n_3}}{\varrho^{n_2+1}} d\varrho = \frac{a \sin \beta}{n_2 \varrho_1^{n_2}}.
\]

Thus

\[
\frac{h}{a \sin \beta} = \frac{1}{n_2 \varrho_1^{n_2}} - \int_{\varrho_1}^{1} \frac{(1 - \varrho)^{n_3}}{\varrho^{n_2+1}} d\varrho
\]

\[
= \frac{1}{n_2 \varrho_1^{n_2}} + \frac{1}{n_2 \varrho_1^{n_2}} \left(\frac{1 - \varrho_1^{n_3}}{\varrho_1^{n_2}} \right) + \frac{n_3}{n_2} \int_{\varrho_1}^{1} \frac{(1 - \varrho)^{n_3-1}}{\varrho^{n_2}} d\varrho,
\]

24
and
\[
\frac{hn_2}{a \sin \beta} = \frac{h\beta}{\pi a \sin \beta} = n_3 I_2
\]

where
\[
I_2 = \int_0^1 \frac{dt}{t^{n_2(1-t)^{1-n_3}}} \quad \text{and} \quad I_1 = \int_0^1 \frac{dt}{t^{n_1(1-t)^{1-n_3}}}.\]

Therefore we may now summarize from (1) that
\[
\Delta A_2 = \frac{1}{\beta} \ln(n_3 I_2),
\]
and equivalently
\[
\Delta A_1 = \frac{1}{\alpha} \ln(n_3 I_1).
\]

Further, since
\[
\frac{h}{\pi a} = \frac{n_3 I_2 \sin \beta}{\beta} = n_3 I_1 \frac{\sin \alpha}{\alpha},
\]

\[
n_3 I_1 = n_3 I_2 \frac{\sin \beta/\beta}{\sin \alpha/\alpha}.
\]

A different way to look at what was done earlier:

![Diagram](image)

\[t = 0 \quad \text{to} \quad t = 1\]

Figure 2.

Since, clearly, \(h = \mathcal{S} \int_{1+}^{0} \dot{z} dt \), one may take a path from any point on the real \(t \)-axis to the right of \(t = 1 \) to \(t = 0 \).

In this note the path followed a \(g_1 \Rightarrow 0 \) half-circle around \(t = 1 \), and then on axis to \(t = 0 \).
Flux Distribution Symmetry Theorem

Even though this case is the same as the electrostatic case, it is formulated for magnetic fields because of the application to CSEM in hybrid systems.

Theorem.
There are \(N \) bodies with \(\mu = \infty \). The matrix \(M \), which describes the relationship between potentials \(V_n \) on fluxes \(F_n \) leaving body \(n \), is symmetrical, i.e.: \(F = MV \), \(M^t = M \). In this notation, the subscript 0 indicates the reference body on potential \(V = 0 \). Thus, the theorem states

\[
M_{nm} = M_{mn}.
\]

Analysis.
Stored energy in the field is unique: it depends only on the initial state (we assume \(V_n = 0 \)) and the end state. By going from the initial to the end state by bringing bodies in any sequence from \(V_n = 0 \) to the final \(V_n \), and doing so by moving magnetic charges from infinity, we get

\[
E = \int V^t dF = \int V^t MdV.
\]

\(E \) must be independent of sequence in which this is done: the right hand side must be a complete differential leading to \(M_{nm} = M_{mn} \). We show this explicitly for \(V_1, V_2 \) and all other \(V_n = 0 \):

\[
E = \int \begin{pmatrix} V_1 & V_2 \end{pmatrix} \begin{pmatrix} M_{11}dV_1 - M_{12}dV_2 \\ -M_{21}dV_1 + M_{22}dV_2 \end{pmatrix} = \int M_{11}V_1dV_1 + \int M_{22}V_2dV_2 - \int \underbrace{(M_{12}V_1dV_2 + M_{21}V_2dV_1)}_{G}.
\]

We simplify \(G \) by making the following substitutions:

\[
M_{12} = S + D, \quad M_{21} = S - D, \quad \text{and} \quad S = \frac{1}{2}(M_{12} + M_{21}), \quad D = \frac{1}{2}(M_{12} - M_{21}),
\]

\[
G = S \int \underbrace{(V_1dV_2 + V_2dV_1)}_{(a)} + D \int \underbrace{(V_1dV_2 - V_2dV_1)}_{(b)},
\]

where (a) is \(d(V_1 \quad V_2) \) and is therefore independent of the sequence, and (b) would

be dependent on our sequence. Since G must be independent of the sequence, it follows that $D = 0$.

In a CSEM circuit, F equals the vector of charges deposited by the CSEM on the surfaces (with all $V = 0$). Therefore, a hybrid system can be represented by magnetic capacitors and sources that deposit DC charges. If one finds this more convenient, one may also do this analysis with capacitors and AC current sources, or with resistors and DC currents.

The theorems known for these circuits apply, such as Kirchhoff's reciprocity theorem, i.e. the nodal equations, etc. One can also use 2×2 matrix methods for systems like ladder networks, and apply them directly to hybrid wigglers. One can use concepts like characteristic impedance of networks and quadrupole theory, i.e. all the tools that have been developed for analog network analysis.
Stored Energy in CSEM

We define the energy density as

$$\mathcal{E} = \int \mathbf{H} \cdot d\mathbf{B}.$$

We can look at the easy-axis direction and the direction perpendicular to the easy-axis separately. The lower integral limit is arbitrary, but must be fixed.

With $B_\parallel = B_r + \mu_0 \mu_\parallel H_\parallel$ and $B_\perp = \mu_0 \mu_\perp H_\perp$:

$$\mathcal{E}_\parallel = \int_{H_\parallel=0}^{H_\parallel} H_\parallel dH_\parallel = \int_{H_\parallel=0}^{H_\parallel} H_\parallel \frac{dB_\parallel}{dH_\parallel} dH_\parallel = \mu_0 \mu_\parallel \int_{H_\parallel=0}^{H_\parallel} H_\parallel dH_\parallel.$$

Thus,

$$\mathcal{E}_\parallel = \frac{1}{2} \mu_0 \mu_\parallel H_\parallel^2,$$

and similarly,

$$\mathcal{E}_\perp = \frac{1}{2} \mu_0 \mu_\perp H_\perp^2,$$

with

$$\mathcal{E}_{\text{tot}} = \mathcal{E}_\parallel + \mathcal{E}_\perp.$$

This obviously gives H_\parallel a unique role.
Earnshaw’s Theorem for Non-Permeable Material

Problem: There is an assembly of “frozen” magnetic charges \(\varrho(r) \)† in an external magnetic field (produced by solenoid or other REC assembly) without any permeable material in the system.

Question: What is the restoring force for small displacements?

Analysis: The force components in the \((x_1, x_2, x_3)\) coordinate system are

\[
F_1 = - \int \varrho V'_1 \, dv, \quad F_2 = - \int \varrho V'_2 \, dv, \quad \text{and} \quad F_3 = - \int \varrho V'_3 \, dv.
\]

We displace the system by \(\Delta x_1, \Delta x_2, \Delta x_3 \), which is the same as displacing the external fields by \(-\Delta x_1, -\Delta x_2, -\Delta x_3\) without changing \(\varrho \), and get

\[
\Delta F_n = \sum \Delta x_m \frac{\partial \varrho}{\partial x_m} \frac{\partial V}{\partial x_n} \, dv = \sum M_{nm} \Delta x_m \quad \text{with} \quad M_{nm} = \int \varrho \frac{\partial}{\partial x_n} \frac{\partial V}{\partial x_m} \, dv,
\]

\[
\Delta F = M \cdot \Delta x.
\]

In general, \(M \) will not be a diagonal matrix. We assume that it can be made diagonal (by going to a new coordinate system) with matrix \(C \), where

\[
C \Delta F = \Delta F_d = CMC^{-1} \cdot \Delta x = CMC^{-1} \cdot \Delta x_d,
\]

\[
CMC^{-1} = M_d = \int \varrho \begin{pmatrix}
V''_{xx} & 0 & 0 \\
0 & V''_{yy} & 0 \\
0 & 0 & V''_{zz}
\end{pmatrix} \, dv,
\]

where \(x, y, z \) are the new coordinates. From this, it follows that

\[
\frac{\Delta F_x}{\Delta x} + \frac{\Delta F_y}{\Delta y} + \frac{\Delta F_z}{\Delta z} = \int \varrho \left(V''_{xx} + V''_{yy} + V''_{zz} \right) \, dv = 0.
\]

Since a stable system requires a negative restoring force in each of the three coordinate directions, any such system will be unstable.

June, 1981. Note 0076csem.

† REC can be considered this way if one assumes differential permeability \(\equiv 1 \).
In applications, it will often be clear *a priori* in which coordinate system the matrix M will be diagonal, and the above equation can then be used directly in its final form. This means that for systems with cylindrical symmetry about the z-axis, that because
\[
\frac{\Delta F_y}{\Delta y} = \frac{\Delta F_z}{\Delta x} = \frac{\Delta F_r}{\Delta r} \quad \text{and} \quad 2\frac{\Delta F_r}{\Delta r} + \frac{\Delta F_z}{\Delta z} = 0,
\]
only one of the stiffnesses needs to be calculated from basics.

It is interesting to note that Earnshaw’s Theorem is often stated in an overly broad fashion. For instance, stable support is possible if one allows forces not derived from a potential satisfying $\nabla^2 V = 0$. The forces between contacting solid materials, for example, such as mechanical bearings, are due to the quantum nature of solids, and hence do not obey Earnshaw’s Theorem. It is also clear without any mathematics that a permanent magnet is stably supported in a superconducting bowl. This is similarly true for an extreme diamagnetic bowl.
Harmonics Produced by Rectangular REC Block.

\[B^*(z_0) = \sum_{n=1} b_n z_0^{n-1}, \]

\[b_n = \frac{B_r}{2\pi i} \int \frac{dx}{x^n}. \]

For \(n = 1, \)

\[b_1 = \frac{B_r}{2\pi i} \ln \frac{z_2}{z_1} \cdot \frac{z_4}{z_3} = \frac{B_r}{2\pi i} \ln \frac{z_2/z_1}{z_3/z_4} = \frac{B_r}{\pi} \ln \frac{z_2}{z_1}. \]

For \(n \geq 2, \)

\[b_n = -\frac{B_r}{2\pi i} \cdot \frac{1}{n-1} \left(\frac{1}{z_2^{n-1}} - \frac{1}{z_1^{n-1}} + \frac{1}{z_4^{n-1}} - \frac{1}{z_3^{n-1}} \right) = \frac{B_r}{\pi} \cdot \frac{1}{n-1} \ln \left(\frac{1}{z_2^{n-1}} - \frac{1}{z_1^{n-1}} \right). \]

October, 1980. Note 0059csem.

† Halbach, H., Nuclear Instruments and Methods 169, 1 (1980).
A Possible REC Undulator for SSRL

I. Reason for REC.

It may be possible to use some very specific ferrite. All other materials, like the Alnicos, are not only significantly inferior in performance, but would probably also have to be magnetized in final assembly which may be difficult to do.

A potential future advantage is that the permanent magnet undulator can be scaled down in physical size without difficulty. One can therefore envision the following scheme: design a REC undulator for very small gap and λ and have it inside vacuum. Move the two arrays apart to have the large gap necessary during beam formation. When beam is established, move the 2 arrays together to form the design gap that the beam allows. Clearly, this would be nearly impossible with either a conventional, or even a superconducting, undulator.

II. Use of Nomogram and Notation.

![Diagram](image)

$B_y + iB_z = B_0 \cos \frac{2\pi(z + iy)}{\lambda}$,

$K = B_0\lambda$,

$k = \frac{B_z}{K} \frac{\sin \left(\frac{\pi}{M'}\right)}{\left(\frac{1 - e^{-2\pi L/\lambda}}{E_1} \frac{E_2}{E_1}\right)}$,

where B_r is the remanent field of REC, M' is the number of pieces with fixed easy-axis.

April, 1979. Note 0038csem.
per period.

\[2k\lambda e^{-\pi g/\lambda} = 1. \]

Figure 2.

Because \(E_1, E_2 \) are close to 1, and one usually chooses \(K \approx 1 \, \text{T(cm)} \), \(k \, (\text{cm}^{-1}) \) is numerically close to \(B_r \).

In this document, all lengths will be in cm, and \(B \)'s in Tesla.

III. Design Considerations.

- **End Section.** Normalize center to \(z = 0 \) and that piece has easy-axis parallel to the \(y \) axis. The last pieces at both ends must have the same easy-axis as piece at \(z = 0 \), but should have only half of normal length in the \(z \)-direction. One may want to use coils to fine-tune the end sections, but it would not be surprising if this were unnecessary.

In order to reduce the effects from finite length in \(x \)-direction (or to get away with shorter length in that direction) and to avoid 3D fringe effects at the ends in \(x \)-direction by cutting end fields off rapidly, one should back-up REC with a soft steel plate with reasonable overhang in \(z \) and \(x \) directions. This will not affect the amplitude of the \(\cos(2\pi(z + iy)/\lambda) \) term, but will introduce a very weak, unnoticeable in the midplane, third harmonic (for \(M' = 4 \)).

- **Length of REC in \(x \)-direction.** The present estimate is that it should be approximately the sum of the width of the beam and \(2g \). The 3D effects discussed in the previous section are easily analyzed computationally and should be done before ordering materials!

- **Choice of \(M' \) and \(L \).** It is recommended, at least for the first undulator, to use \(M' = 4 \) (giving \(E_1 = .9 \)) and \(L = \lambda/2 \) (giving \(E_2 = .96 \)) or \(L = \lambda/4 \) (giving \(E_2 = .79 \)). With these choices, the undulator can be assembled from identical REC pieces with square cross-section and the easy-axis parallel to a side. The exception would be with the end pieces which could be obtained by cutting or grinding the normal pieces.
IV. Specific Calculations.
For a realistic undulator with \(g = 2.8 \text{cm}, B_r = .95 \text{T}, \ K = 1 \text{Tcm} \) and \(M' = 4 \):

<table>
<thead>
<tr>
<th>(L) (cm)</th>
<th>(k) (cm(^{-1}))</th>
<th>(\lambda) (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda/4 = 1.18)</td>
<td>.68</td>
<td>4.73</td>
</tr>
<tr>
<td>(\lambda/2 = 2.22)</td>
<td>.82</td>
<td>4.44</td>
</tr>
</tbody>
</table>

Table 1.

Since \(\lambda/4 \) uses only half the REC of the \(\lambda/2 \) case and \(\lambda \) is only less than 10\% larger, this is the preferable design. The volume for \(\lambda/4 \) is \(V = 3540 \text{ cm}^3 \), and for \(\lambda/2 \) is \(V = 6660 \text{ cm}^3 \).

The REC price would probably be approximately \$1-2/\text{cm}^{-3} \).
A Simple Derivation of the Lorentz Transformation
Without Talking About Light

Postulate: Physics is independent of location, time and uniform motion of the system in which the experiment is performed.

We look at two systems that move with velocity, \(v \), relative to each other. We establish clocks and space \((x) \) markers in each system.

\[
\begin{align*}
 x_{1.5}, & t_{1.5} \\
 \downarrow & \quad \downarrow \\
 v & \quad x_1, t_1
\end{align*}
\]

Figure 1.

We locate the origins and synchronize the clocks so that \(x_1 = 0, t_1 = 0, x_{1.5} = 0 \), and \(t_{1.5} = 0 \). Also notice that the “1.5” system has \(x \) increasing in the opposite direction from the “1” system.

We want to know \((x_{1.5}, t_{1.5}) \) as a function of \((x_1, t_1) \).

We know that \(\Delta x_{1.5}/\Delta x_1, \Delta x_{1.5}/\Delta t_1, \Delta t_{1.5}/\Delta x_1, \) and \(\Delta t_{1.5}/\Delta t_1 \) can not depend on \(x_1, t_1 \) because of our postulate. This means that the relationship between the two systems is linear, and can be expressed as a 2 by 2 matrix.

\[
\begin{align*}
 x_{1.5} &= a_{11}x_1 + a_{12}t_1 \\
 t_{1.5} &= a_{21}x_1 + a_{22}t_1
\end{align*}
\]

\[
\Rightarrow r_{1.5} = \begin{pmatrix} x_{1.5} \\ t_{1.5} \end{pmatrix} = A \cdot r_1
\]

The velocity of a particle in system “1.5” (e.g. at \(x_{1.5} = 0 \)) as seen from system “1” is \(v = -a_{12}/a_{11} \). Thus

\[
a_{12} = -a_{11}v
\]

with \(a_{11} \neq 0 \) always true.

The choice of the relative sign of \(x \) in the two systems means that the observer in each system sees the other system move in the positive \(x \)-direction with velocity \(v \).
Therefore,

\[r_1 = A \cdot r_{1.5} = A \cdot A \cdot r_1, \]

and also,

\[A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

must be satisfied. By multiplication and substitution,

\[A^2 = \begin{pmatrix} a_{11}(a_{11} - a_{21})v & -a_{11}v(a_{11} + a_{22}) \\ a_{21}(a_{11} + a_{22}) & a_{22}^2 - a_{21}a_{11}v \end{pmatrix}. \]

Therefore,

\[a_{11} = -a_{22} \]

and

\[a_{21} = (1 - a_{22}^2)/(a_{22}v). \]

By further substitution,

\[A = \begin{pmatrix} -a_{22} & a_{22}v \\ (1/a_{22} - a_{22})/v & a_{22} \end{pmatrix}. \]

We introduce \(x_2 = -x_{1.5}, t_2 = t_{1.5} \) and

\[r_2 = B \cdot r_1, \quad B = \begin{pmatrix} a_{22} & -a_{22}v \\ (1/a_{22} - a_{22})/v & a_{22} \end{pmatrix}. \]

We further define

\[\gamma = a_{22}. \]

\[g = 1/a_{22}^2 - 1 = 1/\gamma^2 - 1, \]

and therefore

\[B = \gamma \begin{pmatrix} 1 & -v \\ g/v & 1 \end{pmatrix}. \]

It is important to notice that the diagonal elements are identical.
We define

\[r_2 = B_{1\rightarrow 2} \cdot r_1 \]
\[r_3 = B_{2\rightarrow 3} \cdot r_2 = B_{2\rightarrow 3} \cdot B_{1\rightarrow 2} \cdot r_1 \]

and thus

\[B_{1\rightarrow 3} = \gamma_{1\rightarrow 2} \gamma_{2\rightarrow 3} \left(\begin{array}{cc} 1 & -v_{2\rightarrow 3} \\ g_{2\rightarrow 3}/v_{2\rightarrow 3} & 1 \end{array} \right) \left(\begin{array}{cc} 1 & -v_{1\rightarrow 2} \\ g_{1\rightarrow 2}/v_{1\rightarrow 2} & 1 \end{array} \right) \]

and further,

\[B_{1\rightarrow 3} = \gamma_{1\rightarrow 2} \gamma_{2\rightarrow 3} \left(\begin{array}{cc} 1 - v_{2\rightarrow 3} g_{1\rightarrow 2}/v_{1\rightarrow 2} & -(v_{1\rightarrow 2} + v_{2\rightarrow 3}) \\ g_{2\rightarrow 3}/v_{2\rightarrow 3} + g_{1\rightarrow 2}/v_{1\rightarrow 2} & 1 - v_{1\rightarrow 2} g_{2\rightarrow 3}/v_{2\rightarrow 3} \end{array} \right) \]

By the identical diagonal elements we have:

\[\frac{v_{2\rightarrow 3} g_{1\rightarrow 2}}{v_{1\rightarrow 2}} = \frac{v_{1\rightarrow 2} g_{2\rightarrow 3}}{v_{2\rightarrow 3}} \quad \Rightarrow \quad \frac{g_{1\rightarrow 2}}{v_{1\rightarrow 2}^2} = \frac{g_{2\rightarrow 3}}{v_{2\rightarrow 3}^2}. \]

Thus, we may generalize our equation and we have

\[g/v^2 = \frac{(1/\gamma^2 - 1)}{v^2} = k = \text{constant of nature}. \]

Here

\[\gamma = \frac{1}{\sqrt{1 + kv^2}}. \]

We have to verify that other relationships are also satisfied (e.g. relation between elements [11] and [12], etc.). We have shown that if the postulate is true, the relationship between \(x \) and \(t \) of the systems moving with velocity \(v \) relative to each other must be

\[\left(\begin{array}{c} x_2 \\ t_2 \end{array} \right) = \gamma \left(\begin{array}{cc} 1 & -v \\ kv & 1 \end{array} \right) \left(\begin{array}{c} x_1 \\ t_1 \end{array} \right), \quad \gamma = \frac{1}{\sqrt{1 + kv^2}}. \]

We have not shown that \(k \neq 0 \), but the value of \(k \) can be obtained from "any" experiment, e.g. lifetime of meson, etc., and experiments do not have to use light.
\[
\begin{pmatrix}
 x_2 \\
 t_2
\end{pmatrix}
= \gamma
\begin{pmatrix}
 1 & -v \\
 -v/c^2 & 1
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 t_1
\end{pmatrix},
\begin{pmatrix}
 x_1 \\
 t_1
\end{pmatrix}
= \gamma
\begin{pmatrix}
 1 & -v \\
 -v/c^2 & 1
\end{pmatrix}
\begin{pmatrix}
 x_2 \\
 t_2
\end{pmatrix}
\]
\[
\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}
\]

1) The lifetime of particle at rest at \(x_1 = 0 \) in system "1" is \(\tau_1 \). What is it in system "2"?

\[
x_1 = 0, \quad t_1 = \tau_1 \implies t_2 = \tau_2 = \gamma \tau_1
\]

2) The distance \(x_1 \) covered by observer at rest at \(x_2 = 0 \) in time \(t_2 \):

\[
x_2 = 0, \quad x_1 = \gamma vt_2, \quad \frac{x_1}{t_2} = \gamma v
\]

Note that

\[
v\gamma = c \text{ for } v/c = 1/\sqrt{2}.
\]
Dimensional Analysis of the Trajectory of Non-Relativistic Charged Particles in Stationary Electric and Magnetic Fields (MKS units, with and without space charge)

Motivation.
To explain the structure of trajectory equations to engineers working on cyclotron-mass spectrometer.

We use linear scaling length D_0, and represent \mathbf{B} and \mathbf{E} fields by the scaling quantities B_0 and $E_0 = V_0 D_0$ times the appropriate dimensionless functions of x/D_0, y/D_0, and z/D_0. We must be able to represent the trajectory $x(t)$ ($t = 0$ at start of trajectory) as the product of D_0 and a function of dimensionless products P_2. The list of parameters to form P's has, in addition to $D_0, B_0, V_0(E_0), t$, the quantity m/e due to the equation of motion. Thus, the complete list consists of $m/e, D_0, B_0, V_0(E_0), t$.

We construct P's by first finding the appropriate physics relationship, then re-writing them in product form with parameters from the above list, and finally by solving for P, i.e.:

$$m \ddot{x} = eE \rightarrow m \frac{D_0}{t^2} = e \frac{V_0}{D_0} \rightarrow P_1 = t^2 \frac{e}{m} \frac{V_0}{D_0^2}.$$

For construction of next P, consider the parameter list without e/m:

$$E = \mathbf{v} \times \mathbf{B} \rightarrow E_0 = B_0 \frac{D_0}{t} \rightarrow P_2 = \frac{B_0 D_0}{E_0 t} = \frac{B_0 D_0^2}{V_0 t}.$$

We use P_1 to form P_3 without t, and use P_3 instead of P_2:

$$P_3 = P_2^2 P_1 = \frac{B_0^2}{E_0^2} \frac{e}{m} V_0 \rightarrow P_3 = \frac{e}{m} \frac{B_0^2 D_0^2}{V_0}.$$

We now remove B_0 from the parameter list, leaving only $D_0, V_0(E_0), t$, and we see that no additional P's are possible. Thus, we have

$$x(t) = D_0 F_x(P_1, P_3) = D_0 \left(t^2 \frac{e}{m} \frac{V_0}{D_0^2} \frac{e}{m} \frac{B_0^2 D_0^2}{V_0} \right),$$

and this is equivalently true for $y(t)$ and $z(t)$.

April, 1992. Note 0278misc.
These expressions show the available options for changing the values of parameters if one of these has to be changed in a particular way and if one does not want to change the trajectory. If one does not care how long it takes for the particle to traverse its trajectory, then P_3 is the only P that is to be kept constant. P_1 can be considered to be an expression for the time to traverse the system.

If one wants to include space charge effects, one must include I, e, and ε_0 to the remaining list of parameters D_0, V_0, t. If the magnetic fields produced by the moving charges are important, one must add μ_0 as well.

When writing the P's, we shall use the fact that space charge and magnetic fields for charged particles go to 0 as $1/\varepsilon_0$ and μ_0 go to 0. The space charge effects come from

$$\nabla \cdot \varepsilon_0 E = \rho \rightarrow \varepsilon_0 \frac{E_0}{D_0} = I \frac{t}{D_0^2} \rightarrow P_4 = \frac{I}{\varepsilon_0 V_0 D_0}.$$

We remove t with P_2 to get

$$P_5 = P_4 P_2 = \frac{I}{\varepsilon_0 V_0} \frac{B_0}{E_0} \rightarrow P_5 = \frac{I}{\varepsilon_0} \frac{B_0 D_0}{V_0^2}.$$

We remove B_0 with P_3 to get

$$P_6 = \frac{P_5^2}{P_3} = \left(\frac{I}{\varepsilon_0} \right)^2 \frac{D_0^2 m V_0}{V_0^4 e D_0^2} \rightarrow P_6 = \left(\frac{I}{\varepsilon_0} \right)^2 \frac{m/e}{V_0^2}$$

with P_4, P_5 discarded.

We remove I from our parameter list and are left with $e, \varepsilon_0, D_0, t, V_0$ for

$$\nabla \cdot \varepsilon_0 E = \rho, \quad \varepsilon_0 E_0 = \frac{e}{D_0^2} \rightarrow P_7 = \frac{e}{\varepsilon_0 D_0 V_0}.$$

By removing ε_0 we see that no more P's are possible with just e, D_0, t, V_0. Thus, we have

$$x(t) = D_0 F_x(P_1, P_3, P_6, P_7) = D_0 F_x \left(\frac{e V_0 t^2}{m D_0}, \frac{e B_0^2 D_0^2}{m V_0}, \frac{I^2 m/e}{\varepsilon_0 V_0^2}, \frac{e}{\varepsilon_0 D_0 V_0} \right),$$

and this is equivalently true for $y(t)$ and $z(t)$.

We expect that some P's are not significant if ε_0 is large enough so that P_6 and/or P_7 are small enough. For instance, for $D_0 = 10^{-2} m$, $V_0 = 10^3 V$, and $e =$ charge of electron, we have $P_7 = 1.8 \times 10^{-9} \ll 1$, thus P_7 is probably not important.
We now add μ_0 to the parameter list, and for e, D_0, t, V_0, μ_0, we have

$$
\nabla \times \mathbf{E} = -\dot{\mathbf{B}} \quad \rightarrow \quad \frac{E_0}{D_0} = \frac{V_0}{D_0^2} = \frac{\mu_0 (e/t)}{t} = \frac{\mu_0 e}{t^2 D_0},
$$

$$
P_8 = \frac{\mu_0 e D_0}{t^2 V_0}.
$$

Using other P's, we get

$$
P_9 = \frac{\mu_0 I}{D_0 B_0}.
$$

We remove μ_0 from the parameter list, and see that no more P's are possible, and we have

$$
z(t) = D_0 F_z (P_1, P_3, P_6, P_7, P_9),
$$

and this is equivalently true for $y(t)$ and $z(t)$.

Application to System with Fixed D_0, B_0 (Cyclotron).

We ignore P_1 since it determines traversal time. Without space charge and current-field effects, we must keep $V_0 m/e$ constant to get same behavior when the particle is changed, i.e. $V_0 \sim e/m$ is necessary. To see how space charge limitation affects "permissible" current, one must look at P_6:

$$
\frac{I^2 m/e}{V_0^3} = \frac{I^2 (m/e)^4}{(V_0 m/e)^3} = \text{constant}
$$

and this implies that $(m/e)^2 \cdot I$ should be a constant or small enough. As stated earlier, P_7 will be small enough to cause no problems, and the same will be true for P_9.

Further Comments.

While this theory was formulated with scale factors in mind, the P's also have local meaning. That is, if the "local" V \(^\dagger\) is interpreted as potential energy (divided by e), it becomes clear that P_6 and P_7 (with the local V and D) cannot be sufficiently small to be ignored everywhere since the particles start somewhere with $eV = 0$. But if the ion source is considered as a separate entity the ignorability argument will hold. It is also clear that looking at the P's with subscripted V, V_0 applies not only to applied potentials within the structure, but also to the energy of the incoming beam. \(^\ddagger\)

\(^\dagger\) Without the subscript 0 that identifies the "global" scale.

\(^\ddagger\) This study was motivated by Tony Young's question about how V_0 has to be changed when B_0 differs from its original design value. Using P_3 we must have $B_0^2 / V_0 = \text{constant}$.
Some Practical Numbers.

Use γ sufficiently smaller than 1 to make a P ignorable. Then P_7, $\sqrt{P_6}$ can be ignored if

$$P_7 = \frac{e}{\varepsilon_0 D_0 V_0} < \gamma \quad \rightarrow \quad D_0 V_0 = \frac{e}{\varepsilon_0 \gamma} > 1.8 \times 10^{-8}$$

$$\sqrt{P_6} = \frac{I}{\varepsilon_0 V_0^{3/2}} < \gamma \quad \rightarrow \quad I < V_0^{3/2} \varepsilon_0 \sqrt{e/m}.$$

With $e_c = \text{electron charge}$, and $m_p = \text{proton mass}$,

$$I < V_0^{3/2} \gamma \sqrt{\frac{e/e_c}{m/m_p}} \sqrt{\frac{e_c}{m_p}} = V_0^{3/2} \gamma \sqrt{\frac{e/e_c}{m/m_p}} \times 8.7 \times 10^{-8}$$

$$I < V_0^{3/2} \gamma \sqrt{\frac{e/e_c}{m/m_p}} 8.7 \times 10^{-8}.$$
Analog Integrator Dynamics

Contrary to conventional analysis, which expresses the output signal in terms of the input signal, the quantity one wants (time integral over input integral) is expressed in terms of output signal (in digital form or as a scope trace), with all dynamic effects taken into account. In addition to dynamic terms being caused by the frequency response of the operational amplifier, the first order sensitivity is also affected by its dynamic behavior.

![Figure 1](image)

For p the Laplace transform variable, and $RC = \tau_1$,

$$\frac{V_0 + \varepsilon V_2}{R} = -V_2(1 + \varepsilon)pC,$$

where $\mu = 1/\varepsilon \gg 1$ is the open loop gain of the operational amplifier, and

$$V_0 = -V_2(p\tau_1(1 + \varepsilon) + \varepsilon) = -V_2 \cdot F.$$

We use the following rough numbers:

$$\varepsilon = 0, \quad \int V_0 dt = 10^{-6} \text{Vsec}, \quad \tau_1 = 10^{-3} \text{sec}, \quad \text{and} \quad V_2 = \frac{\int V_0 dt}{\tau_1} = 10^{-3} \text{V}.$$

The frequency response of the operational amplifier is

$$\mu_1(p) = \frac{\mu_0}{1 + p\tau_0}.$$

It actually behaves in this fashion until the open loop gain is much less than 1. If the operational amplifier were not to behave this way, it would be useless for many

47
applications. We characterize the frequency response either by the time constant \(\tau_0 \), or the frequency (times \(2\pi \)) where the amplitude gain is reduced to 1:

\[
1 = \frac{\mu_0}{\omega_2 \tau_0} = \frac{1}{\omega_2 \varepsilon_0 \tau_0} = \frac{1}{\omega_2 \tau_2}
\]

with

\[
\tau_2 = \frac{1}{\omega_2} \approx 10^{-7} \text{sec}, \quad \mu_0 = 1/\varepsilon_0 \approx 10^6, \quad \text{and} \quad \varepsilon = \varepsilon_0(1 + p\tau_0) = \varepsilon_0 + p\tau_2,
\]

and for \(\tau^*_1 = (\tau_1 + \tau_2) \):

\[
F = p\tau_1 (1 + p\tau_2) + \varepsilon_0 + p\tau_2
\]

\[
= p\tau^*_1 + \varepsilon_0 + p^2 \tau_1 \tau_2
\]

\[
= p\tau^*_1 + \varepsilon_0 + p^2 \tau_2 (\tau^*_1 - \tau_2),
\]

\[
\frac{V_0}{p\tau^*_1} = V_2 \left(1 + \frac{1}{p\mu_0 \tau^*_1} + \frac{p\tau_2 \tau_1}{\tau^*_1} \right).
\]

In the time domain, the quantity of interest, \(\int V_0(\tau)d\tau \), is expressed in terms of the measured quantity \(V_2(t) \) by

\[
\int V_0(\tau)d\tau = V_2(t) \cdot \tau^*_1 + \frac{\int V_2(\tau)d\tau}{\mu_0} + V_2(t)\tau_2 \tau_1.
\]

One has to choose the time constants and open loop gain such that the second and third terms are small compared to the first term so that they can effectively be ignored or corrections can easily be made. It should be noted that the frequency response of the operational amplifier can make a small, but noticeable, correction to the effective time constant \(\tau^*_1 \) through \(\tau_2 \).
Local Interpolation with Continuous Function and its First N Derivatives

Figure 1.

1. Real function $y_0(x)$ must have known values at $x = x_0, x_1, \ldots, x_n$.

2. Establish interpolation functions $P_1, \ldots, P_{n-1}(x)$, that have properties appropriate to model $y_0(x)$ in small regions. This necessitates continuous functions, and continuous and meaningful first N derivatives. $P_j(x)$ must reproduce $y_0(x)$ exactly for $x = x_{j-1}$, $x = x_j$ and $x = x_{j+1}$, for $1 \leq j \leq n - 1$.

3. Calculate the approximate function $y(x)$ from $y(x) = P_1(x)W_1(x) + P_2(x)W_2(x)$ in interval $x_1 \leq x \leq x_2$, and similarly in other intervals. Make the choices, to some degree arbitrary, for the weight functions $W_1, \ldots, W_{n-1}(x)$ so that the desired goal is obtained in a reasonable fashion.

4. If, P_1 and P_2 are the same as $y_0(x)$, we do not want the interpolation scheme to destroy the relationship $y(x) = y_0(x)$. Therefore, we must have that

Condition 1: $W_1(x) + W_2(x) = 1$.

And if the above is satisfied, it is also true that

Condition 2: $W_1^{(n)}(x) + W_2^{(n)}(x) = 0$.

5. We examine $y^{(n)}(x)$:

$$y^{(n)}(x) = P_1^{(n)}W_1 + nP_1^{(n-1)}W_1^{(1)} + \ldots + nP_1^{(1)}W_1^{(n-1)} + P_1W_1^{(n)} + P_2^{(n)}W_2 + nP_2^{(n-1)}W_2^{(1)} + \ldots + nP_2^{(1)}W_2^{(n-1)} + P_2W_2^{(n)}.$$
for \(n = 1, 2, \ldots, N \). We choose \(W^{(1)} \) so that all needed derivatives exist. At \(x = x_1 \) or \(x = x_2 \),

\[
P_1 W_1^{(n)} + P_2 W_2^{(n)} = P_1 (W_1^{(n)} + W_2^{(n)}) = 0
\]

because \(P_1, P_2 \) fit \(y_0(x) \) exactly at \(x = x_1, x = x_2 \), and due to Condition 2. We now choose the weight functions such that at \(x = x_1, y^{(n)} = P_1^{(n)}, \) and at \(x = x_2, y^{(n)} = P_2^{(n)} \). We do this by requiring that weight functions fulfill

Condition 3: \(W_1(x_1) = 1, \quad W_1(x_2) = 0, \) and \(W_2(x_1) = 0, \quad W_2(x_2) = 1, \)

and fulfill

Condition 4: \(W_1^n(x_1) = W_1^n(x_2) = 0 \) and \(W_2^n(x_1) = W_2^n(x_2) = 0 \) for \(n = 1, 2, \ldots, N - 1 \).

With the above choices, \(y \) and its first \(N \) derivatives at \(x = x_n \) depend only on \(P_n \), independently of whether we get to \(x_n \) from an upper or lower interval, i.e., \(y \) and its derivatives are continuous everywhere.

6. The construction of the weight functions that satisfy Conditions 1 (and therefore Condition 2), 3, and 4, is not unique. We introduce

\[
u(x) = \frac{x - (x_1 + x_2)/2}{(x_2 - x_1)/2} = \frac{2x - (x_1 + x_2)}{(x_2 - x_1)}.
\]

This gives us

\[
u(x_1) = -1, \\
u((x_1 + x_2)/2) = 0, \\
u(x_2) = 1.
\]

We now have that

\[
W_2(x) = \frac{1}{2} (1 + g_N(x)), \\
W_1(x) = \frac{1}{2} (1 - g_N(x)),
\]

\[
y(x) = \frac{1}{2} (P_2(x) + P_1(x) + (P_2(x) - P_1(x)) \cdot g_N(x)) \\
= P_1(x)W_1(x) + P_2(x)W_2(x),
\]
where,

\[
g_N(x) = a_N \int_0^x (1 - v^2)^{N-1} dv \quad \text{and} \quad \frac{1}{a_N} = \int_0^1 (1 - v^2)^{N-1} dv.
\]

We may now conclude that, clearly, Conditions 1 and 3 are satisfied, and from

\[
W^{(1)}_2(x) = \frac{g_N(x)}{x_2 - x_1} = \frac{a_N}{x_2 - x_1} (1 - u^2)^{N-1}
\]

\[
= \frac{a_N}{x_2 - x_1} (1 - u)^{N-1}(1 + u)^{N-1},
\]

it follows that Condition 4 is satisfied as well.

We introduce here some further details. Given

\[
\frac{1}{a_N} = \int_0^1 (1 - v^2)^{N-1} dv = b_N,
\]

we have that

\[
b_N = \int_0^1 (1 - v^2)^{N-2}(1 - v^2) dv
\]

\[
= b_{N-1} - \int_0^1 (1 - v^2)^{N-2}v^2 dv.
\]

For

\[
\,du = -1(1 - v^2)^{N-2}vdv \quad \text{and} \quad u = \frac{(1 - v^2)^{N-1}}{2(N - 1)},
\]

\[
r = v \quad \text{and} \quad dr = dv,
\]

we have that

\[
b_N = \frac{b_{N-1}}{1 + \frac{1}{2(N - 1)}},
\]

\[
a_N = a_{N-1} \left(1 + \frac{1}{2(N - 1)}\right).
\]
Thus, for \(a_1 = 1 \)

\[
\dot{a}_N = a_{N-1} \left(1 + \frac{1}{2(N-1)} \right) = \prod_{n=1}^{N-1} \left(1 + \frac{1}{2(N-1)} \right).
\]

And further,

\[
a_N = \prod_{1}^{N-1} \frac{2n+1}{2n} = \frac{3 \cdot 5 \cdots (2N-1)}{2N-1(N-1)!} = \frac{(2N-1)!}{2^{N-1}N(N-1)!^2} = \frac{(2N-1)!}{4^{N-1}(N-1)!^2}.
\]

Summary.

\(P_1 \) fits \(y_0 \) exactly at \(x = x_0, x_1, x_2 \).

\(P_2 \) fits \(y_0 \) exactly at \(x = x_1, x_2, x_3 \).

\[
y(x) = P_1(x)W_1(x) + P_2(x)W_2(x),
\]

\[
W_2(x) = \frac{1}{2}(1 + g_N(x)),
\]

\[
W_1(x) = \frac{1}{2}(1 - g_N(x)),
\]

\[
u(x) = \frac{2x - (x_1 + x_2)}{(x_2 - x_1)},
\]

\[
\frac{1}{a_N} = \int_0^1 (1 - v^2)^{N-1} dv,
\]

\[
g_N(x) = a_N \int_0^1 (1 - v^2)^{N-1} dv.
\]

Special Cases.

\(N = 1: \)

\[
g_1 = u.
\]

\(N = 2: \)

\[
g_2 = a_2 \int_0^1 (1 - v^2) dv = a_2 u(1 - u^2/3), \quad 1/a_2 = 2/3
\]

\[
g_2 = \frac{1}{2} u(3 - u^2).
\]

\(N = 3: \)

\[
g_3 = a_3 \int_0^1 (1 - 2v^2 + v^4) dv = a_3 u \left(1 - \frac{2}{3} u^2 + \frac{u^4}{5} \right), \quad \frac{1}{a_3} = \frac{1}{3} + \frac{1}{5} = \frac{8}{15},
\]

\[
g_3 = \frac{1}{8} u(15 - 10u^2 + 3u^4).
\]
Linear Least Squares with Erroneous Matrix

When one is dealing with a system in which the relationships between parameter changes, Δp, and the system performance changes, Δs, are in good approximation represented by the linear relationship

$$\Delta s = M \Delta p$$

achieving a desired performance change is simply accomplished by parameter changes

$$\Delta p = M^{-1} \Delta s$$

as long as one has as many parameters as system performance characteristics.

When the desired change, Δs, has more components than Δp, it is often adequate to minimize the weighted sum of the deviations from the desired performance, i.e. one minimizes

$$S = \Delta s^t W \Delta s,$$

where W is a diagonal square matrix with appropriate weights on the diagonal. S is minimized in the first iteration if the parameter vector is changed by

$$\Delta p_1 = A \Delta s_1$$

where $A = (M^t W M)^{-1} M^t W$.

If the matrix M used for this operation deviates by $\Delta M = M_R - M$ from the real matrix M_R, the desired change Δs_2 with the new parameters is given by

$$\Delta s_2 = \Delta s_1 - (M + \Delta M) \Delta p_1 = (I - MA - \Delta MA) \Delta s_1$$

If the effort to determine M_R (often by elaborate measurements) is too large one can iterate the procedure, and it would be of interest to estimate the asymptotic Δs_∞. To obtain this, we introduce

$$I - MA = B$$

and

$$-MA = D$$

Thus,

$$\Delta s_n = (B + D)^{n-1} \Delta s_1$$

and

$$\Delta p_n = A(B + D)^{n-1} \Delta s_1$$

Notice that $AM = I$, $AB = 0$, $DB = 0$ and $B^2 = I - 2MA + MAMA = B$.

Further,

\[(B + D)^2 = B(I + D) + D^2\]

\[(B + D)^3 = B(I + D + D^2) + D^3\]

and so forth such that

\[(B + D)^n = B(I - D)^{-1}(1 - D^n) + D^n.\]

Therefore,

\[\Delta s_n = (B(I - D)^{-1}(1 - D^{n-1}) + D^{n-1})\Delta s_1\]

\[\Delta p_n = AD^{n-1}\Delta s_1\]

as it must be, because for \(\Delta M = 0\) and \(n \geq 2\), \(\Delta p_n = 0\) and \(\Delta s_n = \Delta s_2\).

If \(\Delta M\) is small enough, the absolute values of the eigenvalues of \(D\) will be less than 1, resulting in the following for large enough \(n\):

\[\Delta s_\infty = B(I - D)^{-1}\Delta s_1 = (I - MA)(1 + \Delta MA)^{-1}\Delta s_1.\]

Judging whether one is close to this value is possible by observing the decrease in \(\Delta p_n\) with increasing \(n\).
Matrix Describing Second Order Effects to Second Order in One Dimension

No Momentum Errors.
The normalized equation of motion is
\[y'' = y + by^2. \]

Expand \(y \) in terms of initial conditions \(y_0, y'_0 \) up to 2nd order:
\[y = a_{11}y_0 + a_{12}y'_0 + a_{13}y_0^2 + a_{14}y_0y'_0 + a_{15}y'_0^2. \]

Initial conditions for \(a(x) \)
\[a_{11}(0) = a'_{12}(0) = 1, \]
all others are 0. The equation for \(a(x) \) is:
\[
\begin{align*}
a''_{11} &= a_{11}, \quad \text{and} \quad a''_{12} = a_{12} \quad \Rightarrow \quad \begin{cases} a_{11} = \cosh x, & a_{12} = \sinh x, \\ a_{21} = \sinh x, & a_{22} = \cosh x. \end{cases} \\
a''_{13} &= a_{13} + ba_{11}, \quad a''_{14} = a_{14} + 2ba_{11}a_{12}, \quad \text{and} \quad a''_{15} = a_{15} + ba_{12}^2.
\end{align*}
\]

Because in all three cases \(a(0) = a'(0) = 0: \mathcal{L}(a'') = p^2\mathcal{L}(a). \)

For \(a_{13} \),
\[
a_{11}^2 = \frac{1}{4} \left(e^{2x} + e^{-2x} + 2 \right) \Rightarrow \frac{1}{4} \left(\frac{1}{p-2} + \frac{1}{p+2} + \frac{2}{p} \right).
\]

In general,
\[
\frac{1}{(p-1)(p+1)(p+c)} = \frac{e^x}{2(1+c)} + \frac{e^{-x}}{2(1-c)} + \frac{e^{-cx}}{c^2-1},
\]

thus,
\[
\frac{4a_{11}^2}{p^2-1} = \frac{4}{3} \cdot \frac{e^x}{2} + \frac{4}{3} \cdot \frac{e^{-x}}{2} + \frac{e^{2x} + e^{-2x}}{3} \cdot -2
\]
\[
= \frac{4}{3} \cosh x + \frac{2}{3} \cosh 2x - 2.
\]

Therefore,
\[
a_{13} = \frac{b}{6} \left(2 \cosh x + \cosh 2x - 3 \right) \quad \text{and} \quad a'_{13} = a_{23} = \frac{b}{3} (\sinh x + \sinh 2x).
\]

February, 1966. Note 0006misc.
For a_{14},

$$a_{11}a_{12} = \frac{1}{4} (e^{2x} - e^{-2x}) \Rightarrow \frac{1}{4} \left(\frac{1}{p-2} - \frac{1}{p+2} \right),$$

and thus,

$$\frac{4a_{11}a_{12}}{p^2 - 1} \Rightarrow -\frac{4}{3} \cdot \frac{e^{x}}{2} + \frac{4}{3} \cdot \frac{e^{-x}}{2} + \frac{e^{2x} - e^{-2x}}{3}$$

$$= -\frac{4}{3} \sinh x + \frac{2}{3} \sinh 2x.$$

Therefore,

$$a_{14} = \frac{b}{3} \left(\sinh 2x - 2 \sinh x \right) \quad \text{and} \quad a'_{14} = a_{24} = \frac{2b}{3} \left(\cosh 2x - \cosh x \right).$$

Similarly, for a_{15},

$$a_{12}^2 = \frac{1}{4} (e^{2x} + e^{-2x} - 2) \Rightarrow \frac{1}{4} \left(\frac{1}{p-2} + \frac{1}{p+2} - \frac{2}{p} \right),$$

thus,

$$\frac{4a_{12}^2}{p^2 - 1} \Rightarrow -\frac{8}{3} \cdot \frac{e^{x}}{2} + \frac{8}{3} \cdot \frac{e^{-x}}{2} + \frac{e^{2x} + e^{-2x}}{3} + 2$$

$$= -\frac{8}{3} \cosh x + \frac{2}{3} \cosh 2x + 2.$$

Therefore,

$$a_{15} = \frac{b}{6} \left(\cosh 2x - 4 \cosh x + 3 \right) \quad \text{and} \quad a'_{15} = a_{25} = \frac{b}{3} \left(\sinh 2x - 2 \sinh x \right).$$
Inclusion of Momentum Error α.

The normalized equation of motion is

$$y'' = y + \alpha + by^2.$$

First, add the term linear in α to the expansion in y_0, y_0': add $a_{16}\alpha$. The initial conditions are

$$a_{16}(0) = a'_{16}(0) = 0, \quad a''_{16} = a_{16} + 1 \implies a_{16} = \cosh x - 1.$$

Second, take the terms $\alpha^2, \alpha y_0, \alpha y_0'$ into account, where the procedure is the same as in the calculation of $a_{13}, a_{14},$ and a_{15}.

Third, do not add any terms, but introduce $z = y + \beta$ (β is a constant) in the differential equation. Thus,

$$z'' = z - \beta + \alpha + b(z^2 - 2z\beta + \beta^2),$$

$$\beta^2 - \frac{\beta}{b} + \frac{\alpha}{b} = 0 \implies \beta = \frac{1}{2b} \left(1 - \sqrt{1 - 4\alpha\beta}\right),$$

$$z(1 - 2b\beta) + bz^2 = \boxed{z'' = z\sqrt{1 - 4\alpha\beta} + bz^2}.$$

This procedure requires the calculation of a new matrix for every α of interest, but this will give more insight in return.

General Procedure.

Description of higher order effects with power expansion and the consequences for stability.

We describe deviations from the closed orbit by the column vector

$$v = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{pmatrix}$$

where the components of y_1 are y and y', and components of y_2, y_3, \ldots, y_k are, respectively, the second, third, \ldots, k^{th} order contributions of y and y'. Then,

$$v_2 = Mv_1, \quad \text{with} \quad M = \begin{pmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1k} \\ 0 & A_{22} & A_{23} & \cdots & A_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_{kk} \end{pmatrix}.$$

In M, A_{11} describes the first order effects, A_{12} the second order effects, etc. The
other matrices reproduce the higher than first order components of \(v \). The diagonal elements \(A_{22}, A_{33}, \ldots, A_{kk} \) depend only on the matrix element of \(A_{11} \). The eigenvalues of \(M \) do not depend on \(A_{12}, \ldots, A_{1k} \). Thus, the stability of the system does not depend, in this approximation, on the non-linear effects described by these elements. Since stability obviously can depend on non-linear effects, this implies that the power expansion for many passes through the system has a progressively shrinking radius of convergence. One can thus conclude that although this method is worthless to evaluate the effect of non-linearities on stability, it might still yield valuable information provided the system does not become unstable because of the non-linearities.

We show rough numbers for

\[
F_3 = a_{13}/b, \quad F_4 = a_{14}/b, \quad F_5 = a_{15}/b,
\]

\[
F'_3 = a'_{13}/b = a_{23}/b, \quad F'_4 = a'_{14}/b = a_{24}/b, \quad F'_5 = a'_{15}/b = a_{25}/b.
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\pi/4)</th>
<th>(\pi/2)</th>
<th>(\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e^x)</td>
<td>2.2</td>
<td>4.8</td>
<td>23</td>
</tr>
<tr>
<td>(e^{-x})</td>
<td>0.46</td>
<td>0.21</td>
<td>0</td>
</tr>
<tr>
<td>(\cosh x)</td>
<td>1.33</td>
<td>2.5</td>
<td>11.5</td>
</tr>
<tr>
<td>(\sinh x)</td>
<td>0.87</td>
<td>2.3</td>
<td>11.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(F_3(x))</th>
<th>(\pi/4)</th>
<th>(\pi/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_4(x))</td>
<td>0.77</td>
<td>2.25</td>
</tr>
<tr>
<td>(F_5(x))</td>
<td>0.18</td>
<td>2.3</td>
</tr>
<tr>
<td>(F'_3(x))</td>
<td>1.06</td>
<td>4.6</td>
</tr>
<tr>
<td>(F'_4(x))</td>
<td>0.78</td>
<td>6</td>
</tr>
<tr>
<td>(F'_5(x))</td>
<td>0.18</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Curvature of 2D Magnetic Field Lines and Scalar Potential Lines

I. Preparation and Background.

Magnetic fields. 2D magnetic fields can be derived from a scalar potential V or a vector potential A, or the complex potential $F(z) = A + iV$, an analytic function of the complex variable $z = x + iy$, according to

$$B_x - iB_y = B^* = i\frac{dF}{dz} = iF'. \quad (1)$$

Field lines and scalar potential lines in the z-plane are the $z(F)$ maps of straight lines parallel to either the imaginary or real axis of the F-plane.

Modification of the curvature by a conformal map. If a curve in the z-plane has a local tangent in the direction $e^{i\alpha_z}$, the conformal map $w(z)$ of that region has a local tangent in the direction

$$e^{i\alpha_z} = e^{i\alpha_z} \frac{w'}{|w'|}. \quad (2)$$

This equation shows that the angle of intersection of any two curves in the z-plane is preserved under the transformation $w(z)$, hence the name conformal transformation. If the curve at that location in the z-plane is k_z, then the curvature of the map of that point can be shown to be

$$k_w = \frac{\left(k_z + \Re \left(\frac{w''}{w'} e^{i\alpha_z}\right)\right)}{|w'|}. \quad (3)$$

The sign convention used for this formula is such that a positive curvature means that if one proceeds in the direction of the tangent, the curve turns to the left, i.e. the conventional mathematically positive direction.

II. Application of (2).

Fundamental relationships. There are several ways to apply (2) to this problem. The most natural way to do so seems to be, at least at first, to assign quantities w and z in (2) to the the variables F and z of our problem, since we are looking at the map of a region of the F-plane to the z-plane. For most applications, this is not very practical since one then gets the curvature of the maps of constant potential lines as a function of A and V, when in fact one wants the curvature as a function of x and

y. We therefore proceed in the following manner: we assign \(z \) and \(w \) to \(z \) and \(F \), and look in

\[
k_F = \frac{\left(k_z + \Im \left(\frac{F''}{F'} e^{i\alpha_z} \right) \right)}{|F'|},
\]

for \(k_F = 0 \), i.e. the curvature of maps of straight lines in the \(F \)-plane is given by

\[
k_z = -\Im \left(\frac{F''}{F'} e^{i\alpha_z} \right).
\]

To get a more practical formula, we express \(e^{i\alpha_z} \) with the help of (2) through

\[
e^{i\alpha_z} = e^{i\alpha_F} \frac{|F'|}{F'},
\]

and the derivatives of \(F \) through the fields as given in (1), yielding

\[
k_z = -\Im \left(\frac{B^{*'}}{B^{*2}} |B| e^{i\alpha_F} \right).
\]

For some expressions of the fields, it is more convenient to write this as

\[
k_z = +\Re \left(\left(\frac{1}{B^*} \right)' |B| e^{i\alpha_F} \right).
\]

In both (7) and (8), \(e^{i\alpha_F} \) has the absolute value 1 and is real if one is looking at a scalar potential line, and is purely imaginary if one looks at a field line.

Comments. It is worth noting that in order to calculate the curvatures of interest, one needs only the expressions for the complex field, not the complex potential. Under most circumstances, the expression for the complex potential is not more complicated than the expression for the complex field. There are, however, exceptions. For instance, the field of a modified sextupole is given by

\[
B^* = iz^2 e^{iaz^2}.
\]

Integrating this to get the complex potential, (1), leads to the error function in the complex plane.
III. Applications.

(i) *The regular multipole.* For a multipole of order \(n \) with the field perpendicular to the midplane, the field is given by

\[
B^* = iz^{n-1}.
\]

(10)

Substituting in (8) gives directly

\[
k_z = (n - 1) |z^{n-1}| \Re (iz^{-n}e^{i\alpha\varphi}).
\]

(11)

Using, for \(e^{i\alpha\varphi} \), the phases corresponding to the arrows in Figures 1(a) and 1(b), and using \(z = re^{i\varphi} \), gives, for the curvature of the field line and the scalar equipotential:

\[
k_z = (n - 1) \cos \frac{n\varphi}{r}, \quad (12A)
\]

\[
k_z = (n - 1) \sin \frac{n\varphi}{r}.
\]

(12V)

(ii) *The modified sextupole.* This particular implementation of a modified sextupole has the field in the midplane perpendicular to the midplane, and behaves like a good sextupole close to the origin, but has a stronger modified field, proportional to \(x^2e^{az^2} \), \(a \in \Re \), as one moves away from the origin of the coordinate system. The complex field is therefore given by

\[
B^* = ize^{az^2}.
\]
Fringe Field Model Function for Dipoles

For a number of beam optics tasks, it is important to have an analytical function that describes the field in the fringe field region of a dipole. We restrict ourselves to the simple case of a dipole that has a straight effective field boundary, making this a very simple problem of describing two dimensional fields. Putting the x-axis into the midplane of a dipole whose half gap is normalized to be equal to 1, with large $x > 0$ describing the outside of the magnet, and the far negative end of the x-axis the deep inside region of the magnet, the field in the region of interest can be described by

$$\frac{B_y(x, y) + iB_z(x, y)}{B_0} = G(z) = D_1(z) + D_2(z) + D_3(z),$$

(0.0)

$$z = x + iy,$$

(0.1)

and the functions D_1, D_2, D_3 chosen such that the asymptotic behavior of $G(z)$ reflects the properties of the fields in the regions deep inside and far outside the magnet. In addition, $G(z)$ should not have any singularities for the space within $-1 < y < 1$. The following functions satisfy these conditions:

$$D_1(z) = \frac{1 + nAe^{\pi z/2}}{(1 + Ae^{\pi z/2})^n},$$

(1)

$$D_2(z) = C_1e^{-C_2(x-x_2)^2},$$

(2)

$$D_3(z) = K_1 \cdot \frac{(1 + K_3e^{-\pi z/2})^m}{(1 + K_2(x-x_3)^2)^{3/2}},$$

(3)

with all coefficients real, $n \geq 2$, $K_2 > 1$, and $A, C_2, K_3, m > 0$. The fields deep inside the magnet are dominated by the “longest surviving” term $e^{\pi z}$ from $D_1(z)$, while far outside the magnet the field is dominated, as desired, by the “longest surviving” term proportional to $1/z^2$ from D_3, with clearly no singularities for $-1 < y < 1$. $D_2(z)$ has been added (and one could add more such terms) to allow a good fit of $G(z)$ to measured or computed data in the transition region. While this suggested model function $G(z)$ has enough free parameters to fit data, the quality of such a fit has not been tested on a real problem, but the $G(z)$ given here should contain a sufficient number of suggestions that this approach to the Enge function promises to be successful.

† See document 0609thry, Comments about RAYTRACE.
Comments about RAYTRACE

Introduction.
Several years ago I was asked at a workshop to comment on the representation of magnetic fields in the RAYTRACE code, a computer program that was developed by H. A. Enge and his students in the 1960's†. Since my comments contained not only some academically interesting points, but also suggestions for improvement of this enormously successful code, several people asked me to put my thoughts on this subject on paper. After describing the specific aspects of the code that I want to discuss, I will elaborate on what I would characterize as shortcomings, together with suggestions for eliminating them, and a description of some mathematical detail at the end.

Fields in RAYTRACE.
Even though it is not a major effort to generalize my comments, I restrict the discussion to the case of the fringe field region of a dipole magnet that has a straight effective field boundary in the region of interest. This means that we are dealing with two dimensional fields, with all the associated simplifications that make it possible to address the core of the problem without unnecessary distractions.

Using the midplane of the magnet as the x-axis of the xy coordinate system, with large positive x representing the region far outside the dipole, and the other extreme the region deep inside the magnet, the field is characterized by the following function, commonly called the Enge function:

$$B_y(x, 0) = \frac{B_0}{1 + e^{P(x)}}$$ \hspace{1cm} (1a)

where:

$$P(x) = C_0 + C_1x + C_2x^2 + \ldots + C_nx^n,$$ \hspace{1cm} (1b)

with n an odd integer and $C_n > 0$.
The coefficients are obtained by fitting measured or computed field values in the midplane to (1), and fields off the midplane are obtained by using a Taylor series expansion, with the derivatives obtained from (1).

Comments and Suggestions.
I have problems with three tightly linked aspects of this procedure:

(A) It is true, in general, that if one fits parameters of a function so that the fields on the surface of a volume are well represented by that function, the quality of the fields computed with that function inside the volume is at least as good as (but usually better than) the original data on the surface. It is, of course, assumed that the function and field calculation algorithm satisfy all the relevant vacuum field equations. Conversely, calculating fields in the volume from a function whose free parameters were determined on a line inside the volume gives fields that are not nearly as accurate as the original data. These facts are qualitatively clear if one thinks of the fringe fields in the midplane of the dipole: significantly different pole contours produce very similar fields in the midplane. That means that if one calculates fields off the midplane accurately from the fields in the midplane, small differences in the function there will give significantly different fields far away from the midplane.

(B) Calculating fields off the midplane with a Taylor series expansion makes no sense in this case for the following reasons: since $B_x - iB_y$ or, more conveniently in this case, $B_y + iB_x$, is an analytical function of the complex variable $z = x + iy$, the field at location (x, y) can be obtained directly, without any approximation, by evaluating (1) for complex argument:

$$B_y(x, y) + iB_x(x, y) = B_y(x + iy, 0) = \frac{B_0}{1 + e^{P(x+iy)}}.$$ \hspace{1cm} (2)

This very simple evaluation of fields from a midplane model function makes it obviously easy to fit the parameters of the model, no matter the nature of that function, to fields off the midplane, thus eliminating the objection raised in (A).

(C) It seems to me that the form of the Enge function is not well suited to this problem for two reasons: 1) the function does not have the appropriate asymptotic behavior far away from either end of the magnet; and 2) unless one makes a careful study of the Enge function, it may have one or more singularities in the “business” region. Avoiding that kind of disaster by evaluating the field only approximately is clearly not a satisfactory answer to this problem. While it is fairly easy with the help of (2) to make the singularity check (see Appendix), it might be simpler to “design” a function that can not have that kind of singularity, in addition to having the proper asymptotic behavior. I have some very promising candidates but have not made the effort to test them on some real problems.
Appendix.

For the Enge function to have no damaging singularity it is necessary and sufficient that the equation

$$P(z) = im\pi \quad \text{with} \quad m = \text{odd integer} \neq 0$$

(3)

has no solution for z between the midplane and a line parallel to the midplane one half gap, h, away from the midplane. This test is most easily carried out with the argument principle that states, in this case, that the number of zeroes of $w(z)$ within a region of the z-plane equals the number of times $w(z)$ goes around $w = 0$ when z traces the boundary of the region. Since, in this case,

$$w(z) = P(z) + im\pi,$$

(4)

with all C_n in $P(z)$ real, it is only necessary to find the locations where the map of the straight line parallel to the midplane at distance h intersects the imaginary axis of $P(z)$, i.e. one has to find $\Im P(z)$ at the locations where $\Re P(x + ih) = 0$. Since $\Re P(x + ih) = 0$ means nothing more than finding the real roots (in x) of a polynomial of order n, this a very simple exercise for a computer. Having these points, it is trivial to see whether $w(z) = 0$ is possible for any odd m. I have carried out that test for the example given by Spencer and Enge, and for four cases given to me by S. Kowalski. I am happy to report that while none of these cases had singularities within one half gap of the midplane, there were some singularities just outside the end of the dipole only a little more than a half gap away from the midplane.
Stored Energy in H-Magnet for $\mu = \infty$

\[2\mathcal{E} = \int B \cdot H dv = \int H \cdot \nabla \times A dv. \]

From
\[\nabla \cdot (A \times H) = H \cdot (\nabla \times A) - A \cdot (\nabla \times H), \]
we have that, with $j = je_z$,

\[2\mathcal{E} = \int A \cdot j dv + \int (A \times H) \cdot da \]
\[= \int A \cdot j dv + \int A \cdot (H \times da), \]

where $H \times da = 0$ on $\mu = \infty$ surface.

In case of a long magnet, $\int j \, da \equiv 0$ which means that we can add any constant to A without changing anything. We make $A = 0$ along the y-axis. We now use $A = \mu_0 A e_z$, so that the total energy per unit length is

\[\mathcal{E}' = \frac{1}{2} \mu_0 j \int A dx dy \]

where the integral is evaluated over the coil in the first quadrant.

To get

\[J_1 = \int A(x, y) \, dx \, dy \]

we look at

\[J_2(y) = \int_0^{y_2} \int_0^{h_2} H_x \, dx \, dy = \int_0^{y_2} \int_0^{h_2} \frac{\partial A}{\partial y} \, dy \, dx \]

\[= \int (A(x, y) - A_t) \, dx = \int A(x, y) \, dx - A_t h_2, \]

where \(A_t \) is \(A \) at top of the coil slot.

We integrate the original expression for \(J_2 \) over \(x \) first, and by Ampère’s Law,

\[J_2(y) = \int_0^y \frac{I}{y_2} y \, dy = \frac{I y^2}{2y_2}. \]

Therefore,

\[\int A(x, y) \, dx = \frac{I y^2}{2y_2} + A_t h_2, \]

\[J_1 = \int_0^{y_2} \int_0^{h_2} A(x, y) \, dx \, dy = \frac{I y^2}{6} + A_t h_2 y_2. \]

From *H-Magnet With Minimal Yoke Flux Density* we know that

\[A_t = I \left(\frac{W_1}{h_1} + \frac{D + y_2/2}{h_2} + E_1 \right), \]

and thus we have that

\[J_1 = I h_2 y_2 \left(\frac{W_1}{h_1} + \frac{D + y_2/2}{h_2} + E_1 + \frac{y_2}{6h_2} \right). \]

\[jJ_1 = I^2 \left(\frac{W_1}{h_1} + \frac{2y_2}{3h_2} + \frac{D}{h_2} + E_1 \left(\frac{h_1}{h_2} \right) \right). \]

\[\mathcal{E}' = \frac{1}{2} \mu_0 (jJ_1), \]

\[\dagger \] Document 0606thry.
where

\[I = H_1 h_1 = j h_2 y_2, \]

\[E_1(a) = a + \frac{2}{\pi} \left(\ln \frac{a + 1/a}{4} + \left(\frac{1}{a} - a \right) \arctan a \right) \text{ with } a = h_2 / h_1. \]
H-Magnet With Minimal Yoke Flux Density

\[W_1, H_1, W_3, D, \text{ and } h_1 \text{ are given. We want to minimize } B_{\text{yoke,max}} \text{ for } \mu = \infty \text{ by chosing the proper } h_2. \]

Procedure.

Calculate flux for 0-thickness coil at top of coil slot using excess flux coefficient \(E_1 \) for corner. Subtract "window frame flux" from combination of real coil and 0-thickness coil.

For \(V = H_1 h_1 = j h_2 y_2 \) we chose \(h_2 \) and \(j \). Thus,

\[
A = V \left(\frac{W_1}{h_1} + \frac{D + y_2}{h_2} + E_1 \left(\frac{h_1}{h_2} \right) - \frac{y_2}{2h_2} \right) \mu_0
\]

\[
= \mu_0 V \left(\frac{W_1}{h_1} + \frac{D + y_2/2}{h_2} + E_1 \left(\frac{h_1}{h_2} \right) \right)
\]

\[
B_{\text{yoke,max}} = \frac{A}{W_3 - W_1 - h_2}.
\]

We determine the minimum value of \(B_{\text{yoke,max}} \) by varying \(h_2 \), and we define

\[
E_1(a) = a + \frac{2}{\pi} \left(\ln \frac{a + 1/a}{4} + \left(\frac{1}{a} - a \right) \arctan a \right) \quad \text{with} \quad a = h_2/h_1.
\]

73
Dipole with Small Gap Bypass

\[B_0 h_0 + h_1 \mu_0 H(B_0) = B_1 (h_1 + h_0) \] \hspace{1cm} (1)

For \(W_0/W_2 = \varepsilon_0 \),

\[B_2 W_2 = B_0 W_0 + B_1 W_1 \quad \text{and thus} \quad B_2 = B_0 \varepsilon_0 + B_1 (1 - \varepsilon_0) \, , \]

\[V_{00} = \frac{B_1}{\mu_0} (h_0 + h_1) + h_2 H(B_0 \varepsilon_0 + B_1 (1 - \varepsilon_0)) \]

The exact equation

\[\mu_0 V_{00} = B_1 (h_0 + h_1) + \mu_0 h_2 H(B_0 \varepsilon_0 + B_1 (1 - \varepsilon_0)) \] \hspace{1cm} (2)

has the following implementations

\[B_1 \rightarrow B_0 \quad \text{and then} \quad B_1, B_0 \rightarrow V_{00} \, . \]

We will now examine three special cases.

75
In Case 1, \(V_{00} \) is so small that \(\mu_0 H(B) = \gamma B \),

\[
B_0(h_0 + \gamma h_1) = B_1(h_0 + h_1),
\]

\[
\mu_0 V_{00} = B_1 \left(\frac{h_0 + h_1 + \gamma h_2 \left(\frac{\varepsilon_0 h_0 + h_1}{h_0 + \gamma h_1} + 1 - \varepsilon_0 \right)}{K} \right),
\]

where

\[
\frac{h_0 + h_1}{h_0 + \gamma h_1} = 1 + \frac{(1 - \gamma) h_1}{h_0 + \gamma h_1} \quad \text{and} \quad K_{h_0} = 1 - \frac{\gamma h_1 \varepsilon_0 h_2 (1 - \gamma)}{(h_0 + \gamma h_1)^2},
\]

\[
B_1 = \frac{\mu_0 V_{00}}{K}, \quad B_1' = \frac{-\mu_0 V_{00}}{K_2} K' = \frac{\mu_0 V_{00}}{K_2} \left(\frac{\gamma h_1 \varepsilon_0 h_2 (1 - \gamma)}{(h_0 + \gamma h_1)^2} - 1 \right).
\]

For \(h_0 \ll \gamma h_1 \):

\[
B_1' = \frac{\mu_0 V_{00}}{K_2} \left(\frac{\varepsilon_0 h_2 (1 - \gamma)}{\gamma h_1} - 1 \right) > 0.
\]

\(K' = 0 \) for \(h_0 + \gamma h_1 = \sqrt{\varepsilon_0 \gamma h_1 h_2 (1 - \gamma)} \) such that

\[
h_0 = \gamma h_1 \left(\sqrt{\frac{\varepsilon_0 h_2 (1 - \gamma)}{\gamma h_1}} - 1 \right) \approx \sqrt{\varepsilon_0 h_1 h_2 (1 - \gamma) \gamma}.
\]

For \(h_1 = 1, h_2 = 5, \varepsilon_0 = 1/2, \gamma = 10^{-3}, \) we have

\[
h_0 = \sqrt{1/2 \cdot 1 \cdot 5 \cdot 10^{-3}} = \frac{1}{20} \text{ cm}.
\]

In Case 2, we need \(V_{00} \) large enough so that \(B_0 \approx B_s \), but small enough so that for (2) \(\mu_0 H(B) = \gamma B \), thus

\[
\mu_0 V_{00} = B_1 (h_0 + h_1) + B_1 h_2 \gamma (1 - \varepsilon_0) + B_s h_2 \gamma \varepsilon_0,
\]

where

\[
B_1 = \frac{\mu_0 V_{00} - B_s \gamma h_2 \varepsilon_0}{h_0 + h_1 + h_2 \gamma (1 - \varepsilon_0)}.
\]

In a third, simple case, Case 3, for a still higher \(V_{00} \),

\[
B_s \varepsilon_0 + B_1 (1 - \varepsilon_0) \to B_s,
\]

i.e. it is independent of \(V_{00} \), and thus

\[
B_1 = B_s.
\]
Boundary Condition at Iron-Air Interface for AC and Application to 2-Dimensional Cylinder

Interface at \(y = 0 \),

\[
\frac{\partial}{\partial x} = \frac{\partial}{\partial z} = 0 \quad \text{and} \quad \frac{\partial}{\partial y} = .
\]

\(\mathbf{H} = H e_z, \quad \mathbf{j} = e_z \sigma \mathbf{E} \quad \text{and} \quad \mathbf{E} = e_z \mathbf{E}. \)

\((\nabla \times \mathbf{H})_z = -H' = \sigma \mathbf{E} \quad \text{and} \quad \mathbf{E} = -\mathbf{j} H'. \)

\((\nabla \times \mathbf{E})_z = E' = -\mu_0 \mu_0 \mathbf{H} = -\mathbf{j} H'' \quad \text{and} \quad H'' - k^2 H = 0 \)

where, depending on the application, \(p \) is either the Laplace transform variable or, for sinusoidal excitation, \(i\omega \).

\[
\begin{align*}
 k &= \sqrt{\frac{\sigma \mu_0 \mu p}{D_1}} \\
 H &= H_0 e^{-ky} \quad \text{and} \quad \Phi = \mu_0 \mu \int_0^\infty H dy = \frac{H_0 \mu_0 \mu}{k} \mu_0 H_0 \mu D_1.
\end{align*}
\]

Therefore, with

\[
\mu D_1 = D_2
\]

\[
\frac{d\Phi}{dx} \Delta x = \mu_0 D_2 \frac{\partial H_0}{\partial x} \Delta x = \mu_0 H_y \Delta x,
\]

\[
H_y = D_2 \frac{\partial H_0}{\partial x} \quad \Rightarrow \quad H_\perp = D_2 \frac{\partial H_\parallel}{\partial s_\parallel}.
\]

Given an iron cylinder with \(D_2 \), of radius 1, in far-field \(\mathbf{H} = H_\infty e_z \), we try to solve for the complex potential \(F \). Ansatz: the superposition of the macro and micro dipoles, with normalized units.

\[
F = -i H_1(z + 1/z) - i H_2(z - 1/z).
\]

with \(z = x + iy \), normalized with radius \(r_0 \) of the cylinder.

On $|z| = 1$

\[F = A + iV = 2H_2 \sin \varphi - i2H_1 \cos \varphi, \]

\[H^* = iF' = H_z - iH_y \quad \text{and} \quad \mathcal{H} = H_r + iH_\varphi = He^{-i\varphi}, \]

\[\mathcal{H}^* = H^*e^{i\varphi}. \]

and the boundary condition is, with

\[H_\parallel = H_\varphi \quad \text{and} \quad H_\perp = -H_r, \]

\[H_r = -D_2 \frac{\partial H_\varphi}{\partial \varphi} \]

\[H^* = H_1(1 - 1/z^2) + H_2(1 + 1/z^2) = e^{-i\varphi}\mathcal{H}^*. \]

On the surface,

\[\mathcal{H}^* = H_r - iH_\varphi = 2iH_1 \sin \varphi + 2H_2 \cos \varphi, \]

\[H_r = 2H_2 \cos \varphi \quad \text{and} \quad H_\varphi = 2H_1 \sin \varphi \]

and the boundary condition is, with

\[2H_2 \cos \varphi = D_2 2H_1 \sin \varphi + 2H_2 \cos \varphi \quad \text{and} \quad H_2 = D_2 H_1, \]

\[H_\infty = H_1 + H_2 = H_1(1 + D_2), \]

\[H_1 = \frac{H_\infty}{1 + D_2}, \quad H_2 = \frac{H_\infty D_2}{1 + D_2}, \]

\[H_r = 2H_\infty \frac{D_2}{1 + D_2} \cos \varphi \quad \text{and} \quad H_\varphi = -2H_\infty \frac{\sin \varphi}{1 + D_2} \]

normalized with radius r_0 of the cylinder.
Using SI units, we choose $\sigma \mu_0 = 10$, $\mu = 10^4$ and $\omega = 2\pi \cdot 60$Hz, and therefore we have

$$|D_2| = \sqrt{\frac{\mu}{\sigma \mu_0 \omega}} = \frac{10^2}{\sqrt{10^4 \cdot 12\pi}},$$

$$|D_2| = 1.6m$$

$|D_1| = .16mm$ and $|D_1|\sqrt{2} = .23mm$.

For sinusoidal excitation,

$$D_2 = |D_2|\frac{(1 - i)}{\sqrt{2}},$$

$$|1 + D_2| = \sqrt{\left(1 + \frac{|D_2|}{\sqrt{2}}\right)^2 + \frac{|D_2|^2}{2}} = \sqrt{1 + |D_2|^2 + |D_2|\sqrt{2}}.$$

Normalized, where r_0 is the radius of the cylinder:

$$D_2 = \frac{D_2(m)}{r_0(m)}.$$

That is, for same material and frequency, $|D_2|$ is large for a small cylinder and $|D_2|$ is small for a large cylinder.

Unfortunately, if $H_\perp = D_2 \frac{\partial H}{\partial s}$ is valid in z-geometry, it is not satisfied in conformally mapped w-geometry, i.e. dealing with this problem in mapped geometry is not practical.
Flux Into A Rectangular Box

\[z = \frac{\sqrt{t^2 - \varepsilon^2}}{\sqrt{t^2 - 1}} \]

For
\[t = \varepsilon \sin \varphi, \quad dt = \varepsilon \cos \varphi \, d\varphi \quad \sqrt{1 - \varepsilon^2} = \varepsilon_1, \]
we have
\[
\frac{a}{c} = \int_0^\varepsilon \frac{\sqrt{\varepsilon^2 - t^2}}{\sqrt{1 - t^2}} = \varepsilon^2 \int_0^{\pi/2} \frac{\cos^2 \varphi \, d\varphi}{\sqrt{1 - \varepsilon^2 \sin^2 \varphi}} = \varepsilon^2 \int_0^{\pi/2} \left(\frac{1 - \varepsilon^2 \sin^2 \varphi}{\sqrt{1 - \varepsilon^2 \sin^2 \varphi}} + \left(\varepsilon_1^2 - 1\right) \right) d\varphi
\]

\[
\frac{a}{c} = \int_0^{\pi/2} \frac{d\varphi}{\sqrt{1 - \varepsilon^2 \sin^2 \varphi}} - \varepsilon_1^2 \int_0^{\pi/2} \frac{d\varphi}{\sqrt{1 - \varepsilon^2 \sin^2 \varphi}}
\]

\[\frac{a}{c} = E(\varepsilon^2) - \varepsilon_1^2 K(\varepsilon^2). \]

For
\[t = \cos \varphi, \quad dt = -\sin \varphi \, d\varphi, \quad \varepsilon = \cos \alpha, \quad \varepsilon_1 = \sin \alpha, \]

\[
\sin \varphi = \varepsilon_1 \sin \psi, \quad d\varphi = \frac{\varepsilon_1 \cos \psi \, d\psi}{\sqrt{1 - \varepsilon_1^2 \sin^2 \psi}},
\]

we have

\[
\frac{b}{c} = \int_{\varepsilon}^{1} \frac{\sqrt{t^2 - \varepsilon^2}}{\sqrt{1 - t^2}} \, dt = \int_{0}^{\alpha} \sqrt{\varepsilon_1^2 - \sin^2 \varphi} \, d\varphi = \varepsilon_1^2 \int_{0}^{\pi/2} \frac{\cos^2 \psi \, d\psi}{\sqrt{1 - \varepsilon_1^2 \sin^2 \psi}}
\]

\[
\frac{b}{c} = E(\varepsilon_1^2) - \varepsilon_1^2 K(\varepsilon_1^2).
\]

Thus

\[
\frac{a}{b} = \frac{E(\varepsilon^2) - \varepsilon_1^2 K(\varepsilon_1^2)}{E(\varepsilon_1^2) - \varepsilon_1^2 K(\varepsilon_1^2)}.
\]

For

\[
F(t) = cB_\infty t, \quad F' = B_\infty \frac{\sqrt{t^2 - 1}}{\sqrt{t^2 - \varepsilon^2}}, \quad B_0 = \frac{B_\infty}{\varepsilon}.
\]

and therefore

\[
F(\varepsilon) = \frac{aB_\infty \varepsilon}{E(\varepsilon^2) - \varepsilon_1^2 K(\varepsilon^2)},
\]

\[
F(1) = \frac{aB_\infty}{E(\varepsilon^2) - \varepsilon_1^2 K(\varepsilon^2)}.
\]

Given a square box, with dimensions \(\varepsilon^2 = 1/2, E(1/2) = 1.3506, K(1/2) = 1.8541,\)

\[
F(\varepsilon) = F(\sqrt{1/2}) = 1.67aB_\infty, \quad F(1) = 2.361aB_\infty, \quad B_0 = 1.41B_\infty.
\]
Propagation of Fast Perturbation in Dipole

We describe the boundary condition as

\[H_y(h) = D_2 \frac{\partial H_x}{\partial x} \text{ with } D_2 = \mu D_1 = \frac{\mu}{\sqrt{i\omega \sigma \mu_0 \mu}}. \]

Ansatz:

\[H_y(x, y) = \sum a_n \cos k_n y e^{-k_n z} \]

where we look to satisfy the \(H_y(-y) = H_y(y) \) symmetry only. \(\nabla^2 H_y = 0 \) is obviously satisfied.

\[\frac{\partial H_x}{\partial y} = \frac{\partial H_y}{\partial x} = -\sum a_n k_n \cos k_n y e^{-k_n z} \]

\[H_x = -\sum a_n \sin k_n y e^{-k_n z}. \]

At the boundary we have

\[\sum a_n \cos k_n h e^{-k_n z} = \sum a_n D_2 k_n \sin k_n h e^{-k_n z}. \]

For

\[D_2 k_n \tan k_n h = 1 \quad \text{and} \quad \alpha_n = k_n h, \]

we therefore have

\[\alpha_n \tan \alpha_n = \frac{h}{D_2} \]

where

\[\frac{1}{D_2} = \sqrt{\frac{i\omega \sigma \mu_0}{\mu}}. \]
Case 1: "normal" case, \(\mu \to \infty \quad \alpha_n = n\pi. \)

Case 2: superconducting case, \(\sigma \to \infty \quad \alpha_n = (n + 1/2)\pi. \)

Case 3: using iron with \(\omega = 2\pi 60 \text{Hz}, \) and given that \(D_1 = \frac{1}{\sqrt{i\omega \sigma \mu_0 \mu}}, \)

\[
|D_1| = \frac{1}{\sqrt{2\pi \cdot 60 \cdot 10^{1+3}}} = 5.2 \cdot 10^{-4} \text{m} = 0.52 \text{mm}
\]

\[
|D_2| = \mu|D_1| = 52 \text{cm}.
\]

We introduce

\[
\alpha_0 \tan \alpha_0 = \frac{h}{D_2} = \varepsilon = h \sqrt{\frac{i\omega \sigma \mu_0}{\mu}}
\]

and for \(|\varepsilon| < 1, \quad \alpha_0 \approx \sqrt{\varepsilon}. \) Thus, for \(\alpha_n = n\pi + \delta_n, \)

\[
(n\pi + \delta_n) \tan \delta_n = \varepsilon \quad \Rightarrow \quad \delta_n \approx \frac{\varepsilon}{n\pi}.
\]

For a better notation of \(\alpha_0 \) we have that, for

\[
\alpha_0^2 + \frac{\alpha_0^4}{3} = \varepsilon \quad \Rightarrow \quad \alpha_0^2 = -\frac{3}{2} + \sqrt{\frac{9}{4} + 3\varepsilon}.
\]

and it follows that

\[
\alpha_0^2 = \frac{3\varepsilon}{\frac{3}{2} + \sqrt{\frac{9}{4} + 3\varepsilon}} = \frac{2\varepsilon}{1 + \sqrt{1 + \frac{4\varepsilon}{3}}},
\]

\[
\alpha_0^2 = \frac{2\varepsilon}{2 + \frac{2\varepsilon}{3}} = \frac{\varepsilon}{1 + \frac{\varepsilon}{3}}.
\]

To determine \(a_n \) from \(H_y(y) \) at \(x = 0 \) we try

\[
\int_0^h H_y(y) \cos k_n y \, dy = \sum a_n \int_0^h \cos k_n y \cos k_m y \, dy.
\]
Since $2 \cos k_n y \cos k_m y = \cos(k_n + k_m)y + \cos(k_n - k_m)y$,

\[
\frac{2}{h} \int_0^h \cos k_n y \cos k_m y \, dy = \frac{\sin(\alpha_n + \alpha_m)}{\alpha_n + \alpha_m} + \frac{\sin(\alpha_n - \alpha_m)}{\alpha_n - \alpha_m}
\]

\[
= \frac{\alpha_n (\sin(\alpha_n + \alpha_m) + \sin(\alpha_n - \alpha_m))}{\alpha_n^2 - \alpha_m^2} - \frac{\alpha_m (\sin(\alpha_n + \alpha_m) - \sin(\alpha_n - \alpha_m))}{\alpha_n^2 - \alpha_m^2}
\]

\[
= \frac{2(\alpha_n \sin \alpha_n \cos \alpha_m - \alpha_m \cos \alpha_n \sin \alpha_m)}{\alpha_n^2 - \alpha_m^2}
\]

\[
= \frac{2 \cos \alpha_n \cos \alpha_m (\alpha_n \tan \alpha_n - \alpha_m \tan \alpha_m)}{\alpha_n^2 - \alpha_m^2}
\]

\[
= 0 \text{ for } n \neq m.
\]

Note: this orthogonality condition is not satisfied for $\int_0^h \sin k_n y \sin k_m y \, dy$. So, for instance, $V(0, y)$ would not work "directly". One would have to first calculate $H_y(0, y)$.
Description of the Properties of an Ellipse

For many problems, one needs integrals over the circumference of an ellipse, whose equation is

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. \]

One may describe the ellipse by the parametric representation

\[z = a \cos \varphi + ib \sin \varphi, \]

and use \(\varphi \) as the integration variable.

However, in many cases, it is mathematically more convenient to use \(z \) on the circumference as the integrations variable. If one can represent all quantities of interest on the circumference as analytic functions of \(z \), one can then use the Cauchy Theorem to execute the integration.

In using the parametric representation, one usually does something similar by introducing \(e^{i\varphi} \) as the new integration variable. While this often works very well, it can lead to difficulties: for example, when \(e^{kz} \) appears in the function to be integrated.

In general, problems are much simpler for circles, where \(a = b \). When \(b \neq a \) it often becomes so difficult to execute the integral that it is most convenient to expand in a quantity that is equivalent to \(a - b \) and thus the formulas will be easily written and therefore the expansion will be similarly easy.

Thus,

\[z = a \cos \varphi + ib \sin \varphi = e^{i\varphi} \frac{a + b}{2} + e^{-i\varphi} \frac{a - b}{2}, \tag{1} \]

\[0 = e^{i\varphi} - 2 \frac{z}{a + b} + e^{-i\varphi} \frac{a - b}{a + b} = 0 \]
\[= e^{2i\varphi}(a + b)^2 - 2ze^{i\varphi}(a + b) + \varepsilon, \]

\[\varepsilon = a^2 - b^2 \quad \text{and} \quad W_1 = \sqrt{1 - \varepsilon/z^2}. \tag{2} \]

\[e^{i\varphi} = \frac{z + \sqrt{z^2 - \varepsilon}}{a + b} = \frac{1 + W_1}{a + b}, \tag{3.1} \]

\[e^{-i\varphi} = 2 \frac{z}{a-b} - \frac{e^{i\varphi}(a+b)}{a-b} = \frac{z - \sqrt{z^2 - \varepsilon}}{a-b} = \frac{1 - W_1}{a-b} \]
\[= \frac{(a+b)/z}{1+W_1}. \tag{3.2} \]

For \(\cos \varphi, \sin \varphi: \)
\[\frac{1}{a+b} + \frac{1}{a-b} = \frac{2a}{\varepsilon} \quad \text{and} \quad \frac{1}{a+b} - \frac{1}{a-b} = \frac{-2b}{\varepsilon}, \]
\[\cos \varphi = \frac{az - b\sqrt{z^2 - \varepsilon}}{\varepsilon} = \frac{z^2 + b^2}{az + b\sqrt{z^2 - \varepsilon}} = \frac{z^2 + b^2}{z(a + bW_1)}, \tag{4.1} \]
\[i\sin \varphi = \frac{-bz + a\sqrt{z^2 - \varepsilon}}{\varepsilon} = \frac{z^2 - a^2}{bz + a\sqrt{z^2 - \varepsilon}} = \frac{z^2 - a^2}{z(b + aW_1)}. \tag{4.2} \]

\[ds = \sqrt{a^2 \sin^2 \varphi + b^2 \cos^2 \varphi} \, d\varphi. \tag{5} \]

From (3.1) we have
\[i e^{i\varphi} \, d\varphi = \frac{\left(1 + (z/\sqrt{z^2 - \varepsilon})\right) \, dz}{a+b} = \frac{e^{i\varphi} \, dz}{zW_1}, \]
\[d\varphi = \frac{1}{i} \frac{dz}{zW_1}. \tag{6.0} \]

Thus,
\[\varepsilon^2 G = \varepsilon^2 (a^2 \sin^2 \varphi + b^2 \cos^2 \varphi) \]
\[= z^2 (b^2 (a - bW_1)^2 - a^2 (b - aW_1)^2) \]
\[= z^2 (W_1^2 (b^4 - a^4) + 2abW_1(a^2 - b^2)) \]
\[= z^2 \left(\frac{\varepsilon(a^2 + b^2)}{z^2} - (a - b)^2 - 2ab\frac{1 - W_1}{1 + W_1} \right), \]

\[G = a^2 + b^2 - z^2 \frac{\varepsilon}{(a+b)^2} - \frac{2ab}{1+W_1}, \]
where
\[\frac{2}{1+W_1} = 1 + \frac{1-W_1}{1+W_1}. \]

88
and thus

\[
G = a^2 + b^2 - ab - z^2 \frac{\varepsilon}{(a+b)^2} - ab \frac{1 - W_1}{1 + W_1} \\
= (a - b)^2 + ab - z^2 \frac{\varepsilon}{(a+b)^2} - ab \frac{1 - W_1}{1 + W_1} \\
= \frac{\varepsilon^2}{(a+b)^2} + ab - z^2 \frac{\varepsilon}{(a+b)^2} - ab \frac{1 - W_1}{1 + W_1}
\]

\[
= ab - \varepsilon \frac{z^2 - \varepsilon}{(a+b)^2} - ab \frac{1 - W_1}{1 + W_1}.
\]

(7.1)

To expand an expression like

\[
\frac{1 - W_1}{1 + W_1} \text{ with } W_1 = \sqrt{1 - \varepsilon/z^2},
\]

in \(\varepsilon \), it is often convenient to break it up into an even and odd part in \(\varepsilon \):

\[
2F(\varepsilon) = F(\varepsilon) + F(-\varepsilon) + F(\varepsilon) - F(-\varepsilon) \text{ with } W_2 = \sqrt{1 + \varepsilon/z^2},
\]

\[
2H = \frac{1 - W_1}{1 + W_1} + \frac{1 - W_2}{1 + W_2} + \frac{1 - W_1}{1 + W_1} - \frac{1 - W_2}{1 + W_2},
\]

\[
2H(1 + W_1 W_2 + W_1 + W_2) = (1 - W_1)(1 + W_2) + (1 + W_1)(1 - W_2) \\
+ (1 - W_1)(1 + W_2) - (1 + W_1)(1 - W_2) \\
= 2(1 - W_1 W_2 + W_2 - W_1),
\]

\[
\frac{1 - W_1}{1 + W_1} = \frac{1 - \sqrt{1 - \varepsilon^2/z^4} + \sqrt{1 + \varepsilon/z^2} - \sqrt{1 - \varepsilon/z^2}}{1 + \sqrt{1 - \varepsilon^2/z^4} + \sqrt{1 + \varepsilon/z^2} + \sqrt{1 - \varepsilon/z^2}}.
\]

To second order in \(\varepsilon \):

\[
\frac{1 - W_1}{1 + W_1} = \frac{\varepsilon}{z^2} \frac{1 + \varepsilon/2z^2}{4}.
\]

(7.2)

A comment about the expansion in \(\varepsilon \) and subsequent integration: the expansion has to be valid and good for \(z \) on the ellipse. If, to carry out the integration, one later modifies the integration path (in particular, to a very small circle around \(z = 0 \)), this will not invalidate the original expansion.
Addendum. A different way to derive G.

For

\[W_0 = \sqrt{z^2 - \varepsilon}, \]
\[\varepsilon = a^2 - b^2 \quad \text{and} \quad s = a^2 + b^2, \]
\[s^2 - \varepsilon^2 = 4a^2b^2 \quad \text{and} \quad 2ab = \sqrt{s^2 - \varepsilon^2}, \]

we have

\[\varepsilon^2 G = (b\varepsilon \cos \varphi + i\varepsilon \sin \varphi)(b\varepsilon \cos \varphi - i\varepsilon \sin \varphi) \]
\[= W_0(2abz - W_0(a^2 + b^2)) \]
\[= sW_0 \left(z\sqrt{1 - \varepsilon^2/s^2} - W_0 \right) \]
\[= sW_0 \frac{z^2(1 - \varepsilon^2/s^2) - z^2 + \varepsilon}{z\sqrt{1 - \varepsilon^2/s^2} + W_0}, \]

\[G = sW_0 \frac{1 - \varepsilon z^2/s^2}{z\sqrt{1 - \varepsilon^2/s^2} + W_0} = \frac{sW_1}{\sqrt{1 - \varepsilon^2/s^2} + W_1}. \]

To first order in ε:

\[G = s \frac{1}{2} \left(1 - \frac{\varepsilon}{2z^2} \right) \left(1 - \frac{\varepsilon z^2}{s^2} \right) \left(1 + \frac{\varepsilon}{4z^2} \right) = \frac{s}{2} \left(1 - \varepsilon \left(\frac{z^2}{s^2} + \frac{1}{4z^2} \right) \right), \]

for $s = 2a^2$ and $s^2 = 4a^4$,

\[\sqrt{G} = a \left(1 - \frac{\varepsilon}{2} \left(\frac{z^2}{a^2} + \frac{1}{4a^2} \right) \right), \]

\[\sqrt{G} = a \left(1 - \frac{\varepsilon}{8a^2} \left(\frac{a^2}{z^2} + \frac{a^2}{z^2} \right) \right). \]
Characterization of Dipole Fringe Fields with Field Integrals

Background and Introduction.

The quantity \(\int B_y(x, y, z)dz \) was measured as a function of \(y \) for a fixed \(x \), with integration region beginning in the homogenous field region inside the dipole magnet and reaching into the essentially field-free region outside. This resulted in the approximate plotted curve of Figure 1 below.

The conclusion reached pointed to the coil being too close to or too far from the midplane. For didactic purposes this is a very interesting problem for two reasons.

1. The coil position is only indirectly responsible. The fact that \(\int B_y dz \) depends on \(y \) indicates that this is a 3D problem: namely, \(\int B_y(x, 0, z)dz \) will have a curvature of opposite polarity (i.e. effective field boundary is curved). This is due either to a curvature of the pole ends (when projected into the \(zz \)-plane) or to the finite width in the \(z \)-direction. If the latter is the cause, the problem is magnified by the absence (or incorrect design) of the field clamp and by a coil that is too far from the midplane.

2. The characterization of the fringe field by measuring \(\int B_y(x, 0, z)dz \) gives, in case of midplane symmetry, more information than \(\int B_y(0, y, z)dz \) alone.

May, 1986. Note 0438thry.
Analysis.

We assume midplane symmetry. Violation of midplane symmetry should be detected and/or measured, preferably with null method.

In vacuum, full 3D, the following hold:

\[
\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} = 0, \tag{1.1}
\]

\[
\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0. \tag{1.2}
\]

We now investigate the properties of

\[
\int_{z_1}^{z_2} B_x(x, y, z)dz/L = b_z(x, y) \quad \text{and} \quad \int_{z_1}^{z_2} B_y(x, y, z)dz/L = b_y(x, y) \tag{2a, b}
\]

where \(z_1, z_2\) are constants, i.e. they are not considered variables; \(L\) is a convenient length that is used only for normalization purposes. Integration is performed over (1.1). Integration and differentiation can be interchanged and thus

\[
\frac{\partial b_y}{\partial x} - \frac{\partial b_x}{\partial y} = 0. \tag{3.1}
\]

Integration is performed over (1.2) and

\[
\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y} = (B_x(x, y, z_1) - B_x(x, y, z_2))/L. \tag{3.2}
\]

If, independently of \(x\) and \(y\), \(B_z\) at the two end-points is the same\(^\dagger\), we have

\[
\frac{\partial b_z}{\partial x} + \frac{\partial b_y}{\partial y} = 0. \tag{3.3}
\]

(3.1) and (3.2) mean that \(b_x\) and \(-b_y\) satisfy the Cauchy-Riemann conditions of real and imaginary parts of the analytic function of \(Z = x + iy\):

\[
b_x - ib_y = b^*(Z). \tag{4}
\]

We use the Taylor series to represent \(b^*(Z)\):

\[
b^*(Z) = -i \sum_{n=0}^{n} a_n Z^n,
\]

where \(n = \text{multipole order} - 1\), i.e. \(n = 0 \implies \text{dipole}, n = 1 \implies \text{quadrupole},\) etc. Because of midplane symmetry all \(a_n\) must be real. Notice that for \(y = 0,\)

\(^\dagger\) In the case under discussion here, \(B_z = 0\) at both ends even though \(B_z \neq 0\) in the fringe field region.
\[b_y(x, 0) = \sum_{n} a_n x^n, \] i.e. all harmonics contribute; while for \(x = 0 \), only \(a_n \) with even \(n \) contributes to \(b_y(0, y) \). If one measures for \(x = 0 \) both \(b_y \) and \(b_x \), then one gets information about all harmonics. There is an advantage to measuring both \(b_y(0, y) \) and \(b_x(0, y) \) since one gives only the odd harmonics and the other only the even, while they are all mixed when calculating \(b_y(x, 0) \).

Looking at (5) it is obvious that if \(b_y(0, y) \) is not constant, but depends on \(y \), then \(b_y(x, 0) \) must depend on \(x \). That is, one is in fact dealing with 3D fields which must be due to curved (in projection on \(xy \)-plane) poles or poles of insufficient width in the \(x \)-direction, and failure to use a field clamp. It is also qualitatively clear that these 3D effects get more pronounced with increasing distance of the coils from the midplane.

Specifically, for a known value of \(b_y(0, y) \), what is \(b_y(x, 0) \)?

\[b_y(0, y) = \sum_{m=0}^{\infty} a_{2m} y^{2m} (-1)^m, \quad (6.1) \]

\[b_y(x, 0) = \sum_{m=0}^{\infty} a_{2m} x^{2m} + \sum_{m=0}^{\infty} a_{2m+1}, \quad (6.2) \]

where in (6.2) \(a_{2m+1} \) is not obtainable from \(b_y(0, y) \), but can be obtained from \(b_x(0, y) \).

If one measures \(b_x(0, y) \), one gets

\[b_x(0, y) = \sum_{m=0}^{\infty} a_{2m+1} y^{2m+1} (-1)^m. \quad (6.3) \]

For simple analysis, one should plot \(b_y(0, y) \) vs \(y^2 \), and \(b_x(0, y)/y \) vs \(y^2 \). One has to be careful to make the measurements in such a way that they really mean something. The flux loop and integrator method is perhaps best because it can practically always be done in such a way that one makes a null measurement.
Penetration of Solenoidal Field through Conducting Shell

Preliminaries: Solenoid, shield infinitely long. Thin shell, circular cross-section: treat eddy currents in it in plane geometry with proper boundary values. Only one shell: matrix formulation not needed.

At \(z = 0 \),
\[
H_y = H_0(p) = \text{given solenoid current.}
\]

At \(z = D \),
\[
E_z = \frac{\mu_0 p H_1 \pi r_1^2}{2\pi r_1} = \frac{r_1}{2} \mu_0 p H_1.
\]

In shell,
\[
\mathbf{H} = e_y H, \quad \mathbf{E} = e_z E, \quad \text{and} \quad \sigma = \frac{\partial}{\partial z}.
\]
\[
\nabla \times \mathbf{H} = \sigma \mathbf{E} \quad \Rightarrow \quad -H' = \sigma E,
\]
\[
\nabla \times \mathbf{E} = -\mu_0 \mu_0 p \mathbf{H} \quad \Rightarrow \quad E' = -\mu_0 \mu_0 p H.
\]

For \(\mu_0 \mu_0 p = k^2 \),
\[
H'' = -\sigma E' = \mu_0 \mu_0 p H = k^2 H,
\]
\[
H = H_0 \cosh kz + b \sinh kz,
\]
and for \(\gamma = kD \),
\[
H_1 = H_0 \cosh \gamma + b \sinh \gamma, \quad \text{and thus} \quad b = \frac{H_1 - H_0 \cosh \gamma}{\sinh \gamma},
\]

\[E_1 = \frac{r_1}{2} \mu_0 p H_1 = -\frac{H_1^i}{\sigma} = -\frac{k}{\sigma} (H_0 \sinh \gamma + b \cosh \gamma), \]

\[H_1 = \frac{\mu_0 \sigma p r_1}{2k} = - \left(H_0 \sinh \gamma + \frac{\cosh \gamma (H_1 - H_0 \cosh \gamma)}{\sinh \gamma} \right), \]

where, for

\[\frac{\mu_0 \sigma p r_1}{2k} = \frac{k^2 r_1 / \mu}{2k} = \frac{r_1 k}{2 \mu} = \gamma \varepsilon, \quad \text{and thus} \quad \varepsilon = \frac{r_1}{2 \mu D}, \]

where diffusion occurs for \(\mu \gg 1 \). Thus, for

\[H_1(\varepsilon \gamma \sinh \gamma + \cosh \gamma) = H_0, \]

\[H_1(p) = \frac{H_0}{\cosh \gamma + \varepsilon \gamma \sinh \gamma}. \]

The zeroes of \(\cosh \gamma + \varepsilon \gamma \sinh \gamma \) are given, with

\[\gamma_n = D \sqrt{\mu_0 \mu \sigma p_n} = i \alpha_n. \]

And

\[\cosh \gamma + \varepsilon \gamma \sinh \gamma = \cos \alpha_n - \varepsilon \alpha_n \sin \alpha_n = 0, \]

\[\frac{1}{\varepsilon} = \alpha_n \tan \alpha_n, \]

\[p_n = \frac{-\alpha_n^2}{\mu_0 \mu \sigma D^2}. \]

One may expect difficulties for some calculations because \(\gamma = D \sqrt{\mu_0 \mu \sigma p} \), but this is not so, for

\[\cosh \gamma + \varepsilon \gamma \sinh \gamma = 1 + \gamma^2 \left(\frac{1}{2} + \varepsilon \right) + \gamma^4 \left(\frac{1}{4!} + \frac{\varepsilon}{3!} \right) + \gamma^6 \left(\frac{1}{6!} + \frac{\varepsilon}{5!} \right) + \cdots \]

\[= 1 + \sum_{n=1}^{\infty} \gamma^{2n} \left(\frac{1}{(2n)!} + \frac{\varepsilon}{(2n-1)!} \right), \]

and \(\cosh \gamma + \varepsilon \gamma \sinh \gamma \) is a simple function of \(\gamma^2 \), not a complicated function of \(\gamma \).

For

\[\varepsilon \gg 1 \implies \alpha_0^2 \approx \frac{1}{\varepsilon} = \mu_0 \mu \sigma p_0 D^2 = \frac{2 \mu D}{r_1} \implies \mu_0 \sigma Dr_1p_0 = 2, \]

with \(\sigma D \) implying non-diffusion.
The roots, in quadrants 1 and 3, are given by,

\[\tan \alpha_n = \frac{1}{\alpha_n \varepsilon}. \]

Where, for \(\alpha_n \varepsilon \gg 1 \), \(\alpha_n = n\pi + \sigma_n \), and thus

\[\sigma = \frac{1}{\varepsilon (n\pi + \sigma_n)} \approx \frac{1}{\varepsilon n\pi}. \]

The residue contribution from \(\cosh \gamma + \varepsilon \gamma \sinh \gamma \) is given by

\[\frac{1}{\cosh \gamma + \varepsilon \gamma \sinh \gamma} \Rightarrow R = \frac{d\gamma}{dp} \left(\frac{1}{\sinh \gamma + \varepsilon \sinh \gamma + \varepsilon \gamma \cosh \gamma} \right), \]

where \(d\gamma/dp = \gamma/2p \) and \(\varepsilon \gamma = -\cosh \gamma / \sinh \gamma \). Thus,

\[R = \frac{2p}{\gamma \varepsilon \sinh^2 \gamma - 1} = \frac{2p}{\sinh^2 \gamma - 1} = \frac{2p}{\gamma^2 \varepsilon \sinh^2 \gamma - 1} = \frac{2p}{\gamma^2 \varepsilon \sin^2 \alpha_n - 1}. \]

For \(\cot \alpha_n = \alpha_n \varepsilon \), and \(\sin \alpha_n = 1/\sqrt{1 + \cot^2 \alpha^2} = 1/\sqrt{1 + \alpha_n^2 \varepsilon^2} \),

\[R_n = \frac{2}{\mu_0 \mu D^2 \sigma} \frac{\alpha_n}{\sqrt{1 + \alpha_n^2 \varepsilon^2} \left(1 + \frac{\varepsilon}{1 + \alpha_n^2 \varepsilon^2} \right)} = \frac{2}{\mu_0 \mu D^2 \sigma} \frac{\alpha_n \sqrt{1 + \alpha_n^2 \varepsilon^2}}{1 + \alpha_n^2 \varepsilon^2 + \varepsilon}. \]

For \(\alpha_n^2 = 1/\varepsilon \),

\[R_0 = \frac{2}{\mu_0 \mu \sigma D^2 \sqrt{\varepsilon}} \frac{1}{\sqrt{1 + \varepsilon}} \frac{1}{1 + 2 \varepsilon} = \frac{1}{\mu_0 \mu \sigma D^2 \varepsilon \left(1 + 1/2 \varepsilon \right)} \cdot \]
Rogowski Dipole

\[B = B_0 \cos \alpha \cdot \frac{e^{i\alpha}}{i} \quad \text{and} \quad B^* = iB_0 \cos \alpha \cdot e^{-i\alpha}, \]

\[\frac{iB_0}{B^*} = G = \frac{e^{i\alpha}}{\cos \alpha} = 1 + i \tan \alpha \quad \text{with} \quad G = \frac{1}{F'} = \frac{\dot{z}}{\bar{F}}. \]

On pole: \(\mathcal{R}G = 0 \). On \(0, 1, \infty : \mathcal{G}G = 0 \).

\[\begin{array}{c}
\infty \\
G \\
0 \\
\infty \\
0 \\
\infty
\end{array} \quad \begin{array}{c}
\infty \\
F \\
1 \\
\infty
\end{array} \]

Figures 2(a,b).

\[\dot{G} = \frac{a/2}{\sqrt{t}} \quad \text{and} \quad G = 1 + a\sqrt{t}, \]

\[\dot{F} = \frac{b/2}{\sqrt{t}\sqrt{t-1}} \quad \text{and} \quad F = b\ln\left(\sqrt{t} + \sqrt{t-1}\right). \]

Thus

\[\dot{z} = \dot{F}G = \frac{b}{2}\left(\frac{1}{\sqrt{t}\sqrt{t-1}} + \frac{a}{\sqrt{t}}\right) \quad \text{and} \quad z = b\left(\ln\left(\sqrt{t} + \sqrt{t-1}\right) + a\sqrt{t-1}\right). \]

Since \(i h = b (\ln i + i a) = i b (\pi/2 + a) \), we let

\[\pi/2 + a = C \quad \text{and} \quad h = bC. \]

On pole: \(t = -\tau < 0 \),

\[x + iy = b (i\pi/2 + \ln(\sqrt{\tau} + \sqrt{\tau + 1}) + ia\sqrt{\tau + 1}), \]

with

\[\tau = \sinh^2 \alpha, \quad x = b\alpha, \]

\[b \left(\frac{\pi}{2} + a \cosh \alpha \right) = \frac{h}{C} \left(C + a \left(\cosh \frac{x}{b} - 1 \right) \right) = y = h \left(1 + \frac{a}{c} \left(\cosh \frac{C}{h} - 1 \right) \right), \]

and

\[G(1) = 1 + a = \frac{B(z = ih)}{B(z = 0)}. \]
\(\mu = \infty, \) and \(B^* = +iB_0. \)

\[B = B_0 \cos \alpha \cdot \frac{e^{i\alpha}}{i}, \] and \(B^* = iB_0 \cos \alpha \cdot e^{-i\alpha}. \)

Thus,

\[\frac{iB_0}{B^*} = G = \frac{e^{i\alpha}}{\cos \alpha} = 1 + i \tan \alpha, \]

on the pole, with \(\Re G = \text{constant} = 1, \) and

\[|G| = \frac{B_0}{|B|}. \]

On the 45° line,

\[B \approx e^{i\pi/4}/i, \quad B^* \approx ie^{i\pi/4}, \quad \text{and} \quad G \approx e^{i\pi/4}. \]
Observe Figures 2(a,b,c):

\[\frac{dG}{dt} = b \frac{t - a}{t^{5/4} \sqrt{t + 1}} e^{i\pi/4}. \]

\[B^* = i B_0 \frac{dF}{dz}, \quad \frac{dz}{dF} = \frac{z}{F'} = G \quad \text{and} \quad \dot{z} = G(t) \cdot \dot{F}. \]

In the \(F \)-plane, for \(-1 \leq t \leq 0\):

\[\pi \dot{F} = \frac{c:}{\sqrt{t} \sqrt{t + 1}}. \]

The mathematical difficulty arises in the integration of \(\dot{G} \). For

\[t = w^4, \quad dt = 4w^3 dw, \quad \frac{dt}{t^{5/4}} = \frac{4w^3 dw}{w^5} = \frac{4dw}{w^2}, \]

we solve the elliptic integral

\[G = b \int \frac{w^4 - a}{w^2 \sqrt{1 + w^4}} dw. \]

The integration of \(\dot{z} = (\dot{G}F) - \dot{G}F \) leads to

\[z = GF - b e^{i\pi/4} \int \frac{t - 1}{t^{5/4} \sqrt{t + 1}} F dt \]

and therefore

\[F = 2C \ln \left(\sqrt{t + \sqrt{t + 1}} \right). \]
Eddy Currents for Fast Permanent Magnet Magnetization

Sometimes permanent magnets are magnetized by “hitting” them for a short time with high \(H \). It is of interest to know how the magnetization front propagates through the material. Since this is a highly non-linear problem, a strongly simplified model is used in this document, but one which has all the essential features of the real process.

At the left edge of the material, assume a step function excitation starting at \(t = 0 \), with amplitude \(H_0 \). Our model is a 1-dimensional block of material with the left edge at \(x = 0 \), and

\[
\frac{\partial}{\partial y} = \frac{\partial}{\partial z} = 0, \quad H = e_y H, \quad E = e_z E, \quad \text{and} \quad j = \sigma E.
\]

For the times of interest, \(H \geq 0 \) everywhere. We use a strongly simplified \(B(H) \) curve.

![Figure 1.](image)

Figure 1 shows that in the beginning, the material “sees” no \(H \) and \(B = 0 \). As soon as it “sees” \(H > 0 \), it becomes magnetized according to the above curve.

To reach an initial understanding of the problem, only the propagation in a medium that is, at least at first, unlimited to the right is treated.

\[
\nabla \times \mathbf{H} = j \quad \Rightarrow \quad H' = \sigma E, \quad \text{with} \quad H' = \frac{\partial}{\partial x}.
\]

\[
\nabla \times \mathbf{E} = -\dot{B} \quad \Rightarrow \quad +E' = +\dot{B}.
\]
The "location" of the front is designated by $x_0(t)$. We integrate $E' = \dot{B}$ over x across $x_0(t)$:

$$E(x_0 + \varepsilon) - E(x_0 - \varepsilon) = -E(x_0) = \int \dot{B} dx = B_0 \dot{x}_0,$$

giving the equation of the front for both Case I and Case II below.

Case I: $B(H) = B_0$.

For $x < x_0$:

$$E' = 0, \quad \text{and} \quad E = -B_0 \dot{x}_0 = \sigma H' ,$$

$$H(x) = H_{00} - \sigma B_0 x \dot{x}_0,$$

meaning that for this $B(H)$ model, the $H(x)$ curves of Figure 2 are straight lines.

$$H(x_0) = 0 = H_{00} - \sigma B_0 x_0 \dot{x}_0.$$

Integrating over t gives $H_{00} t - \sigma B_0 x_0^2 / 2$, giving the following result for the propagation of the front:

$$\frac{2tH_{00}}{B_0 \sigma} = \frac{B_{00}}{B_0} \cdot \frac{2t}{\mu_0 \sigma} = x_0^2 \quad \text{with} \quad r = \frac{\mu_0 H_{00}}{B_0} = \frac{B_{00}}{B_0}.$$

Case II: $B = B_0 + \mu_0 H$.

For $x < x_0$: $H' = \sigma E$, and $E' = \mu_0 \dot{H} \uparrow$.

For $x = x_0$: $H = 0$.

† The right side of this last equation is now non-zero in contrast to Case I where $\dot{B} = 0$ in the magnetized part of the material; i.e. $\dot{B} \neq 0$ only at the propagating front.
For \(x = x_0 \): \(B = B_0 \), \(E = -B_0 \dot{x}_0 = gH' \).

For \(x = 0 \): \(H = H_0 \).

The differential equation is \[H'' = \mu_0 \sigma \dot{H}. \]

We introduce \[\sqrt{\frac{t}{\mu_0 \sigma}} = \tau \] and thus \(t = \tau^2 \mu_0 \sigma \),

and get \[\dot{H} = \frac{\partial H}{\partial \tau} \cdot \frac{d\tau}{dt} = \frac{\partial H}{\partial \tau} \cdot \frac{1}{2\tau \mu_0 \sigma}, \]
and \[\frac{\partial^2 H}{\partial x^2} = \frac{\partial H}{\partial \tau} \cdot \frac{1}{2\tau}. \]

We use the dimensional analysis argument that \(x \) and \(\tau \) are the only dimensional quantities entering the problem. This means that \(H \) must be a function of \(x/\tau \). We let \(u = x/2\tau \). For \(H = F(u) \):

\[\frac{\partial^2 H}{\partial x^2} = \frac{F''}{4\tau^2} = \frac{1}{2\tau} \cdot \frac{F'}{\tau} = \frac{-u}{2\tau^2}, \]
and thus \[F'' + 2uF' = 0, \]

\[\ln \frac{F'}{F_0} + u^2 = 0, \quad \text{and} \quad F' = -a e^{-u^2}, \]

with \(F_0' = -a \) because \(F' \) has to be less than 0.

The boundary conditions, with fixed \(\tau > 0 \), are

\[F = H(u) = H_0 - a \int_0^u e^{-u^2} du. \]

\(u_0 = x_0/2\tau \) and \(x_0 \) refer to the location of front.

\[H(u_0) = H_0 - a \int_0^{u_0} e^{-u^2} du = 0, \] with \(a = \frac{H_0}{\int_0^{u_0} e^{-u^2} du} \).

Just as in Case I, the location \(x_0 \) of the front is proportional to \(\sqrt{t} \). Thus,

\[\frac{\partial H(u_0)}{\partial x} = \frac{-ae^{-u_0^2}}{2\tau} = \sigma E = -B_0 \sigma \dot{x}_0 = -B_0 \sigma \cdot \frac{dx_0}{d\tau} \cdot \frac{1}{2\tau \mu_0 \sigma} \]

\[a = e^{u_0^2} \cdot \frac{B_0}{\mu_0} \cdot \frac{dx_0}{d\tau} \quad \text{and} \quad \frac{B_0}{B_0} = \frac{dx_0}{d\tau} \cdot e^{-u_0^2} \cdot \int_0^{u_0} e^{-u^2} du. \]

Since \(u_0 = x_0/2\tau \), this is a first order differential equation that looks difficult at first.
However, it is obvious that from dimensional considerations the solution must be

\[x_0 = 2\tau g(r), \]

where the factor of 2 is for neatness. That is, \(u_0 = g(r) \), and then \(g(r) \) is determined by

\[r = 2ge^{g^2} \int_0^g e^{-u^2} du. \]

For small \(g \):

\[r = 2g^2 \implies g = \sqrt{r/2}, \quad \text{and} \quad x_0 = r\sqrt{2}\tau = \sqrt{r \cdot \frac{2\tau}{\mu_0\sigma}}, \]

where \(x_0 \) has the same solution as the case of \(B = B_0 \), as it has to be.

Evaluation with a TI59 gives the following results:

<table>
<thead>
<tr>
<th>(g)</th>
<th>0.01</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>(2.0 \times 10^{-4})</td>
<td>(2.01 \times 10^{-2})</td>
<td>(8.22 \times 10^{-2})</td>
<td>0.191</td>
<td>0.356</td>
<td>0.920</td>
<td>2.00</td>
<td>4.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(g)</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>5.76</td>
<td>8.17</td>
<td>11.7</td>
<td>16.8</td>
<td>24.4</td>
<td>35.8</td>
<td>80.6</td>
<td>193</td>
</tr>
</tbody>
</table>

If \(r \) is of order 4, then

\[g \approx 1 \implies x_0 = 2\tau = 2\sqrt{\frac{t}{\mu_0\sigma}}. \]

Case III: \(H \) after complete penetration of the slab.

When the front has reached \(x_0 = x_1 \), where \(2x_1 \) is the slab thickness, the boundary conditions change. In contrast to our earlier analysis, a given length \(x_1 \) enters the problem implicitly, and thus the dimensional analysis argument that \(H \) must be equal to \(F(x/2\tau) \) is no longer valid. If time is counted anew, with \(t = 0 \) when \(x_0 = x_1 \), we are dealing with a linear system with boundary condition

\[H(x_1 + \Delta x) = H(x_1 - \Delta x) \quad \text{for} \quad t \geq 0, \]

with known and given \(H(x) \) for \(t = 0 \) and \(0 \leq x \leq 2x \).
If \(H(x) - H_{00} \) is defined to be an odd function of \(x \) with respect to \(x = 0 \), and an even function with respect to \(x = \pm x_1 \), and this function is expanded into a Fourier series, then the period is \(4x_1 \), and

\[
H(x) - H_{00} = \sum a_n(t) \sin \left(\frac{2\pi}{4x_1} x \right).
\]

To satisfy these symmetry conditions \(n \) must be odd, and we get

\[
H(x) = H_{00} + \sum a_{2m+1}(t) \sin \left((2m + 1) \frac{\pi x}{2x_1} \right)
\]

and \(a_{2m+1}(0) \) from known \(H(x) \) at \(t = 0 \), the time of complete penetration. Recalling the differential equation, \(H'' = \mu_0 \sigma \dot{H} \), with \(n = 2m + 1 \) we have

\[
a_n \left(\frac{n\pi}{2x_1} \right)^2 = \mu_0 \sigma \dot{a}_n,
\]

\[
a_n(t) = a_n(0) \cdot e^{-\left(\frac{n\pi}{2x_1} \right)^2 \frac{t}{\mu_0 \sigma}},
\]

\[
a_{2m+1}(t) = a_{2m+1}(0) \cdot e^{-(2m+1)^2 \frac{n\pi}{4x_1^2 \mu_0 \sigma}}.
\]

At \(t = 0 \):

\[
H(x) = H_{00} - H_{00} \int_0^u e^{-u^2} du - \int_0^{u_0} e^{-u^2} du = H_{00} \left(1 - \int_0^{\frac{g}{x_1}} e^{-u^2} du \right),
\]

\[
-\mu_0 \int_0^{\frac{g}{x_1}} e^{-u^2} du = \sum a_{2m+1}(0) \sin \left((2m + 1) \frac{\pi x}{2x_1} \right).
\]

To determine \(a_{2m+1}(0) \) we let

\[
a_n(0) \cdot \int_0^1 \sin^2 \left(\frac{n\pi}{2} v \right) dv = -\frac{H_{00}}{\int_0^g e^{-u^2} du} \cdot \int_0^{\frac{g}{x_1}} e^{-u^2} du \left(\int_0^{\frac{g}{x_1}} e^{-u^2} du \right) \sin \left(\frac{n\pi}{2} v \right) dv,
\]

with

\[
\int_0^1 \sin^2 \left(\frac{n\pi}{2} v \right) dv = \frac{1}{2} \int_0^1 (1 - \cos(n\pi v)) dv = \frac{1}{2},
\]

107
\[\zeta = \int_0^\infty e^{-u^2} \, du, \quad \text{and} \quad d\zeta = g e^{-g^2 v^2}, \]

\[d\eta = \sin \left(\frac{n\pi}{2} v \right) \, dv, \quad \text{and} \quad \eta = -\frac{\cos \left(\frac{n\pi}{2} v \right)}{\frac{n\pi}{2} v}, \]

\[\left(\int_0^1 \zeta \, d\eta \right)_{n=\text{odd}} = \frac{2g}{n\pi} \int_0^1 e^{-g^2 v^2} \cos \left(\frac{n\pi}{2} v \right) \, dv. \]

Thus,

\[a_{2m+1} = -H_0 \cdot \frac{4}{(2m+1)\pi} \cdot \int_0^1 e^{-g^2 v^2} \cos \left((2m+1) \frac{\pi}{2} v \right) \, dv \]

\[= \frac{4}{(2m+1)\pi} \cdot \int_0^1 e^{-g^2 v^2} \cos \left((2m+1) \frac{\pi}{2} v \right) \, dv \]

One would let

\[\frac{1}{g} \int_0^g e^{-u^2} \, du = \int_0^1 e^{-g^2 v^2} \, dv, \]

if one wants to evaluate it with the integral of the numerator. Otherwise, one may return to the definition of \(g \) and use

\[\frac{1}{g} \int_0^g e^{-u^2} \, du = \frac{re^{-g^2}}{2g}. \]

The total time required to get good magnetization is determined as follows:

1. Time to reach \(x = x_1 \): \(t_1 = \mu_0 \sigma (x_1^2/4) \).
2. Time for \(a_1 \) to decay by a factor of \(e \): \(t_2 = \mu_0 \sigma x_1^2 (4/\pi^2) \).

Thus,

\[\mu_0 \sigma x_1^2 \left(\frac{1}{4} + \frac{4}{\pi^2} \right) = t_{\text{total}} \approx 0.65 \mu_0 \sigma x_1^2. \]

(3) If time for \(a_1 \) to decay by \(e^\pi \) is used, \(t_2 = \mu_0 \sigma x_1^2 (4/\pi) \), and

\[\mu_0 \sigma x_1^2 (0.25 + 1.27) = t_{\text{total}} \approx 1.5 \mu_0 \sigma x_1^2. \]
Change of Determinant for Small Changes of One Element of the Matrix that Describes a System that Is Least Squares Optimized with Restraints and Has Least Squares Limitations on Parameters

We let

\[A = \begin{pmatrix} M^tWM + V & N^t \\ N & 0 \end{pmatrix} \]

and consider only those terms linear in \(\Delta M_{nm} \) or \(\Delta N_{nm} \).

1) \(\Delta M_{ik} = \Delta M_{nm} \delta(i - n) \delta(k - m) \) with \(\Delta M_{nm} = a \).

Here and below we sum over indices appearing more than once.

\[(M^tWM)_{ik} = M_{li}W_{jl}M_{lk} \]
\[\rightarrow (M_{li} + a\delta(l - n)\delta(i - m)) W_{jl} (M_{lk} + a\delta(l - n)\delta(k - m)) \]
\[= M_{li}W_{jl}M_{lk} + a W_{nn} (M_{ni}\delta(k - m) + M_{nk}\delta(i - m)) + a^2. \]

To get \(\| A + \Delta A \| \) to first order in \(a \), one must differentiate \(\| A + \Delta A \| \) with respect to \(a \) and then evaluate, knowing that \(A^{-1} \) is Hermitian.

\[\| A + \Delta A \| = \| A \| + a W_{nn} \cdot 2 M_{nk} K_{mk}, \]

where \(K \) is the co-factor, and summation over \(k \) is done only over values consistent with the number of rows in \(M \).

\[\frac{\| A + \Delta A \|}{\| A \|} = 1 + \frac{\Delta M_{nm}}{M_{nm}} \cdot 2 W_{nn} M_{nm} \sum_k M_{nk} A^{-1}_{km} \]

where \(W_{nn} \sum_k M_{nk} A^{-1}_{km} = (A^{-1}M^tW)_{nn} \).

2) \(\Delta N_{ik} = \Delta N_{nm} \delta(i - n) \delta(k - m), \)

\[\| A + \Delta A \| = \| A \| + 2 \Delta N_{nm} K_{nm}, \]

\[\frac{\| A + \Delta A \|}{\| A \|} = 1 + \frac{\Delta N_{nm}}{N_{nm}} \cdot 2 N_{nm} A^{-1}_{nm}. \]

Sensitivity of Solution of Linear Equations to Change of an Individual Matrix Element

We let

\[MP = S, \quad M^{-1} = N \quad \text{and} \quad P = NS, \]

\[(M + \Delta M)(P + \Delta P) = M(I + A)(P + \Delta P) = S \quad \text{where} \quad A = N \Delta M, \]

\[P + \Delta P = (I + A)^{-1}P \quad \text{and} \quad \Delta P = ((I + A)^{-1} - I) P. \]

Further

\[\Delta M_{nm} = a \delta(n - n_0) \delta(m - m_0) \quad \text{where} \quad a = \Delta M_{n_0m_0}, \]

\[A_{km} = N_{kn} \Delta M_{nm} = a N_{kn} \delta(n - n_0) \delta(m - m_0) = a N_{kn_0} \delta(m - m_0), \]

\[A_{km}^2 = A_{ki}A_{im} = a^2 N_{kn_0} \delta(i - m_0) N_{m_0} \delta(m - m_0), \]

where \(A^2 = a N_{m_0n_0} A \), and we let \(\alpha = a N_{m_0n_0} \).

\[(I + A)^{-1} = I + \gamma A \quad \text{and} \quad (I + A)(I + \gamma A) = I + A(I + \gamma + \gamma \alpha) = I, \]

thus,

\[\gamma = \frac{1}{1 + \Delta M_{n_0m_0} N_{m_0n_0}} \quad \text{with} \quad \Delta M_{n_0m_0} N_{m_0n_0} \neq -1 \]

\[\Delta P = \gamma AP \]

\[\Delta P_k = \gamma A_{km} P_m = \gamma a N_{kn_0} \delta(m - m_0) P_m, \]

\[\Delta P_k = -\frac{\Delta M_{n_0m_0} P_m}{1 + \Delta M_{n_0m_0} N_{m_0n_0}} \cdot N_{kn_0} \]

That the matrix \(M \) becomes exactly singular for \(\Delta M_{n_0m_0} = -1 / N_{m_0n_0} \) is easily shown with Cramer's Rule. Let \(K_{nm} \) be the co-factor to the \(nm \) element, and \(\|M + \Delta M\| = \|M\| + \Delta M_{n_0m_0} K_{m_0n_0} \):

\[\Delta M_{n_0m_0} \cdot \frac{K_{n_0m_0}}{\|M\|} = \Delta M_{n_0m_0} N_{m_0n_0} = -1 \]

which is the necessary condition for a singular matrix.

This condition can easily be used to judge whether a matrix is "close" to being singular. One would test

\[\frac{M_{n_0m_0}}{\Delta M_{n_0m_0}} = -M_{n_0m_0N_{m_0n_0}} \]

and when the result is large compared to the inverse of the relative error of \(M_{n_0m_0}\), one is likely to be in trouble. This is of particular importance when the matrix elements are experimentally determined.
Fourier Analysis of Numerical Data

We assume that the spacing between data points is uniform, $2\pi/N$. Representing $F(\varphi)$ by a Fourier series with unknown coefficients and making the coefficients such that

$$\sum_{\varphi_n} \left(F(\varphi_n) - \sum_m a_m e^{im\varphi_n} \right)^2 = \min$$

gives the same coefficients that one obtains by evaluating the integral

$$\int F(\varphi) e^{-im\varphi} d\varphi$$

with trapezoidal rule applied to the whole integrand:

$$a_m^* = \frac{1}{2\pi} \int F(\varphi) e^{im\varphi} d\varphi \quad \Rightarrow \quad \frac{\Delta\varphi}{2\pi} \sum F(\varphi_n) e^{im\varphi_n} = \frac{1}{N} \sum F(\varphi_n) e^{im\varphi_n}.$$

A better way to integrate would be to assume that not the whole integrand changes linearly over an individual interval, but that only $F(\varphi)$ changes linearly over the interval.

For one interval,

$$\int F(\varphi) e^{i(m\varphi + \alpha)} d\varphi = \int (a + b\varphi) e^{i(m\varphi + \alpha)} d\varphi = (a + b\varphi) \frac{e^{i(m\varphi + \alpha)}}{im} + \frac{be^{i(m\varphi + \alpha)}}{m^2}.$$

When summing over the whole range of φ, the first term contributions cancel. With $b = (F_2 - F_1)/\Delta\varphi$, we get

$$I = \int_{\text{interval}} F(\varphi) e^{i(m\varphi + \alpha)} d\varphi$$

$$= \frac{F_2 - F_1}{m^2 \Delta \varphi} \left(e^{i(m\varphi_2 + \alpha)} - e^{i(m\varphi_1 + \alpha)} \right)$$

$$= \frac{F_2 e^{i(m\varphi_2 + \alpha)} (1 - e^{-im\Delta \varphi}) - F_1 e^{i(m\varphi_1 + \alpha)} (e^{im\Delta \varphi} - 1)}{m^2 \Delta \varphi}.$$

When summing over the whole circle, we get:

\[
\int_{0}^{2\pi} F(\varphi) e^{i(m\varphi+\alpha)} d\varphi = \sum \frac{F(\varphi_n) \left(1 - e^{-im\Delta\varphi} - e^{im\Delta\varphi} + 1\right)}{m^2 \Delta\varphi} e^{i(m\varphi_n+\alpha)}
\]

\[
= \sum \frac{F(\varphi_n) 4\sin^2 \varepsilon}{m^2 \Delta\varphi} e^{i(m\varphi_n+\alpha)} \quad \text{with} \quad \varepsilon = \frac{m\Delta\varphi}{2}
\]

\[
= \left(\frac{\sin \varepsilon}{\varepsilon}\right)^2 \Delta\varphi \sum F(\varphi_n) e^{i(m\varphi_n+\alpha)}
\]

with

\[
\frac{m\Delta\varphi}{2} = \varepsilon = \frac{m\pi}{N}.
\]

A parabolic approximation for \(F \) over two intervals, \(-\Delta\varphi \leq \varphi \leq \Delta\varphi\), without \(e^{i\alpha} \), gives after some calculation:

\[
I_2 = \left(\frac{\sin^4 \varepsilon}{\varepsilon^2} + \cos \varepsilon \left(\frac{\sin \varepsilon}{\varepsilon}\right)^3\right) \cdot \Delta\varphi \sum_{n} F(\varphi_n) e^{i(m\varphi_n+\alpha)}
\]

with \(\varepsilon = m\pi/N \), and

\[
\left(\frac{\sin^4 \varepsilon}{\varepsilon^2} + \cos \varepsilon \left(\frac{\sin \varepsilon}{\varepsilon}\right)^3\right) = t = \left(\frac{\sin \varepsilon}{\varepsilon}\right)^2 \left(\sin^2 \varepsilon + \cos \varepsilon \frac{\sin \varepsilon}{\varepsilon}\right).
\]

Program to Calculate \(t \), and Results.

5 CLS
10 FOR N=1 TO 18
15 E=N*3.14159265/36
20 PRINT ((SIN(E)/E)^2*((SIN(E))^2+COS(E)*SIN(E)/E)
30 NEXT N

For \(\varepsilon = N\times5 \):

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>5°</th>
<th>10°</th>
<th>15°</th>
<th>20°</th>
<th>25°</th>
<th>30°</th>
<th>35°</th>
<th>40°</th>
<th>45°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>.9999</td>
<td>.9998</td>
<td>.9988</td>
<td>.9962</td>
<td>.9911</td>
<td>.9821</td>
<td>.9682</td>
<td>.9482</td>
<td>.9213</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>50°</th>
<th>55°</th>
<th>60°</th>
<th>65°</th>
<th>70°</th>
<th>75°</th>
<th>80°</th>
<th>85°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>.8870</td>
<td>.8450</td>
<td>.7957</td>
<td>.7397</td>
<td>.6780</td>
<td>.6120</td>
<td>.5434</td>
<td>.4739</td>
<td>.4053</td>
</tr>
</tbody>
</table>
Program to Calculate K_1/ε^2 and K_2/ε^2, and Results.

5 CLS
10 FOR N=1 TO 18
20 E=N*3.14159265/36
30 PRINT N, (3+COS(4*E)-SIN(4*E)/E)/(4*E-2), (SIN(2*E)/(2*E)-COS(2*E))/(E-2)
40 NEXT N

<table>
<thead>
<tr>
<th>ε</th>
<th>K_1/ε^2</th>
<th>K_2/ε^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5°</td>
<td>.67069299</td>
<td>1.3292762</td>
</tr>
<tr>
<td>10°</td>
<td>.68235368</td>
<td>1.3171576</td>
</tr>
<tr>
<td>15°</td>
<td>.70042915</td>
<td>1.2971353</td>
</tr>
<tr>
<td>20°</td>
<td>.72300072</td>
<td>1.2694693</td>
</tr>
<tr>
<td>25°</td>
<td>.74761149</td>
<td>1.2345172</td>
</tr>
<tr>
<td>30°</td>
<td>.77147163</td>
<td>1.1927287</td>
</tr>
<tr>
<td>35°</td>
<td>.79169091</td>
<td>1.1446375</td>
</tr>
<tr>
<td>40°</td>
<td>.80551841</td>
<td>1.0908528</td>
</tr>
<tr>
<td>45°</td>
<td>.81056947</td>
<td>1.0320491</td>
</tr>
<tr>
<td>50°</td>
<td>.8050208</td>
<td>.96895504</td>
</tr>
<tr>
<td>55°</td>
<td>.78775796</td>
<td>.90234147</td>
</tr>
<tr>
<td>60°</td>
<td>.75866353</td>
<td>.83300908</td>
</tr>
<tr>
<td>65°</td>
<td>.71763969</td>
<td>.76177546</td>
</tr>
<tr>
<td>70°</td>
<td>.6665645</td>
<td>.68946226</td>
</tr>
<tr>
<td>75°</td>
<td>.60718709</td>
<td>.61688241</td>
</tr>
<tr>
<td>80°</td>
<td>.54197173</td>
<td>.54482766</td>
</tr>
<tr>
<td>85°</td>
<td>.47370526</td>
<td>.47405682</td>
</tr>
<tr>
<td>90°</td>
<td>.40528474</td>
<td>.40528474</td>
</tr>
</tbody>
</table>
Curvature of Field Lines in a Quadrupole

\[F(z) = (z + r)^2 \quad \text{with} \quad r = 1/K. \]

The field line is described by \(R(z + r)^2 = (x + r)^2 - y^2 = \text{constant}, \) thus

\[(x + r)^2 - y^2 = (x_0 + r)^2 \quad \rightarrow \quad x = -r + \sqrt{y^2 + (x_0 + r)^2}. \]

Further, \(1/R = x'' / \left(1 + (x')^2\right)^{3/2}, \) with

\[x' = \frac{y}{\sqrt{y^2 + (x_0 + r)^2}} \quad \text{and} \quad x'' = \frac{(x_0 + r)^2}{(y^2 + (x_0 + r)^2)^{3/2}} \]

\[1 + (x')^2 = \frac{2y^2 + (x_0 + r)^2}{\sqrt{y^2 + (x_0 + r)^2}} \quad \text{and} \quad \left(1 + (x')^2\right)^{3/2} = \frac{(2y^2 + (x_0 + r)^2)^{3/2}}{(y^2 + (x_0 + r)^2)^{3/2}}. \]

Thus,

\[\frac{1}{R} = \frac{(x_0 + r)^2}{(2y^2 + (x_0 + r)^2)^{3/2}} \quad \text{and} \quad R = (x_0 + r) \left(1 + \frac{2y^2}{(x_0 + r)^2}\right)^{3/2} \]

for field line starting at \(x_0. \)

The field line at \(x, y\) is described by

\[
\frac{(x + r)^2 + y^2)^{3/2}}{(x + r)^2 - y^2} = \frac{\left(1 + \left(\frac{y}{x + r}\right)^2\right)^{3/2}}{1 - \left(\frac{y}{x + r}\right)^2}.
\]

We make the following substitutions:

\[
\frac{y}{x + r} = \tan \alpha, \quad 1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}, \quad \text{and} \quad 1 - \tan^2 \alpha = \frac{\cos 2\alpha}{\cos^2 \alpha},
\]

and thus,

\[
R = \frac{(x + r)}{\cos \alpha \cos 2\alpha}.
\]

Also,

\[
\sqrt{(x + r)^2 + y^2} \left(\frac{1 + \tan^2 \alpha}{1 - \tan^2 \alpha}\right) = \frac{R}{\cos 2\alpha}.
\]
Skin Effect in Fe

- y_1 - x

Figure 1.

We introduce initial conditions and definitions:

$E = e_x E$, and $B = e_x B$ with $B = \mu_0 \mu_{rel} H = \mu H$,

\[
\frac{\partial}{\partial z} = \frac{\partial}{\partial x} = 0, \quad \text{and} \quad \frac{\partial}{\partial y} \neq 0,
\]

$\nabla \times H = H' = \sigma E = j$, and $\nabla \times E = -E' = -i \omega \mu H$,

$\sigma E' = j' = i \omega \mu \sigma H$.

We let $i \omega \mu \sigma = k^2$, and

$H'' - k^2 H = 0$, \hspace{1cm} \boxed{H = H_0 \cosh ky}, \hspace{1cm} \text{and} \hspace{1cm} \boxed{j = H_0 k \sinh ky}$.

The average field in the sheet, \overline{H}, compared to the field outside, H_1, is given by

\[
\overline{H} = \frac{1}{2y_1} \int_{-y_1}^{y_1} H \, dy = H_0 \frac{\sin ky_1}{ky_1}, \quad H_1 = H_0 \cosh ky_1, \quad \text{and} \quad H_0 = \frac{H_1}{\cosh ky_1},
\]

\[
\frac{\overline{H}}{H_1} = \frac{\tanh ky_1}{ky_1}.
\]

In (1), we let $x = ky_1$, and solve

\[
\frac{H}{H_1} = \frac{\tanh x}{x} \approx \frac{1 + x^2/6 + x^4/120}{1 + x^2/2 + x^4/24} \\
\approx \left(1 + \frac{x^2}{6} + \frac{x^4}{120}\right) \left(1 - \frac{x^2}{2} + \frac{5x^4}{24} + \cdots\right) \\
\approx 1 - \frac{1x^2}{3} + \frac{2x^4}{15}.
\]

(2)

The power dissipation per cubic meter is given by

\[
P = \frac{\omega}{2} |j|^2 = \frac{1}{2} \sigma H_0^2 |k|^2 |\sinh^2 ky|.
\]

We let \(ky = \alpha + i\alpha\) where \(\alpha = |k|/\sqrt{2}\) thus

\[
\sinh(\alpha + i\alpha) = \sinh \alpha \cos \alpha + i \cosh \alpha \sin \alpha,
\]

\[
|\sinh(\alpha + i\alpha)|^2 = \sinh^2 \alpha \cos^2 \alpha + \cosh^2 \alpha \sin^2 \alpha \\
= \sinh^2 \alpha \cdot (1 - \sin^2 \alpha) + (1 - \sinh^2 \alpha) \cdot \sin^2 \alpha \\
= \sinh^2 \alpha + \sin^2 \alpha \\
= \frac{1}{2} (1 - \cos 2\alpha + \cosh 2\alpha - 1) \\
= \frac{1}{2} (\cosh 2\alpha - \cos 2\alpha),
\]

and

\[
|\sinh(\alpha + i\alpha)|^2 = \frac{1}{2y_1} \int_0^{y_1} (\cosh 2\alpha - \cos 2\alpha) dy \\
= \frac{1}{2\alpha_1} \int_0^{\alpha_1} (\cosh 2\alpha - \cos 2\alpha) d\alpha \\
= \frac{1}{4\alpha_1} (\sinh 2\alpha_1 - \sin 2\alpha_1).
\]

Thus,

\[
\frac{P}{2} = \frac{\omega H_0^2 \mu}{8} \cdot \frac{\sinh 2\alpha_1 - \sin 2\alpha_1}{4\alpha_1} \quad \text{with} \quad \alpha_1 = y_1 \sqrt{\frac{\omega \mu \sigma}{2}}.
\]

For

\[
\frac{\sinh x - \sin x}{x} \approx \frac{2}{x} \left(\frac{x^3}{3!} + \frac{x^7}{7!}\right) = \frac{x^2}{3} \left(1 + \frac{x^4}{7!/3!}\right) = \frac{x^2}{3} \left(1 + \frac{x^4}{840}\right) \approx \frac{x^2}{3},
\]

120
and thus,
\[
\frac{\sinh 2\alpha_1 - \sin 2\alpha_1}{4\alpha_1} = \frac{(2\alpha_1)^2}{6} = \frac{(\sqrt{2}\gamma_1)^2}{6} = \frac{\gamma_1^2}{3}, \quad \text{with} \quad \gamma_1 = y_1\sqrt{\mu \sigma} = \sqrt{2}\alpha_1.
\]

Therefore,
\[
\bar{P} = \frac{\frac{H_0^2\mu}{2} \cdot \omega \cdot \frac{\gamma_1^2\mu \sigma}{3}}{\frac{2}{3} \cdot \frac{y_1^2\omega^2\sigma}{2}}.
\]

For \(H_0 \mu = B_0\),
\[
\bar{P} = \frac{B_0^2}{2} \cdot \frac{y_1^2\omega^2\sigma}{3} = \frac{B_0^2}{2} \cdot \frac{(2y_1)^2\omega^2\sigma}{12}.
\]

Resulting, thermally, in a trivial geometry:

\[
\begin{array}{c}
\left\{ \begin{array}{c}
T_0^\prime \\
T_{\max}
\end{array} \right. \\
x
\end{array}
\]

Figure 2.

For heat conductivity, \(S = \lambda T'\) in power/m²,
\[
\Delta S(x) = \bar{P} \Delta x, \quad \text{and thus} \quad \bar{P} = S' = \lambda T'',
\]

and thus,
\[
T_{\max} - T_0 = \frac{x^2\bar{P}}{2\lambda}.
\]

Typical Numbers for Dynamo Steel.

We let
\[
\rho = 46\mu \Omega \text{ cm} = 4.6 \times 10^{-7} \Omega \text{ m},
\]
\[
\mu(14 \text{kG}) = 2100, \quad \text{and} \quad \mu(18 \text{kG}) = 125,
\]
\[
\lambda = 27-36 \frac{\text{BTU/h}}{\text{ft}^2\text{°F}} \quad \text{with} \quad 1 \frac{\text{BTU/h}}{\text{ft}^2\text{°F}} = 0.293 \text{ Watts} \quad \frac{1 \text{BTU/h}}{1.84 \text{ m}^2\text{°C}} = 47.5-63.5 \text{ Watts/m}^2\text{°C}.
\]

121
(1) For $|x^2|/3 = 1/10$ we have
\[
\frac{|x^2|}{3} = \frac{\omega \mu}{3} \cdot y_1^2 = \frac{1}{10}, \quad \text{and} \quad y_1 = \frac{\sqrt{0.3} \cdot 0.23}{\omega \mu} = 10^{-3} \sqrt{\frac{2.3}{16.8}} = 0.37 \times 10^{-3} \text{m} = 0.37 \text{mm},
\]

\[2y_1 = 0.74 \text{mm}.\]

(2) For $B_0 = 14 \text{kG} = 1.4 \text{T}$ and the above $2y_1$,

\[
\overline{P} = \frac{60}{4.6} \times 10^3 = 13 \times 10^3 \text{Watts/m}^3 = 13 \times 10^{-3} \text{Watts/cm}^3.
\]

(3) For $x = 0.4 \text{m}$ and the above \overline{P},

\[
\Delta T = \frac{(1.16)(13 \times 10^3)}{(2)(50)} = (13)(1.16) \text{C} \approx 21 \text{C}.
\]

If the field is a sinusoidal function between $B = 0 \text{T}$ and 14kG, one has to use $B_0 = 7 \text{kG}$.

A More Detailed Expression for \overline{H}/H_1.

With $2y_1 = D$, we let

\[x = \frac{kD}{2} = \frac{D}{2} \sqrt{\frac{\omega \mu \sigma}{2}} = \frac{D}{2} \sqrt{2} \sqrt{\frac{\omega \mu \sigma}{2}}.
\]

With $\lambda = \sqrt{2/\omega \mu \sigma}$,

\[x = \sqrt{i} \frac{D}{\sqrt{2\lambda}} = \sqrt{i} \varepsilon, \quad \text{where} \quad \varepsilon = \frac{D}{\sqrt{2\lambda}}.
\]

Therefore,

\[
\frac{\overline{H}}{H_1} = 1 - \frac{\varepsilon^2}{3} - \frac{2e^4}{15} \quad \text{and} \quad \tan \varphi \approx \frac{\varepsilon^2}{3} = \frac{(D/\lambda)^2}{6},
\]

\[
\left| \frac{\overline{H}}{H_1} \right|^2 = 1 - \frac{7e^4}{45}, \quad \text{and} \quad \left| \frac{\overline{H}}{H_1} \right| = 1 - \frac{7e^4}{90},
\]

and thus,

\[
\left| \frac{\overline{H}}{H_1} \right| = 1 - \frac{7}{(4)(90)} \frac{D^4}{\lambda}.
\]
Results for Al, Cu and Fe at 60Hz.

For Al and Cu, we let

\[\lambda = \sqrt{\frac{2\rho}{\sigma\mu_0}} = \sqrt{\frac{10^4\rho}{2.4}}. \]

\[\rho_{\text{Al}} = 2.8 \times 10^{-8} \text{ and } \lambda_{\text{Al}} = 1.08\text{cm}, \]

\[\rho_{\text{Cu}} = 1.7 \times 10^{-8} \text{ and } \lambda_{\text{Cu}} = 0.84\text{cm}, \]

and \(D = (1/4)\text{in} = 0.635\text{cm} \):

<table>
<thead>
<tr>
<th></th>
<th>(D/\lambda)</th>
<th>((D/\lambda)^2)</th>
<th>((D/\lambda)^2/6)</th>
<th>(0.7 \ (D^2/6\lambda^2)^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.755</td>
<td>0.570</td>
<td>0.095</td>
<td>0.00635</td>
</tr>
<tr>
<td>Al</td>
<td>0.587</td>
<td>0.345</td>
<td>0.0575</td>
<td>.0023</td>
</tr>
</tbody>
</table>

For Fe with \(\mu \approx 2000 \),

\[\rho_{\text{Fe}} = 4.6 \times 10^{-7} \text{ and } \lambda_{\text{Fe}} \approx 1\text{mm}, \]

and \(D = 14\text{mm} \):

<table>
<thead>
<tr>
<th></th>
<th>(D/\lambda)</th>
<th>((D/\lambda)^2)</th>
<th>((D/\lambda)^2/6)</th>
<th>(0.7 \ (D^2/6\lambda^2)^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.350</td>
<td>0.1225</td>
<td>0.0205</td>
<td>0.00029</td>
</tr>
</tbody>
</table>
Magnetic Field Energy Calculations

\[E = \frac{1}{2} \int (\mathbf{B} \cdot \mathbf{H}) d\tau = \frac{1}{2} \int (\mathbf{B} \cdot \nabla V) d\tau = \frac{1}{2} \int \mathbf{H} \cdot (\nabla \times \mathbf{A}) d\tau, \]

with

\[\mathbf{B} \cdot \nabla V = \nabla \cdot (\mathbf{V B}) - \mathbf{V} \nabla \cdot \mathbf{B} = \nabla \cdot (\mathbf{V B}), \]

\[\mathbf{H} \cdot (\nabla \times \mathbf{A}) = \mathbf{A} \cdot (\nabla \times \mathbf{H}) = \mathbf{A} \cdot \mathbf{j}. \]

Field Energy in the Airspace of a Long, Symmetrical Bending Magnet.

The airspace is bounded by the midplane, an equipotential and two field lines (lines starting at two locations on the midplane).

![Figure 1.](image)

Derive \(B \) from the potential: \(\mathbf{B} = \nabla V \),

\[2\mu_0 E = \int (\mathbf{B} \cdot \nabla V) d\tau = \int \nabla \cdot (\mathbf{VB}) d\tau = \int \mathbf{VB} \cdot d\sigma. \]

Normalize \(V = 0 \) on equipotential, then contribution on equipotential is 0, as well as being 0 along the field lines:

\[2\mu_0 E = LV_0 \int B_y dx, \]

where \(L \) is the length of the magnet.

For \(B_y = B_0(1 + Kx) \):

\[
\int_{-a}^{a} B_y dx = 2aB_0, \quad \text{and} \quad V'_y|_{x=0} = B_y = B_0 \quad \Rightarrow \quad V_0 = yB_0.
\]

Thus,

\[
2\mu_0 E = LB_0 y_0 2aB_0 \quad \Rightarrow \quad \frac{E}{L} = \frac{B_0^2}{2\mu_0 a y_0}.
\]

\(y_0 \) equipotential is the hyperbola tangent to an ellipse with half-axis \(a \):

\[
y_0 = \frac{c}{r_0} = \frac{b}{r_0 a} \sqrt{(x + r_0)^2} = \frac{r_0}{a} \sqrt{\frac{x}{r_0} \left(\frac{x}{r_0} + 1 \right)^3}.
\]

For \(a/r_0 = \epsilon \),

\[
s = \frac{x}{\tau_0} = 2\epsilon^2 \frac{1}{1 + \sqrt{1 + 8\epsilon^2}} = \frac{1}{4} \left(\sqrt{1 + 8\epsilon^2} - 1 \right),
\]

we redefine \(y_0 = bF(\epsilon) \), where

\[
F(\epsilon) = \sqrt{\frac{s(s+1)^3}{\epsilon^2}} = \sqrt{\frac{2}{1 + \sqrt{1 + 8\epsilon^2}} \left(\frac{3 + \sqrt{1 + 8\epsilon^2}}{4} \right)^3}.
\]

For \(8\epsilon^2 \ll 1 \):

\[
\sqrt{1 + 8\epsilon^2} = 1 + 4\epsilon^2.
\]

\[
F^2(\epsilon) = \frac{2}{2 + 4\epsilon^2} \left(\frac{4 + 4\epsilon^2}{4} \right)^3 = (1 - 2\epsilon^2)(1 + 3\epsilon^2),
\]

\[
F(\epsilon) = 1 + \frac{\epsilon^2}{2}.
\]

For \(\epsilon = 1/2 \), \(F(1/2) = 1.2 \), while if \(\epsilon = 1 \), \(F(1) = 1.3 \).
Magnetic Energy of 2D Vacuum Field Inside Arbitrary Boundary.

Represent \(B \) by scalar potential: \(B = \nabla V \),

\[
2\mu_0 E = \int (B \cdot \nabla V) d\tau = \int \nabla \cdot (VB) d\tau = \int V (B \cdot d\sigma).
\]

The expression for scalar product of two vectors in 2-dimensional space, when vectors are expressed by the complex numbers \(a = a_x + ia_y \) and \(b = b_x + ib_y \), is

\[
a \cdot b = a_x b_x + a_y b_y = \Re ab^* = \Re a^* b.
\]

Thus, for \(d\sigma = iLdz \):

\[
\frac{2\mu_0 E}{L} = \Re \int V iB^* dz.
\]

For \(V = v \), and \(iB^* = F' \):

\[
\frac{2\mu_0 E}{L} = \Re \int v F' dz = \Re \int v dF = \Re \int v (du + i dv)
\]

\[
= \int v du = \int v (u'_x + u'_y y') dx.
\]

Special Case.

The energy of field derived from \(F = (B_0 K/2) (z + r_0)^2 \), with \(r_0 = 1/K \), inside the ellipse described by \((x/a)^2 + (y/b)^2 = 1 \), is given by

\[
F = \frac{1}{2} B_0 K \left((x + r_0)^2 - y^2 + 2iy(x + r_0) \right).
\]

With

\[
u'_x = B_0 K (x + r_0), \quad u'_y = -B_0 K y, \quad v = B_0 K y (x + r_0), \quad y' = \frac{y^2 x}{a^2 y},
\]

and

\[
x = a \sin \phi, \quad dx = a \cos \phi d\phi, \quad y = b \sqrt{1 - (x/a)^2} = b \cos \phi,
\]

127
and \(a/r_0 = \varepsilon, \)

\[
2\mu_0 E/L = B_0^2 K^2 \int y(x + r_0) \left(x + r_0 + y \frac{b^2 x}{a^2 y} \right) dx \\
= B_0^2 K^2 \int_{0}^{2\pi} \left(r_0 + x \left(1 + \frac{b^2}{a^2} \right) \right) y dx \\
= B_0^2 ab \int_{0}^{2\pi} \left(1 + \varepsilon \sin \varphi \right) \left(1 + \varepsilon \sin \varphi \left(1 + \frac{b^2}{a^2} \right) \right) \cos^2 \varphi d\varphi \\
= B_0^2 ab \int_{0}^{2\pi} \left(1 + \varepsilon \sin \varphi \left(2 + \frac{b^2}{a^2} \right) + \varepsilon^2 \sin^2 \varphi \left(1 + \frac{b^2}{a^2} \right) \right) \cos^2 \varphi d\varphi \\
= B_0^2 ab \left(\pi + 0 + \varepsilon^2 \frac{\pi}{4} \left(1 + \frac{b^2}{a^2} \right) \right) \\
= B_0^2 ab \pi \left(1 + \frac{a^2 + b^2}{4r_0^2} \right).
\]
Scalar Potential for 3D Fields in “Business Region” of Insertion Device with Finite Width Poles

Task.
In the absence of random errors, we are interested in the formulation of 3-dimensional $V(x, y, z)$ (with $\nabla^2 V = 0$) for B in the “business region” of an insertion device (hybrid or electro-magnetic) with finite width poles, and containing only a small number of free, easily measured constants.

Notation and Coordinate System.
The beam will be in the direction of the z-axis. The midplane will be in the xz-plane. The field will be in the y-direction in the midplane.

Field Symmetries.
B_y will be the even function of x, y and B_z will be the odd function of x, y.

![Diagram](image)

Figure 1.

Representation of $V(x, y, z)$.
We represent $V(x, y, z)$ by a Fourier series in z:

$$V(x, y, z) = \sum_{n=\text{odd}} \cos nk_3 z \cdot G_n(x, y) \quad \text{with} \quad k_3 = \frac{2\pi}{\lambda}, \quad (1)$$

where

$$\nabla^2 = 0 \implies \nabla^2 G_n = n^2 k_3^2 G_n. \quad (2)$$
For an infinitely wide pole:

$$\frac{\partial G_n}{\partial x} = 0 \implies G_n(x, y) = a_n \sinh nk_3y,$$

which is a standard 2D solution. The effect of the finite width pole is described by

$$G_n = a_n \sinh nk_3y + g_n(x, y),$$

where g_n is the effect of the finite width pole. Thus

$$\nabla^2 g_n = n^2k_3^2g_n. \quad (3)$$

Case 1:

$$\mu_\text{Fe} = \infty \implies B_x(x, \pm h, u\lambda/2) = 0 \quad (4)$$

where u is an integer.

1.1) We initially assume that

$$G_n = g_n = 0 \quad \text{for} \quad n > 1$$

and we see that the symmetries and (4) give $g'_{1x}(x, 0) = g'_{1x}(x, \pm h) = 0$. We expand $g'_{1x}(x, y)$ in a Fourier series in y with a $2h$ period, and see that

$$g'_{1x}(x, y) = b'_m(x) \sin m k_2 y \quad \text{with} \quad k_2 = \pi/h. \quad (5)$$

We now substitute (5) into (3). We have $b''_m = b'_m(m^2k_2^2 + n^2k_3^2)$, with $n = 1$. A solution which satisfies this equation and the symmetries is given by

$$b_m(x) = c_m \cosh k_{nm} x, \quad \text{where} \quad k_{nm} = (m^2k_2^2 + n^2k_3^2)^{1/2}. \quad (6)$$

A complete solution is given by

$$V(x, y, z) = \cos k_3 z \cdot a_0 \left(\sinh k_3 y + \sum_{m=1} a_m \frac{\sin m k_2 y \cosh k_{1m} x}{\cosh k_{1m} w} \right). \quad (7)$$

c_m is chosen such that a_m can be expected to be only weakly dependent on w.

1.2) We now assume that

$$G_n = g_n \neq 0 \quad \text{for} \quad n \geq 1.$$

(7) can be generalized, but one must realize that the resulting formula does not have the same force of logic that was inherent in its original derivation. This generalized
formula allows the possibility that contributions from many \(n \) could combine to make
\(B_x(x, \pm h, u \lambda/2) = 0 \).

\[
V(x, y, z) = \sum_{n=\text{odd}} \cos nk_3 z \cdot G_n(x, y)
\]

\[
G_n(x, y) = A_{n0} \left(\sinh nk_3 y + \sum_{m=1} \sin mk_3 y \cosh k_{nm} x \cdot \frac{a_{nm}}{\cosh k_{nm} \lambda} \right)
\]

\[
k_{nm} = (n^2 k_3^2 + m^2 k_3^2)^{1/2} \quad \text{with} \quad k_3 = 2\pi / \lambda \quad \text{and} \quad k_2 = \pi / h.
\]

Notice that in the above set of equations \(A_{n0} \) has units of Tesla-meters and \(a_{nm} \) is dimensionless.

We expect that \(a_{nm} \) is of the first order, the finite width effects decrease with increasing \(n \) and \(m \), and further, that only a few \(a_{nm} \) are needed.

Case 2:

\[
\mu_{Fe} < \infty \quad \Longrightarrow \quad B_x(x, \pm h, u \lambda/2) = -B_x(-x, \pm h, u \lambda/2) \neq 0.
\]

The contributions from Fe alone are given by the addition of \(Q_n(x, y) \):

\[
V = \sum \cos nk_3 z \cdot Q_n(x, y) \quad \text{where} \quad \nabla^2 Q_n = \eta^2 k_3^2 Q_n.
\]

For the sake of simplification, we shall look at one \(Q_n \), normalize lengths so that \(nk_3 = 1 \), and denormalize at the end

\[
\nabla^2 Q = Q.
\]

We follow the logic of Case 1 as well as also satisfying \(Q'_y(x, 0) \approx x^2 \) for sufficiently small \(x \). Thus, we start with

\[
Q(x, y) = (\cosh \eta x - 1)P_1(y) + P_2(y),
\]

where \(\eta \) is real and arbitrary. Later we will let \(\eta \to 0 \). We substitute (11) into (10) and get

\[
\nabla^2 Q = \eta^2 c P_1 + (c - 1)P_1'' + P_2''
\]

\[
= Q
\]

\[
= (c - 1)P_1 + P_2.
\]

where \(c = \cosh \eta x \) and \(P_1, P_2 \) are unknown. Separating into terms with and without

we have
\[
\eta^2 P_1 + P_1'' = P_1, \quad P_2'' - P_1'' = P_2 - P_1, \quad (12)
\]
\[
p^2 = 1 - \eta^2, \quad P_1'' - p^2 P_1 = 0 \quad \Rightarrow \quad P_1 = \sinh p y, \quad (13)
\]
\[
P_2'' - P_2 = P_1'' - P_1 = -\eta^2 P_1 = -\eta^2 \sinh p y,
\]
\[
P_2 = \sinh p y - p \sinh y, \quad (14)
\]
in which the second term serves to satisfy the condition \(P_{2y}''(0) = 0\).

\[
Q(x, y) = (\cosh \eta x - 1) \sinh p y + \sinh p y - p \sinh y,
\]
with \(\eta \to 0\) and \(p \to (1 - \eta^2 / 2)\).

\[
Q(x, y) = \frac{\eta^2}{2} (x^2 \sinh y - y \cosh y + \sinh y). \quad (16)
\]

We denormalize (16) and drop \(\eta^2 / 2\) and get

\[
Q_n(x, y) = (nk_3 x)^2 \sinh nk_3 y - nk_3 y \cosh nk_3 y + \sinh nk_3 y, \quad (17)
\]

\[
V(x, y, z) = \sum_{n=\text{odd}} \cos nk_3 z (G_n(x, y) + Q_n(x, y)). \quad (18)
\]

Magnetic Measurements.

First, the simplest implementation consists of measuring the Fourier coefficients of the expansion of \(B_x, B_y, B_z\) in \(\sin nk z\) and \(\cos nk z\) and determining the value of the free coefficients in \(G_n\) and \(Q_n\) that best fit the data. Use a "filter" to remove the random errors from the data sets.

Second, choose \(x, y\) very carefully for each of these sets of measurements in order to take advantage of the properties of \(G_n(x, y)\) and \(Q_n(x, y)\) and its derivatives with respect to \(x, y\). This is particularly important for the contributions originating from \(\sin nk_2 y\) in \(G_n(x, y)\).

Third, investigate suitability of less conventional magnetic measurements, like a Hall probe or flux loop that vibrates in the \(x\)-direction, with phase sensitive de-modulation.

Use of Model.

After verification of the validity region of the model is completed, it can be used for trajectory calculations. Furthermore, one can use this model to determine the maximal narrowness of the pole before detrimental effects become intolerable.

In application to existing hardware, one can break up the total field into the ideal 3D field and the random errors.
Magnetic Measurement and Data Reduction to Identify Some Specific Error Field Consequences

Measurement of Steering in Wiggles and Undulators.
Prefer null measurement method, if it can be done.
In “body” of wiggler or undulator: use coil with length equal to the product of period and integer.
In the end-region, from the field-free region to the periodic part: measure using long coil reaching from the outside to the periodic part, together with an attached compensation coil in the periodic part. This gives a signal that depends only on the steering integral, and is independent of position in the periodic part. It is an important tool for correcting the ends.
Normalized sensitivity of system, for $\varphi = kz = 2\pi z/\lambda$ is given by

$$S(\varphi) = S_0(\varphi) + S_1(\varphi),$$

where S_0 refers to the main coil, and S_1 to the compensation coil. With $\varphi = 0$ referring to the end of the main coil, and $\varphi = -\alpha$ to the center of the correction coil (of length $2\varphi_1$) relative to the end of the main coil, we have, in the coil coordinate system,

$$S_0(\varphi) = 1 \text{ at } -\infty \leq \varphi \leq 0,$$

$$S_0(\varphi) = 0 \text{ at } 0 \leq \varphi,$$

$$S_1(\varphi) = \varepsilon \text{ at } -\alpha - \varphi_1 \leq \varphi \leq -\alpha + \varphi_1,$$

$$S_1(\varphi) = 0 \text{ at } \varphi \text{ outside the above region.}$$

For the periodic region, $\varphi > 0$ and

$$B = \sum_{n=\text{odd}} na_n \cos n\varphi = \Re \sum na_n e^{in\varphi},$$

with the end of main coil at $\varphi_0 > \pi$ in the field coordinate system, the signal from the main coil is

$$F_0 = \int_{-\infty}^{0} B d\varphi + \int_{0}^{\varphi_0} \Re \sum na_n e^{in\varphi} d\varphi = \text{Steering} \int + \Re \sum a_n (e^{in\varphi_0} - 1)/i,$$

and similarly, the signal from the compensating coil is

$$F_1 = \varepsilon \int_{\varphi_0 - \alpha - \varphi_1}^{\varphi_0 - \alpha + \varphi_1} \sum na_n e^{in\varphi} d\varphi = \Re \sum a_n e^{in(\varphi_0 - \alpha)} 2\varepsilon \sin \varphi_1,$$

September, 1993. Note 0142u-w.
Presented at the ID Measurement Workshop, ANL, September, 1993.
\[F_0 - F_1 = \text{Steering} \int +\Re \sum a_n e^{in\varphi_0} \left(\frac{1}{i} - 2\varepsilon e^{-i\alpha} \sin n\varphi_1 \right). \]

We want \(F_0 - F_1 \) independent of \(\varphi_0 \), thus

\[2\varepsilon \sin n\alpha \sin n\varphi_1 = 1, \quad \text{and} \quad 2\varepsilon \cos n\alpha \cos n\varphi_1 = 0. \]

When harmonics are weak (undulator), we need to satisfy these conditions only for \(n = 1 \), but when strong harmonics are present (wiggler), we need to satisfy them for all odd \(n \): to get

\[
\begin{align*}
\cos n\alpha &= 0 & \text{choose} & \alpha = \pi/2, \\
\sin n\alpha &= (-1)^{(n-1)/2} & \text{choose} & \varphi_1 = \pi/2, \\
\end{align*}
\]

\(\varepsilon = 1/2 \).

\(\varphi_1 = \pi/2 \) needs to be done by hardware, \(\alpha = \pi/2, \varepsilon = 1/2 \), can be done by “tuning” if one provides for it. Other solutions should be obvious.

This scheme can also be implemented with simple coil (or Hall probes) and software. However, software implementation is not a null method and therefore suffers much more from equipment imperfections.

Phase Shifts of Emitted Light Due to Error Fields.

This is one of a number of ways to develop more insight into why or how synchrotron light properties deteriorate because of error fields.

We make the following definitions:

\[
x'' = \frac{g}{\gamma} B, \quad \text{with} \quad g = \frac{e}{m_0 c},
\]

\[
\varphi = k z, \quad \text{and} \quad k = \frac{2\pi}{\lambda}.
\]

For the reference trajectory:

\[B(\varphi) = B_0 \cos \varphi, \]

\[x'_0 = \frac{gB_0}{\gamma k} \sin \varphi = \frac{K}{\gamma} \sin \varphi, \quad \text{with} \quad \frac{gB_0}{k} = K = .934 \cdot B_0(T) \cdot \lambda (\text{cm}), \]

\[x_0 = \frac{K}{k\gamma} \cos \varphi, \]

\[x_W = \frac{K}{k\gamma}. \]
We define the trajectory length error as

\[
\Delta s = \int_{-\infty}^{\infty} \left(\sqrt{1 + (x_0' + \Delta x')^2} - \sqrt{1 + x_0'^2} \right) dz
\]

\[
= \int \left(x_0' \Delta x' + \frac{1}{2} \Delta x'^2 \right) dz
\]

\[
= x_0 \Delta x' - \int x_0 \Delta x'' dz + \frac{1}{2} \int \Delta x'^2 dz.
\]

For \(D = \Delta B/B_0 \) as a function of \(\varphi \):

\[
\Delta x'' = \frac{gB_0 \Delta B}{\gamma B_0} = \frac{gB_0}{\gamma} D = \frac{Kk}{\gamma} D,
\]

\[
\Delta x' = \frac{K}{\gamma} \int D d\varphi.
\]

Thus,

\[
\Delta s = \left(\frac{K}{\gamma} \right)^2 \frac{1}{k} \left(-\cos \varphi \int D d\varphi + \int \cos \varphi D d\varphi + \frac{1}{2} \int \left(\int D d\varphi \right)^2 d\varphi \right),
\]

With \(\Delta t = \Delta s/c \), \(\Delta \Phi = \omega_L \Delta t = \Delta s \omega_L/c = \Delta s k_L \), and

\[
\lambda_L = \frac{\lambda}{2\gamma^2} \left(1 + \frac{K^2}{2} \right) = \frac{\lambda K^2}{4\gamma^2} \left(1 + \frac{2}{K^2} \right),
\]

\[
\Delta \Phi = P \left(\underbrace{-\cos \varphi \int D d\varphi}_{(G_1)} + \underbrace{\int \cos \varphi D d\varphi}_{(G_2)} + \frac{1}{2} \int \left(\int D d\varphi \right)^2 d\varphi}_{(G_3)} \right),
\]

where

\[
P = \frac{4}{1 + 2/K^2}.
\]

Notice that, as a function of \(K \), \(\Delta \Phi \approx K^2 \) for \(K^2 \ll 2 \), and \(\Delta \Phi \) is independent of \(K^2 \) for \(K^2 \gg 2 \). \(G_1 \) produces harmonics and reduces the intensity of the fundamental, but only if steering is not 0. The \(G_2 \neq 0 \) contribution depends on symmetry of \(D \), not on the presence or absence of steering. In \(G_3 \) only steering errors contribute and it always gives \(\Delta \Phi \) of the same sign. \(G_3 \) being of second order, we may expect a significant contribution only for a long undulator. We will see below that \(G_3 \) can be surprisingly large even for a short undulator.
We present order of magnitude estimates for $\overline{G_2^2}, \overline{G_3^2}$, for the ensemble. For G_2 from one primary source:

$$G_2 = \varepsilon_2 D_2 \frac{\lambda 2\pi}{2\lambda} = \varepsilon_2 D_2 \pi.$$

For n_2 sources per period: after $N_1 = z/\lambda$ periods

$$\overline{G_2^2} = (\varepsilon_2 D_2 \pi)^2 n_2 \frac{z}{\lambda} = D_2^2 \pi^2 \varepsilon_2^2 n_2 \frac{z}{\lambda}.$$

Without $\cos \varphi$ in the integrand, we may expect from steering:

$$\overline{G_0^2} = D_0^2 \pi^2 \varepsilon_0^2 n_0 \frac{z}{\lambda} = D_0^2 \pi^2 \varepsilon_0^2 n_0 N_1.$$

$$\overline{G_3} = \frac{1}{2} D_0^2 \pi^2 \varepsilon_0^2 n_0 \frac{L}{\lambda} \int_0^{L} \frac{z}{\lambda} d\frac{2\pi}{z} = \frac{1}{2} D_0^2 \pi^2 \varepsilon_0^2 n_0 N_1.$$

$$\varepsilon_4 = \frac{\overline{G_3}}{\sqrt{\overline{G_2}^2}} = \frac{D_0^2 \pi^2 \varepsilon_0^2 n_0 N_1^2 / 2}{\sqrt{D_2^2 \pi \varepsilon_2 \sqrt{n_2} \sqrt{N_1}}} = \frac{\varepsilon_0^2 n_0 D_0^2}{\sqrt{\varepsilon_2 n_2 D_2^2}} \frac{\pi^2}{2} N_1^{3/2}.$$

To get a feeling for the order of magnitude, we assume that the first order term, $\sqrt{\overline{G_2}^2}$, contributes twice the contribution of the second order term, $\overline{G_3}$, i.e. $\varepsilon_4 = 1/2$, and further, $\varepsilon_0 = \varepsilon_2 = 1$, $n_0 = n_2 = 4$, $N_1 = 10^2$, $\overline{D_0^2} = \overline{D_2^2}$, then

$$\sqrt{D_0^2} = \frac{1}{20 \times 10^3} = 5 \times 10^{-5}$$

has to be satisfied. And for $\sqrt{\overline{D_0^2}} = 10^{-3}$, $\varepsilon_0 = 1$, $n_0 = 4$, $N_1 = 10^2$,

$$\Delta \Phi = .6 \text{ radians}.$$

$\Delta \Phi$ over-estimates the damage done to the emitted light because $\Delta \Phi = a + bx$ causes no real damage. We subtract the straight line from the original $\Delta \Phi(z) = f(z)$, and
then normalize the length of the undulator to 1:

\[H = \int_0^1 (a + bz - f(z))^2 \, dz \]

and minimize \(H \) with \(a, b \),

\[\int f(z) \, dz = F_0, \quad \int zf(z) \, dz = F_1, \quad \text{and} \quad \int f^2(z) \, dz = F_2. \]

The solution gives

\[a = 2(2F_0 - 3F_1), \quad \text{and} \quad b = 6(2F_1 - F_0), \]

and this gives

\[H = F_2 - 4(F_0^2 + 3F_1(F_1 - F_0)). \]

For a specific function \(f(z) = u\sqrt{z} + vz^2 \), corresponding to the ensemble model used above, and after optimization (see Appendix A for details),

\[H = \left(\frac{1}{180} \right) \frac{2u^2}{5} - \frac{8uv}{7} + v^2, \]

With \(\alpha = v/u \), we get the following improvement factor:

\[\frac{H}{F_2} = \left(\frac{1}{36} \right) \frac{\alpha^2 - 8\alpha/7 + 2/5}{\alpha^2 + 20\alpha/7 + 5/2}. \]

For Figure 1,

\((H/F_2)_{\text{min}} = 4.5 \times 10^{-4} \quad \text{at} \quad \alpha = .605, \)
\[(H/F_2)_{\text{max}} = 0.274 \quad \text{at} \quad \alpha = -1.65,\]

Even if one does not consider the model of \(f(z) = u\sqrt{z} + vz^2\) a realistic one, it is quite clear that (a) one should optimize not \(\Delta \Phi(z)\), but \(\Delta \Phi(z)\) minus “best” straight line, and that (b) gains can be remarkable. In other words, the quality of the light generated may be much better than one would think if one were to only look at \(\Delta \Phi(z)\) or \(D(z)\). We make a trivial, but interesting observation: since \(H\) (before or after subtraction of straight line) is a quadratic function of \(u, v\), an increase in the \(G_2\) or \(G_3\) contribution may lead to a decrease of \(H\).

For the measurement of \(G_2 = \int \cos \varphi Dd\varphi\), consider the following 2-coil configuration:

![Diagram](image)

Figure 2.

The above design will measure the integral over \(\cos \varphi \cdot B(\varphi)\). But, \(\cos \varphi \cdot B_0 \cos \varphi\) gives a large signal, therefore the null-coil system is needed. The proposed system cancels \(B_0 \cos \varphi\) but also “sees” steering; thus, it is fine only if steering is small enough or known. Therefore, we give below only the basic design and performance equations for system components, and one system.

Since \(\Delta \Phi\) is only relevant for undulator, we ignore the harmonics.

The compensation coil is the same for measurement of steering at ends.

The main coil sensitivity is \(S_0 = \cos(\alpha_0 + \varphi)\) at \(-\varphi_2 \leq \varphi \leq \varphi_2\), and \(S_0 = 0\) outside this region. At the center of the coil, sensitivity is \(\cos \alpha_0\), and \(B = \cos \varphi_0 = \Re e^{i\varphi_0} = B\).

\[
F_0 = \Re \int_{-\varphi_2}^{\varphi_2} e^{i(\varphi_0 + \varphi)} \cos(\alpha_0 + \varphi)d\varphi \\
= \frac{1}{2} \Re e^{i\varphi_0} \int_{-\varphi_2}^{\varphi_2} (e^{i\alpha_0} e^{2i\varphi} + e^{-i\alpha_0}) d\varphi \\
= \frac{1}{2} \Re e^{i\varphi_0} (e^{i\alpha_0} \sin 2\varphi_2 + e^{-i\alpha_0} 2\varphi_2).
\]
The compensation coil sensitivity is $S_1(\varphi) = \varepsilon_1$ at $-\varphi_1 \leq \varphi \leq \varphi_1$, and $S_1(\varphi) = 0$ outside this region. At the center of the coil, $B = \cos(\varphi_0 + \beta) = \Re e^{i(\varphi_0 + \beta)}$.

$$F_1 = \Re \int_{-\varphi_1}^{\varphi_1} e^{i(\varphi_0 + \beta + \alpha)} d\varphi = 2\varepsilon_1 \Re e^{i(\varphi_0 + \beta)} - \sin \varphi_1.$$

With $\varepsilon = 4\varepsilon_1 \sin \varphi_1$ and $2\varphi_2 = \gamma$,

$$F_0 + F_1 = \frac{1}{2} \Re e^{i\varphi_0} \left(e^{i\alpha_0 \sin \gamma} + e^{-i\alpha_0 \gamma} + \varepsilon e^{i\beta} \right).$$

To get no signal for all φ_0, we must satisfy

$$\cos \alpha_0 (\sin \gamma + \gamma) = -\varepsilon \cos \beta, \quad \text{and} \quad \sin \alpha_0 (\sin \gamma - \gamma) = -\varepsilon \sin \beta,$$

and since there are four parameters to satisfy two equations there are many possible solutions. We pick one with $\beta = 0$ and $\alpha_0 = 0$ and have

$$\varepsilon = 4\varepsilon_1 \sin \varphi_1 = -(\gamma + \sin \gamma), \quad \varepsilon_1 = -\frac{2\varphi_2 + \sin 2\varphi_2}{4 \sin \varphi_1}.$$

If $|\varepsilon_1| > 1$, we can use a combined coil system as follows, with $\varphi_2 = \varphi_1 = 3\pi/2$ and therefore $\varepsilon_1 = 3\pi/4$.

![Figure 2.](image)

This is not the ultimate answer, but only a first step, and it may start similar thinking on other issues.
Appendix A.

For the execution of the optimization of \(H \), we let

\[
a + b/2 = F_0, \quad 2F_1 - F_0 = b/3, \quad a/2 + b/3 = F_1,
\]

\[
\begin{align*}
b &= 6(2F_1 - F_0) \\
a &= 2(2F_0 - 3F_1).
\end{align*}
\]

With the above, we have

\[
H = a^2 + b^2/3 + F_2 - 2aF_0 - 2bF_1 + ab
\]

\[
= a\left(a + b/2\right) + b\left(b/3 + a/2\right) + F_2 - 2aF_0 - 2bF_1
\]

\[
= F_2 - aF_0 - bF_1
\]

\[
= F_2 - 2F_0(2F_0 - 3F_1) - 6F_1(2F_1 - F_0)
\]

\[
= F_2 - 4F_0^2 - 12F_1^2 + 12F_0F_1.
\]

For the special case of \(f(z) = \sqrt{z} + \alpha z^2 \):

\(F_0 = 2/3 + \alpha/3 = (\alpha + 2)/3 \), \quad and \quad \(F_1 = 2/5 + \alpha/4 \),

and for \(f^2(z) = z + \alpha^2 z^4 + 2\alpha z^{2.5}, \quad F_2 = z + \alpha^2/5 + 4\alpha/7 \). Therefore,

\[
F_2 - H = \frac{4}{9}(\alpha + 2)^2 + 12\left(\frac{\alpha}{4} + \frac{2}{5}\right)^2 - 4(\alpha + 2)\left(\frac{\alpha}{4} + \frac{2}{5}\right)
\]

\[
= \frac{7\alpha^2}{36} + \frac{26\alpha}{45} + \frac{112}{225},
\]

\[
H = \alpha^2\left(\frac{1}{5} - \frac{7}{36}\right) + \alpha\left(\frac{4}{7} - \frac{26}{45}\right) + \frac{1}{2} - \frac{112}{225}
\]

\[
= \frac{1}{180}\left(\alpha^2 - \frac{8\alpha}{7} + \frac{2}{5}\right) = \frac{1}{180}\left(v^2 - \frac{8uv}{7} + \frac{2u^2}{5}\right).
\]

\[
\frac{H}{F_2} = \frac{1}{36} \frac{\alpha^2 - 8\alpha/7 + 2/5}{\alpha^2 + 20\alpha/7 + 5/2}.
\]
Least Square Fit of $f(z)$ with $a + bz$ in $0 \leq z \leq 1$

Origin and Purpose of Study. If $f(z) = \text{phase shift}$, the difference between $f(z)$ and $a + bz$ is the only damaging property of $f(z)$ since a would be an irrelevant shift of phase reference, and b represents a shift of center of line without any broadening.

We define

$$S = \int (a + bz - f(z))^2 dz.$$

For $S'_z = 0$: $a + b/2 = F_0 = \int f(z)dz,$

For $S'_b = 0$: $a/2 + b/3 = F_1 = \int zf(z)dz.$

Therefore,

$$b = 12F_1 - 6F_0 \quad \text{and} \quad a = 4F_0 - 6F_1.$$

For $\int f(z)^2 dz = F_2$,

$$S = a^2 + b^2/3 + F_2 + ab - 2aF_0 - 2bF_1$$
$$= a(a + b/2) + b(a/2 + b/3) - 2aF_0 - 2bF_1 + F_2$$
$$= F_2 - aF_0 - bF_1$$
$$= F_2 - F_0(4F_0 - 6F_1) - F_1(12F_1 - 6F_0)$$
$$= F_2 - 4(F_0^2 + 3F_1^2 - 3F_0F_1).$$

For a specific function, $f(z) = \sqrt{z} + ax^2$,

$$f(z)^2 = z + 2ax^{5/2} + a^2 z^4,$$

$$F_0 = 2/3 + \frac{\alpha}{3}, \quad F_1 = 2/5 + \frac{\alpha}{4}, \quad \text{and} \quad F_2 = 1/2 + \frac{4\alpha}{7} + \frac{\alpha^2}{5},$$

thus,

$$S = \frac{\alpha^2}{5} + \frac{4\alpha}{7} + \frac{1}{2} - 4\left(\frac{1}{9}(\alpha^2 + 4\alpha + 4) + 3\left(\frac{\alpha^2}{16} + \frac{\alpha}{5} + \frac{4}{25}\right) - (\alpha + 2)\left(\frac{\alpha}{4} + \frac{2}{5}\right)\right)$$
$$= \alpha^2\left(\frac{1}{180}\right) - \alpha\left(\frac{2}{315}\right) + \frac{1}{450}$$

$$= \alpha^2a_2 + \alpha a_1 + a_0$$

with

$$a_2 = \frac{1}{180}, \quad a_1 = -\frac{2}{315}, \quad \text{and} \quad a_0 = \frac{1}{450},$$

August, 1993. Note 0141u-w.
therefore,

\[
S = \frac{1}{180} \left(\alpha^2 - \frac{8\alpha}{7} + \frac{2}{5} \right),
\]

\[
\frac{S}{F_2} = \frac{1}{36} \cdot \frac{\alpha^2 - \frac{8\alpha}{7} + \frac{2}{5}}{\alpha^2 + \frac{20\alpha}{7} + \frac{5}{2}}.
\]

For \(\alpha \gg 1 \), \(\sqrt{S/F_2} \) is improved by a factor of 6, and for \(\alpha \ll 1 \), \(\sqrt{S/F_2} \) is improved by a factor of 15.

\(S/F_2 \) is a strongly peaked function:
- \((S/F_2)_{max} \approx .274\) at \(\alpha \approx -1.65 \),
- \(S/F_2 \approx .125 \) at \(\alpha \approx -3 \),
- \(S/F_2 \approx .004 \) at \(\alpha \approx 0 \),
- \((S/F_2)_{min} \approx 4.5 \times 10^{-4}\) at \(\alpha \approx .605 \),

Since \(a + bz \) represents the error-free condition, looking at the deviation of phase shift from the straight line may represent the best way to characterize the consequences of the error fields.

\[
S_{min} = \frac{1}{180} \left(\frac{2}{5} - \frac{16}{49} \right) = \frac{1}{50} \cdot \frac{1}{49} \quad \text{with} \quad \alpha = \frac{4}{7},
\]

and the values for \(a, b \) are

\[
a = 4F_0 - 6F_1 = \frac{4}{3}(\alpha + 2) - 6 \left(\frac{\alpha}{4} + \frac{2}{5} \right) = \frac{-\alpha + 4}{6 + 15},
\]

\[
b = 12F_1 - 6F_0 = 3 \left(\alpha + \frac{8}{5} \right) - 2(\alpha - 2) = \frac{\alpha + 4}{5}.
\]
Normalizations Factors ε_1 and ε_2
for Comparison of First and Second Order Phase Shifts,
with Analytical Model of $b(z)$

At the center

$$\Delta B = b(0) = \frac{V_1}{h} \frac{1}{k_0(x_2 - x_1)} \ln \frac{\cosh k_0 x_2 + 1}{\cosh k_0 x_1 + 1}$$

$$= V_1 \frac{\ln \left(\frac{\sinh k_0 x_2/2}{\sinh k_0 x_1/2} \right)}{h \left(\frac{k_0(x_2 - x_1)}{2} \right)} \cdot g_0$$

with $k_0 = \pi/h$ and $k_1 = 2\pi/\lambda$. Further,

$$\int b(z) \cos(k_1 z) k_1 dz = \frac{V_1}{h} \frac{2}{\pi} k_1 \cdot \frac{2\pi}{k_0} \int_{x_1}^{x_2} \frac{\sin k_1 x}{\sinh(\pi k_1/k_0)} \cdot \frac{dx}{x_2 - x_1}$$

$$= \frac{V_1}{h} \frac{4k_1}{k_0} \frac{\sin(\pi k_1/k_0)}{\sinh(\pi k_1/k_0)} \cdot g_1,$$

$$\frac{V_1}{h} \frac{\Delta B}{g_0} = \varepsilon_1,$$

$$\int b(z) \cos(k_1 z) k_1 dz = \frac{\Delta B}{g_0} g_1,$$

$$\int b dz = \frac{V_1}{h} \frac{\lambda}{2} = \frac{\Delta B \cdot \lambda/2}{g_0}.$$

Thus,

$$\int \frac{\Delta B}{B_0} k_1 dz = \varepsilon_2 \frac{\Delta B}{B_0} = \frac{\Delta B \cdot \lambda/2}{g_0} \frac{2\pi}{\lambda},$$

August, 1993. Note 0140u-w.
\[\varepsilon_2 = \frac{1}{g_0} \]

Similarly,
\[\frac{1}{B_0} \int b \cos(k_1 x) k_1 dz = \frac{\Delta B \, g_1}{B_0 \, g_0} = \varepsilon_1 \pi \frac{\Delta B}{B_0}, \]

\[\varepsilon_1 = \frac{g_1}{\pi g_0}. \]

Thus,
\[\frac{\varepsilon_1}{\varepsilon_2} = \frac{g_0 g_1}{\pi}, \]

and
\[\frac{g_0 g_1}{\pi} = \frac{4}{\pi} \ln \left(\frac{\sinh k_0 x_2/2}{\sinh k_0 x_1/2} \right) \cdot \frac{\sin(k_1 \Delta x/2)}{\sinh(\pi k_1/k_0)} \cdot \left(\frac{k_1}{k_0} \right)^2 \cdot \left(k_1 \Delta x/2 \right)^2. \]

\[\begin{align*}
&\text{Figure 1.} \\
&x_1 \quad \lambda/4 \quad x_2
\end{align*} \]

For the above figure,
\[x_1 + \frac{1}{2}(x_2 - x_1) = \frac{\lambda}{4} = \frac{x_1 + x_2}{2}, \]

\[\frac{\lambda/4}{x_1} = 3, \quad x_1 = \frac{\lambda}{12}; \]

\[x_2 = \frac{\lambda}{2} - x_1 = \frac{\lambda}{12}. \]
Further,

\[k_1 \frac{\Delta x}{2} = \frac{2\pi}{\lambda} \cdot \frac{1}{2} \cdot \frac{4\lambda}{12} = \frac{\pi}{3} \]

\[k_0 \frac{x_2}{2} = \frac{\pi}{h} \cdot \frac{5\lambda}{24} = \frac{\lambda}{h} \cdot \frac{5\pi}{24} \]

\[k_0 \frac{x_1}{2} = \frac{\pi}{h} \cdot \frac{\lambda}{24} = \frac{\lambda}{h} \cdot \frac{\pi}{24} \]

\[\frac{k_1}{k_0} = \frac{2h}{\lambda}, \quad \frac{\lambda}{h} = a. \]

Thus,

\[\frac{g_0 g_1}{\pi} = \frac{36 \cdot 4}{\pi^3} \cdot \frac{\sqrt{3}}{2} \cdot \ln \left(\frac{e^{a \pi / 12} - 1}{e^{a \pi / 12} - 1} \right) \cdot \frac{1}{a^2} \cdot \frac{1}{\sinh(2\pi/a)}, \]

where for \(\frac{2h}{\lambda} = b = \frac{2}{a'} \), and \(a = \frac{2}{b} \),

\[\frac{g_0 g_1}{\pi} = \frac{36\sqrt{3}}{\pi^3} \cdot b^2 \cdot \ln \left(\frac{e^{5\pi/6b} - 1}{e^{5\pi/6b} - 1} \right) \cdot \frac{1}{2\sinh(\pi b)}. \]
Comparison of First and Second Order Contributions of Error Fields to Phase Shift

We introduce, for $kz = \varphi$, $kdz = d\varphi$, and $\frac{\Delta B}{B_0} = D^\dagger$

$$\Delta \Phi = P \left(- \cos \varphi \int D d\varphi + \int \cos \varphi D d\varphi + \frac{1}{2} \int \left(\int D d\varphi \right)^2 d\varphi \right),$$

where

$$P = \frac{4}{1 + 2/K^2}.$$

Notice that $\Delta \Phi \approx K^2$ for $K^2 \ll 2$, and $\Delta \Phi$ is independent of K^2 for $K^2 \gg 2$.

We denote the “typical” case of B_1 as

$$B_1 = \varepsilon_1 D \frac{\lambda 2\pi}{2} = \varepsilon_1 \pi D.$$

At every error source, B_1 changes by the above “typical” value of B_1^\dagger. We assume n contributions per period. After $N = z/\lambda$ periods, the total expectation value is

$$\overline{B_1^2} = n \frac{z}{\lambda} (\varepsilon_1 \pi D)^2.$$

When

$$B_1 = \int D d\varphi,$$

we expect

$$\overline{B_1^2} = n \frac{z}{\lambda} (\varepsilon_2 \pi D)^2.$$

At the end of insertion device with N periods we expect

$$\langle B_1^2 \rangle = \varepsilon_1^2 \pi^2 D^2 n N,$$

August, 1993. Note 0139u-w.

\dagger See document 0138u-w for the origins of this equation.

\ddagger See document 0140u-w for derivations of ε_1 and ε_2.

147
\[
\langle B_2 \rangle = \frac{1}{2} \varepsilon_2^2 \pi^2 D^2 n \frac{(N \lambda)^2 2\pi}{2\lambda} \frac{2\pi}{\lambda} \\
= \frac{1}{2} \varepsilon_2^2 \pi^3 D^2 n N^2 \\
= \varepsilon_3 \sqrt{\langle B_1^2 \rangle} \quad \text{with} \quad \varepsilon_3 < 1.
\]

This means that
\[
\frac{1}{2} \varepsilon_2^2 \pi^3 D^2 n N^2 = \varepsilon_3 \varepsilon_1 \pi \sqrt{D^2} \sqrt{n} \sqrt{N},
\]

\[
\sqrt{D^2} = \frac{2\varepsilon_3 \varepsilon_1 / \varepsilon_2^2}{\pi^2 \sqrt{n} \left(\sqrt{N}\right)^3}.
\]

We make the following definitions:

\[
\varepsilon_1 = \varepsilon_2 = 1, \quad 2\varepsilon_3 = 1, \quad n = 4 \quad \text{and} \quad N = 81.
\]

Thus,

\[
\sqrt{D^2} \approx \frac{1}{20 \times 10^3} \approx 5 \times 10^5.
\]

This means that the second order contributions will dominate. Or, similarly

\[
\varepsilon_3 = \frac{\pi^2 \varepsilon_2^2}{2 \varepsilon_1} \sqrt{D^2} \sqrt{n} \left(\sqrt{N}\right)^3,
\]

and for \(\sqrt{D^2} = 10^{-3}\),

\[
\varepsilon_3 \approx 5 \times 2 \times 10^{-3} + 10 \approx 10
\]

still demonstrating that second order contributions will dominate.

The magnitude of the \(\Delta \Phi\) shift along the length of the insertion device with second order contributions is

\[
\Delta \Phi = 4 \frac{1}{2} \varepsilon_2^2 \pi^3 D^2 n N^2 \\
\approx 2 \times 30 \times 10^{-6} \times 4 \times 6.5 \times 10^3 \\
\approx 30 \times 50 \times 10^{-3} \\
\approx 1.5 \text{ radians}.
\]

Thus,

\[
\frac{\varepsilon_1}{\varepsilon_2^2} \approx 0.5 \rightarrow D
\]

for equal contributions (i.e.: \(\varepsilon_3 = 1\)), and for

\[
D \approx 5 \times 10^{-5} \rightarrow D \approx 5 \times 10^{-3} \rightarrow \alpha = 100
\]

for representation of phase shift by straight line.
Connection Between Undulator Field Errors and Optical Phase

We begin with the following definitions:

\[x'' = \frac{g}{\gamma} B \quad \text{and} \quad g = \frac{e}{m_0 c}. \]

We introduce the following references:

\[B(z) = B_0 \cos kz, \]

\[x'_0 = \frac{gB_0}{\gamma k} \sin kz = \frac{K}{\gamma} \sin kz \quad \text{with} \quad \frac{gB_0}{k} = K, \]

\[x_0 = \frac{K}{k\gamma} \cos kz, \]

\[x_W = \frac{K}{k\gamma}. \]

We now proceed with the analysis.

\[\Delta s = \int \left(\sqrt{1 + (x'_0 + \Delta x')^2} - \sqrt{1 + (x'_0)^2} \right) dz = \int \left(x'_0 \Delta x' + \frac{1}{2} \Delta (x')^2 \right) dz. \]

By integration by parts, with \(du = x'_0 dz, u = x_0, v = \Delta x', \) and \(dv = \Delta x'' dz, \)

\[\Delta s = x_0 \Delta x' - \int x_0 \Delta x'' dz + \frac{1}{2} \int \Delta (x')^2 dz, \]

with

\[\Delta x' = \frac{gB_0}{\gamma k} \int \frac{\Delta B}{B_0} k dz \quad \text{and} \quad \Delta x'' = \frac{gB_0}{\gamma} \frac{\Delta B}{B_0}, \]

where \(gB_0/\gamma k = K/\gamma, \) and thus

\[\Delta s = \frac{K^2}{\gamma^2 k} \left(-\cos kz \int \frac{\Delta B}{B_0} k dz + \int \cos(kz) \frac{\Delta B}{B_0} k dz + \frac{1}{2} \int \left(\int \frac{\Delta B}{B_0} k dz \right)^2 dz \right). \]

Furthermore,

\[\Delta t = \frac{\Delta s}{c}, \]

August, 1993. Note 0138u-w.

149
\[\Delta \varphi = \omega \Delta t = \Delta s \frac{\omega}{c} = \Delta s \cdot k_L, \]

where,

\[\lambda_L = \frac{\lambda}{2\gamma^2} \left(1 + \frac{K^2}{2}\right), \]

\[k_L = k \frac{4\gamma^2}{K^2 \left(1 + \frac{2}{K^2}\right)}, \]

and therefore,

\[\Delta \varphi = P \left(-\cos kz \int \frac{\Delta B}{B_0} kdz + \int \cos(kz) \frac{\Delta B}{B_0} kdz + \frac{1}{2} \int \left(\int \frac{\Delta B}{B_0} kdz \right)^2 kdz \right), \]

with

\[P = \frac{4}{1 + 2/K^2}. \]

Term (c) is of second order and is important only for a long insertion device. Term (a) gives harmonics and reduces line intensity for steering errors, but produces no effect if there is no steering. Term (b) produces phase shift and line broadening. Whether or not it is equal 0 depends on such elements as symmetry, but not on presence of net steering.
\(B(x) = \sum_{n=\text{odd}} B_n \cos k_n x, \)

from poles with \(\pm 1 \), and

\[
B_n = \frac{2}{\pi} \int_{-\infty}^{\infty} b(x) \cos k_n x \, dk_1 x,
\]

where \(b(x) \) is the field from one pole with excitation \(+1 \).

For \(V \) from 0 to \(V_1 \) at the edge of pole going from \(-x_1 \) to \(x_1 \),

\[
B_n = \frac{4k_1}{k_0} \frac{\sin k_n x_1}{\sinh(\pi k_n/k_0)} \frac{V_1}{h} \quad \text{with} \quad k_0 = \pi/h.
\]

For \(V \) going linearly from 0 to \(V_1 \) over thickness of CSEM = \((x_2 - x_1)/2\), we have

\[
A_0 = \int_{-\infty}^{\infty} b(x)dx = \frac{V_1 \lambda}{h} 2,
\]

\[
B_n = \frac{4k_1}{k_0} \frac{V_1 \sin(k_n(x_2 - x_1)/2)}{h} \frac{1}{(k_n(x_2 - x_1)/2)} \frac{1}{\sinh(\pi k_n/k_0)}.
\]

For \(k_1(x_2 - x_1)^2/6 \ll 1 \),

\[
B_1 = \frac{4k_1}{k_0} \frac{V_1}{h} \frac{1}{\sinh(\pi k_1/k_0)} = \frac{4V_1}{\pi} \frac{\alpha}{h} \frac{1}{\sinh \pi k_1/k_0} \quad \text{with} \quad \alpha = \pi k_1/k_0 = 2\pi h/\lambda = \pi g/\lambda.
\]

We may now conclude that

\[
\frac{A_0}{B_1} = \lambda \frac{\pi \sinh \alpha}{8} \frac{\alpha}{\alpha}.
\]
For
\[\varrho = \frac{A_0}{\int_{-\lambda/4}^{\lambda/4} B_1 \cos k_1 x \, dx} = \frac{B_1 \lambda \pi \sinh \alpha}{8 \alpha} = \frac{k_1 \lambda \pi \sinh \alpha}{16 \alpha} = \frac{\pi^2 \sinh \alpha}{8 \alpha}, \]
we have

<table>
<thead>
<tr>
<th>ϱ</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/λ</td>
<td>.35</td>
<td>.57</td>
<td>.70</td>
<td>.79</td>
<td>.94</td>
<td>1.05</td>
</tr>
</tbody>
</table>
Simple Analytical Model for Fields from One Pole of Hybrid Insertion Device

Model: midplane on $V = 0$, and pole from $-\infty$ to $+\infty$ on $V = 0$, except on $V = V_1$ for $-x_1 \leq x \leq x_1$.

The above geometry is described by the following conformal map

$$\pi \dot{z} = \frac{h}{t},$$

and the following elements

$$k_0 z = \ln t, \quad t = e^{k_0 z} \quad \text{and} \quad k_0 = \frac{\pi}{h},$$

and where x_1 is the half-width of the pole. Putting \pm current filaments at $x = \pm x_1$,

$$\pi F = V_1 \ln \frac{t - t_1}{t - t_2},$$

$$F' = \frac{V_1}{h} \left(\frac{t}{t - t_1} - \frac{t}{t - t_2} \right) \left(\frac{1}{t/t_1 - 1} - \frac{1}{t/t_2 - 1} \right).$$

where $t = e^{k_0 z}$, $t_1 = e^{k_0 (x_1 + ih)} = -e^{k_0 x_1}$. Thus,
\[
\frac{F}{V_1} = \frac{1}{e^{k_0(x+x_1)} + 1} - \frac{1}{e^{k_0(z-x_1)} + 1} \cdot \frac{e^{k_0x}}{e^{k_0x_1} - e^{-k_0x_1}}
\]
\[
= -\frac{\sinh k_0 x_1}{\cosh k_0 z + \cosh k_0 x_1} = -b(z). \quad (1)
\]

The odd harmonics of the field are described by

\[
B_N = a \int_{-\infty}^{\infty} b(x) \cos(N k_1 x) \, dx, \quad (2)
\]

where \(N = 2n + 1\), \(k_N = k_1 N = k_1(2n + 1)\), \(k_1 = 2\pi/\lambda\), and \(a\) is a constant, thus

\[
\frac{B_N}{a} = \sinh k_0 x_1 \int_{-\infty}^{\infty} \frac{\cos(k_N x)}{\cosh k_0 x + \cosh k_0 x_1} \, dx
\]
\[
= \sinh k_0 x_1 \cdot G_N, \quad (3)
\]

\[
G_N = \Re \int_{-\infty}^{\infty} \frac{e^{i k_N x}}{\cosh k_0 x + \cosh k_0 x_1} \, dx, \quad (4)
\]

That is, to evaluate this integral, one can integrate a line integral along the real axis of the complex \(z\)-plane, and close it at \(\infty\) in the upper half-plane without changing its value.

There are singularities at \(\cosh k_0 z = -\cosh k_0 x_1\) in the upper half-plane, with \(k_0 z = \pm k_0 x_1 + i\pi(2m + 1)\), for \(m = 0, 1, 2, \ldots\). We take the first singularity at \(k_0 z = +k_0 x_1 + i\pi M\) and do others later by replacing \(x_1\) by \(-x_1\). We integrate over the upper half-plane.
\[G_{N+} = \Re \int \frac{e^{ik_N z}}{\cosh k_0 z + \cosh k_0 x_1} \, dz = \Re \sum_{m=0}^{\infty} \frac{e^{ik_N (x_1 + i\pi M/k_0)}}{k_0 \sinh k_0 z_m} \cdot 2\pi i \]
\[= \frac{2\pi}{k_0} \cdot \frac{\sin k_N x_1}{\sinh k_0 x_1} \cdot \sum_{m=0}^{\infty} e^{-\pi k_N/k_0 (2m+1)} \]
\[= \frac{2\pi}{k_0} \cdot \frac{\sin k_N x_1}{\sinh k_0 x_1} \cdot \frac{e^{-\pi k_N/k_0}}{1 - e^{-2\pi k_N/k_0}} \]
\[= \frac{\pi}{k_0} \cdot \frac{\sin k_N x_1}{\sinh k_0 x_1} \cdot \frac{1}{2 \sinh(\pi k_N/k_0)} \cdot \frac{1}{\sinh(\pi k_N/k_0)}. \]

One solves for \(G_{N-} \) similarly. Thus, we may re-write (3),

\[\frac{B_N}{a} = \frac{2\pi}{k_0} \cdot \frac{\sin k_N x_1}{\sinh(\pi k_N/k_0)}, \quad (5) \]

and further,

\[\frac{B_{(2n+1)}}{B_1} = \frac{\sin(k_1(2n+1)x_1)}{\sinh((\pi k_1/k_0)(2n+1))} \cdot \frac{\sinh(\pi k_1/k_0)}{\sin(k_1 x_1)}, \quad (6) \]

with \(k_0 = \frac{\pi}{h}, \quad k_1 = \frac{2\pi}{\lambda}, \) and thus \(\frac{k_1}{k_0} = 2\frac{\pi}{\lambda}. \)

This model of \(b(z) \), and the resultant \(B_N \), assume that the potential increases like a step function at the edge of the pole. As a next approximation, to improve this model, one would assume that the potential increases linearly over the size of the CSEM and represent this by the operation

\[\frac{1}{x_2 - x_1} \int_{x_1}^{x_2} dx_1, \]

which is easily executed on both \(b(z) \) and \(B_N \). For \(b(z) \) we have

\[\int \frac{\sinh k_0 x_1}{\cosh k_0 z + \cosh k_0 x_1} \cdot \frac{dx_1}{(x_2 - x_1)} = \frac{1}{k_0(x_2 - x_1)} \ln \frac{\cosh k_0 z + \cosh k_0 x_2}{\cosh k_0 z + \cosh k_0 x_1}, \quad (7) \]

and for \(B_N \) we have
\[\int \frac{\sin(Nk_1x_1) \, dx_1}{(x_2 - x_1)} = \frac{\cos Nk_1x_1 - \cos Nk_1x_2}{Nk_1(x_2 - x_1)} \]

\[= -\sin \left((2n + 1)k_1 \frac{x_2 + x_1}{2} \right) \frac{\sin \left((2n + 1)k_1 \frac{x_2 - x_1}{2} \right)}{(2n + 1)k_1 \frac{x_2 - x_1}{2}} \quad (8) \]

where

\[-\sin \left(k_1(2n + 1) \left(\frac{x_2 + x_1}{2} \right) \right) = (-1)^{n+1}, \]

\[\frac{x_2 + x_1}{2} = \frac{\lambda}{4} \quad \text{and} \quad (2n + 1)k_1 \frac{x_2 - x_1}{2} = \frac{\pi}{2} + n\pi. \]

The argument of the log function can, and should be, operated on in the same manner, such that for

\[\cosh k_0z = C_0, \quad \cosh k_0x_1 = C_1, \quad \text{and} \quad \cosh k_0x_2 = C_2, \]

\[\frac{C_0 + C_2}{C_0 + C_1} = \frac{C_0 + a + b}{C_0 + a - b} = \frac{1 + \frac{b}{C_0 + a}}{1 - \frac{b}{C_0 + a}} \]

where

\[a = \frac{C_2 + C_1}{2}, \quad b = \frac{C_2 - C_1}{2}, \quad \text{and} \quad \ln \frac{H\varepsilon}{1 - \varepsilon} = 2 \left(\varepsilon + \frac{\varepsilon^3}{3} + 10 \right). \]
Wiggler Parameter K Definitions

For $v = c$ we have

$$m_0\gamma v^2 x'' = evB = evA',$$

$$x' = \frac{e}{\gamma m_0 v} A \quad \text{and} \quad x'_{\max} = \frac{K_1}{\gamma}.$$

Definition 1:

$$K_1 = \frac{e}{m_0 c} A_{\max} = \frac{e}{2\pi m_0 c} 2\pi A_{\max}.$$

For a pure sinusoidal field we have

$$B = B_0 \sin kz \quad \text{and} \quad A = \frac{B_0}{k} \cos kz.$$

Thus

$$A_{\max} = \frac{B_0}{k} \implies K_1 = \frac{e}{2\pi m_0 c} B_0 \lambda_u.$$

Definition 2:

The "path length" slippage in λ_u equals λ_{light}. (We shall refer to λ_{light} as λ_L for the remainder of this document.)

$$\Delta t = \frac{s}{c\beta} - \frac{\lambda_u}{c} = \frac{\lambda_L}{c} \quad \text{and thus} \quad \lambda_L = \lambda_u \left(\frac{s}{\lambda_u \beta} - 1 \right)$$

where $s = \text{path length over one period}$, and $s' = \sqrt{1 + x'^2}$.

Proceeding from above, we now have that

$$\frac{\lambda_L}{\lambda_u} = \frac{1}{\beta \lambda_u} \int_0^{\lambda_u} \left(1 + \frac{x'^2}{2} \right) dx - 1$$

$$= \frac{1}{\beta} - 1 + \frac{1}{2\lambda_u} \int_0^{\lambda_u} x'^2 dx.$$

June, 1993. Note 0135u-w.
By introducing

\[\beta^2 + \frac{1}{\gamma^2} = 1 \quad \text{and thus} \quad \beta^{-1} = \left(1 - \frac{1}{\gamma^2}\right)^{-1/2} = 1 + \frac{1}{2\gamma^2}, \]

we further simplify

\[
\frac{\lambda_L}{\lambda_u} = \frac{1}{2\gamma^2} + \frac{1}{2\lambda_u} \int_0^x t^2 dt
\]

\[
= \frac{1}{2\gamma^2} \left(1 + \left(\frac{e}{m_0c}\right)^2 \frac{\int_0^{\lambda_u} A^2 dz}{\lambda_u} \right). \]

and we now arrive at our definition

\[
K_2^2 = \left(\frac{e}{m_0c}\right)^2 \frac{\lambda_u}{\lambda_u} \int_0^x A^2 dz.
\]

For \(A = \frac{B_0}{k} \cos kz \) we have

\[
K_2^2 = \left(\frac{e}{m_0c}\right)^2 \frac{2 B_0^2 \lambda_u}{k^2} = \left(\frac{e}{2\pi m_0c} B_0 \lambda_u \right)^2
\]

where \((e/2\pi m_0c) = .934 \cdot 10^2 \) in SI units.

We define \((2\pi m_0c/e) = A_e \) and thus \(1/A_e = .934 \cdot 10^2 \) MKS.

We now reformulate our Definitions 1 and 2 such that

\[
K_1 = \frac{2\pi}{A_e A_{\text{max}}}
\]

and

\[
K_2 = \frac{2\pi}{A_e} \sqrt{\frac{2 \int_0^{\lambda_u/4} A^2 dz}{\lambda_u/4}}.
\]

Definition 3:

\[
K_3 = \frac{B_0 \lambda_u}{A_e} = \frac{V_0}{A_e} \frac{\lambda_u/4}{D_4}.
\]

Where \(D_4 \) refers to the NPOLE1.BAS program variable which describes the distance factor in the transformation from scalar potential to the field.
NPOLE

A recreation, with "Korea modification," of a program (for HP71B) to design and analyze $\lambda/4$ of hybrid insertion device.

We will begin by establishing some background information for the conformal map and the limits for t_1 and t_2.

![Diagram](image)

Figure 1.

For the map of Figure 1,

$$
\pi \dot{z} = -i \frac{1 - t_1}{\sqrt{t(t - t_1)(t - 1)}}
$$

$$
a = \frac{1}{\sqrt{t_1}} \quad \text{and thus} \quad t_1 = \frac{1}{a^2}.
$$

159
We proved in Korea in 1987 that

\[0 < t_1 < 1/a^2 < t_2 < 1 \quad \text{and} \quad \frac{1}{a^2} = \left(\frac{W_1}{W_0} \right)^2 \]

for the geometry of Figure 2.

Therefore, in program NPOLE1.BAS (included at the end of this document),

\[t_1 = \frac{1}{a^2} \text{RANG(C1)}, \quad t_2 = \frac{1}{a^2} + \left(1 - \frac{1}{a^2} \right) \text{RANG(C2)}, \]

with \(0 < \text{RANG}(x) < 1 \) as used in the first version, and \(\text{RANG}(x) = 1/(1 + e^x) \) as specifically used now.

The map for geometry with corners at \(t_1, t_2 \) is described by

\[
\dot{z} = -iW_1 \frac{Q_1}{\sqrt{t_1} \sqrt{t - t_1} \sqrt{t - t_2} (t-1)} \quad \text{and} \quad Q_1 = \frac{\sqrt{1-t_1} \sqrt{1-t_2}}{\pi}.
\]
We determine \(t_1 \) and \(t_2 \) from

\[
\frac{h_0}{W_1} = Q_1 \int_0^{t_1} \frac{dt}{\sqrt{t - t_1} \sqrt{t - t_2} - t(1 - t)}
\]

\[
\frac{W_0}{W_1} = Q_1 \int_{t_1}^{t_2} \frac{dt}{\sqrt{t - t_1} \sqrt{t - t_2} - t(1 - t)}
\]

To evaluate the integrals, we use

\[
\int_{t_1}^{t_2} \frac{f(t)dt}{\sqrt{t - t_1} \sqrt{t - t_2} - t} = 3 \int_{-1}^{1} \frac{f(t)}{\sqrt{4 - x^2}} dx,
\]

\[
t = \frac{2(t_2 + t_1) + (t_2 - t_1) x(3 - x^2)}{4}
\]

We use Gaussian integration with segmented intervals for testing and accuracy purposes. We use a "2D" secant equation solver to determine \(t_1 \) and \(t_2 \) from the above integrals.

We describe the complex potentials for fluxes, fields:

![Figure 3](image)

\[
\dot{F} = -\frac{Q_2 V_0}{\sqrt{t} \sqrt{t - t_1} (t - 1)} \quad \text{and} \quad Q_2 = \frac{\sqrt{1 - t_1}}{\pi}.
\]

161
We therefore have

\[F = -Q_2 V_0 \int \frac{dt}{t^2 \sqrt{1 - \frac{t_1}{t} (1 - 1/t)}} = -Q_2 \int \frac{2du}{t_1 (1 - (1 - u^2)/t_1)} V_0 \]

where

\[\sqrt{1 - \frac{t_1}{t}} = u, \quad \frac{t_1}{t} = 1 - u^2, \quad \text{and thus} \quad \frac{dt}{t^2} = \frac{2udu}{t_1} \]

\[1 - t_1 = t_3^2. \]

Thus,

\[\frac{1}{V_0} F = -Q_2 \int \frac{2du}{u^2 - t_3^2} \]

\[= -Q_2 \int \left(\frac{1}{u - t_3} - \frac{1}{u + t_3} \right) \frac{du}{t_3} \]

\[= \frac{Q_2}{t_3} \ln \frac{u + t_3}{u - t_3} \]

\[= \frac{Q_2}{t_3} \ln \frac{\sqrt{1 - t_1/t + t_3}}{\sqrt{1 - t_1/t - t_3}}. \]

Flux into pole / \(V_0 \):

\[E_p = \frac{Q_2}{t_3} \ln \left| \frac{\sqrt{1 + t_1/\tau + t_3}}{\sqrt{1 + t_1/\tau - t_3}} \right|_0^\infty \]

\[= \frac{Q_2}{t_3} \ln \frac{1 + t_3}{1 - t_3}. \]

Flux into midplane (for \(K \)):

\[E_M = (F(t_2) - F(t_1))/V_0 \]

\[= \frac{Q_2}{t_3} \ln \frac{t_3 + \sqrt{1 - t_1/t_2}}{t_3 - \sqrt{1 - t_1/t_2}}, \]

with \(K_1 = 2\pi V_0 E_M (1/A_e) \) where \((1/A_e) = 0.934 \cdot 10^2 \) MKS.

We calculate the excess flux coefficient for the side of the pole \((V_0 = 1)\):

\[\left(A(t) - A(\infty) = \frac{y(t) - y(\infty)}{W_1} + E_s \right)_{t-1} \]
\[E_2 = \int_{1}^{\infty} \left(-\hat{F} + \frac{z}{i} \right) dt = \int_{1}^{\infty} \frac{1}{\sqrt{t} \sqrt{t-t_1(t-1)}} \left(Q_2 - \frac{Q_1}{G_1} \right) dt \]

where

\[G_1 = Q_2 \left(1 - \frac{\sqrt{1-t_2}}{\sqrt{t-t_2}} \right) \]

\[= \frac{Q_2}{\sqrt{t-t_2}} (\sqrt{t-t_2} - \sqrt{1-t_2}) \]

\[= \frac{Q_2(t-1)}{\sqrt{t-t_2}(\sqrt{t-t_2} + \sqrt{1-t_2})} \]

and thus

\[E_2 = Q_2 \int_{1}^{\infty} \frac{dt}{\sqrt{t} \sqrt{t-t_1(\sqrt{t-t_2} + \sqrt{1-t_2})}} \]

\[= Q_2 \int_{0}^{1} \frac{dt}{\sqrt{1-t_1t} \sqrt{1-t_2t} (\sqrt{t-t_2t} + \sqrt{1-t_2t})} \]

The field \(B_0 \) at \(t = t_1 \) is \((\hat{F}/z) \). With \(V_0 \) on pole,

\[B_0 = \frac{V_0}{W_1} \frac{Q_2}{Q_1} \frac{\sqrt{t_2-t_1}}{\sqrt{1-t_2}} = \frac{V_0}{W_1} \frac{\sqrt{t_2-t_1}}{\sqrt{1-t_2}} = \frac{V_0}{D_4} \]

where \(D_4 \) is an old notation and

\[D_4 = W_1 \frac{\sqrt{1-t_2}}{\sqrt{t_2-t_1}} \]

For the second definition of \(K \),

\[K_2 = 2\pi \frac{1}{A_c} \sqrt{\int_{\lambda_u/4}^{\lambda_e/4} A^2 dz} \]

We need \(\int F^2 dz \), thus,

\[\int A^2 dz = \int_{t_1}^{t_2} F^2 \hat{z} dt = G_2 \]

Therefore, we have that

\[G_2 = \frac{Q_1 Q_2^2}{t_3^2} V_0^2 W_1 \int_{t_1}^{t_2} \left(\ln \frac{t_3 + \sqrt{1-t_1/t}}{t_3 - \sqrt{1-t_1/t}} \right)^2 \frac{dt}{\sqrt{t} \sqrt{t-t_1 \sqrt{t_2-t}(1-t)}} \]

163
\[\frac{G_2}{\lambda_u/4} = \frac{G_2}{W_0} = V_0^2 \frac{W_1 Q_1 Q_2^2 J}{t_3^2} \]

where

\[J = \int_{t_1}^{t_2} \left(\ln \frac{t_3 + \sqrt{1 - t_1/t}}{t_3 - \sqrt{1 - t_1/t}} \right)^2 \frac{dt}{\sqrt{t - t_1} \sqrt{t - t_2} - t(1 - t)} \]

and thus we may summarize

\[K_2 = 2\pi V_0 \frac{1}{A_e} \sqrt{\frac{2 W_1 Q_2^2 Q_1}{t_3^2 W_0}} J . \]
Program NPOLE1.BAS

PRINT:PRINT DATES$;" ;TIME$;" . NPOLE1" .

GOTO BYPASS

PRINT "Determines parameter values and evaluates flux into midplane (Em) and"
PRINT "pole (Ep) of ID, and excess flux coefficient for side of pole (Es)."
PRINT "K1,K2,K3 are obtained by multiplying the printed values by the scalar"
PRINT "potential of pole in Tcm. K1 is for maximum deflection angle, K2 for"
PRINT "trajectory length effect, and K3 for B0*period. D4=V0/B0 for V0=1."
REM--List of P1() elements:0>W01~(-2),1>T1,2>T2,3>T3,5>Q1,6>Q2,9>Function ID
BYPASS:

DEFINT J:DEFDBL A-Z
P1=4*ATN(1):A1$="##.###" :TAP=0
A2$=" Em Ep Es K1 K2 K3 D4"
A3$=" H0=##.## W0=##.## W1=##.##"
DIM P1(0:9),Gx(1:4),GW(1:4)
SHARE P1,Gx(),GW(),P1(),A1$
REM--GX,GW=(normalized) abscissas; P1=parameters for Gauss integrator
DATA .283436425,.362683783,.255352099,.313706649
DATA .796666174,.222831034,.960289856,.101228536
FOR J1=1 TO 4:READ GX(J1),GW(J1):NEXT J1:REM--Abscissas, weights for Gauss
REM---

'C10=1:C20=1
PRINT:PRINT TAB(TAP);:PRINT A2$

DO
AGAIN:
INPUT:"H0,W0,>W1=",H00,W00,W10:REM--INPUT unnormalized 1/2gap, period/4,
IF H00>0 THEN H0=H00:REM--pole to symmetry line distance, stored temporarily
IF W00>0 THEN W0=W00:REM--in H00,W00,W10, then in H0,W0,W1=not-normalized.
IF W10>0 THEN W1=W10:REM--H01,W01=normalized with W1, used in program.
IF H0=0 AND W0=0 AND W1=0 THEN END
IF W0<W1 THEN PRINT TAB(20);:PRINT "W0 must be larger than W1!":GOTO AGAIN
PRINT TAB(24):PRINT USING A3$:H0;W0;W1
H01=H0/W1;W01=W0/W1;P1(0)=1/(W01+W01):DC1=.1:DC2=.1
GOSUB SOLVIT
PRINT TAB(TAP);:PRINT USING A1$:Em;EP;ES;K1;K2;K3;D4
LOOP

SOLVIT:
C11=C10+DC1:C21=C20+C12:C12=C10:C22=C20+DC2
CALL EVAL(C10,C20,S10,S20):S10=S10-H01:S20=S20-W01:S00=ABS(S10)+ABS(S20)
CALL EVAL(C11,C21,S11,S21):S11=S11-H01:S21=S21-W01:S01=ABS(S11)+ABS(S21)
CALL EVAL(C12,C22,S12,S22):S12=S12-H01:S22=S22-W01:S02=ABS(S12)+ABS(S22)
DO
REM--REARR puts "worst" set into last column, to be discarded later
GOSUB REARR

N1=1/(S11-S10)*(S22-S20)-(S12-S10)*(S21-S20): REM--Start of 2D secant
D1=N1*(S20+S12-S10*S22):D2=N1*(S10+S21-S20*S11):REM--equation solver
DC1=(C11-C10)*D1+(C12-C10)*D2:DC2=(C21-C20)*D1+(C22-C20)*D2
S02=S01:S01=S00:C10=C1+DC1:C20=C2+DC2:REM--Recommended new parameters
CALL EVAL(C10,C20,S10,S20):S10=S10-H01:S20=S20-W01:S00=ABS(S10)+ABS(S20)
LOOP UNTIL S00<.001
P1(9)=3:CALL SGAUSSINT8(0,1,G2,-.001):Q2=P1(6):T1=P1(1):T2=P1(2):T3=P1(3)
Q1=P1(5):ES=Q2*G2:EP=Q2/T3*LOG((1+T3)/(1-T3)):D4=W1*SQR((1-T2)/(T2-T1))
EM=Q2/T3*LOG(2/(1-SQR(1-T1/T2)/T3)-1):K1=2*PI*EM*.934:K3=4*W0/D4*.934
P1(9)=4:CALL SGAUSSINT8(-1,1,K2,-.001):K2=2*PI*Q2/P1(3)*SQR(2*Q1*3*K2/W01)*.934
RETURN

REARR:
IF S00>S01 THEN GOSUB SW01
IF S01>S02 THEN GOSUB SW12
RETURN

SW01:
SWAP S00,S01:SWAP S10,S11:SWAP S20,S21:SWAP C10,C11:SWAP C20,C21:RETURN

SW12:
SWAP S01,S02:SWAP S11,S12:SWAP S21,S22:SWAP C11,C12:SWAP C21,C22:RETURN

SUB EVAL(C1,C2,S1,S2):REM--Calculates H01,W01 for set of parameters C1,C2>T1,T2
T1=P1(0)*RANG(C1):T2=P1(0)+(1-P1(0))*RANG(C2)
T3=SQR(1-T1):P1(1)=T1:T2=P1(2):T3=P1(3)=T3
Q2=T3/P1:Q1=Q2*SQR(1-T2):P1(5)=Q1:Q1(6)=Q2
P1(9)=1:CALL SGAUSSINT8(-1,1,G2,-.001):S1=3*Q1*G2
P1(9)=2:CALL SGAUSSINT8(-1,1,G2,-.001):S2=3*Q1*G2
END SUB

SUB SGAUSSINT8(X0,X3,G2,DG):REM--Gauss integrator, with interval segmentation
IF DG>0 THEN E1=DG:E2=0 ELSE E1=0:E2=-DG:REM--For DG/>0,DG=absol./rel. error
CALL GAUSSINT8(X0,X3,G2):J1=1:J4=16:REM--J4=largest # subdiv.
DO
G1=G2:G2=0:J1=2+J1:DX=(X3-X0)/J1:REM--G1/G2=last/next computed integral
IF J1>J4 THEN PRINT "Not converged":END
FOR J2=0 TO J1-1
CALL GAUSSINT8(X0+J2*DX,X0+(J2+1)*DX,G3)
G2=G2+G3:REM---------------------------------------G2=integral
NEXT J2
LOOP UNTIL ABS(G2-G1)<E1+E2*ABS(G2) OR J1>J4
END SUB
SUB GAUSSINT8(X1,X2,G2):REM--------------Integrator; G2=value of integral
X0=.5*(X2+X1):X3=X0-X1:G2=0
ON P1(9) GOTO INTEGRAND1,INTEGRAND2,INTEGRAND3,INTEGRAND4

INTEGRAND1:
FOR J1=1 TO 4
 DX=GX(J1)*X3:G2=G2+GW(J1)*(GCT1(X0+DX)+GCT1(X0-DX))
NEXT J1:G2=G2*X3
EXIT SUB

INTEGRAND2:
FOR J1=1 TO 4
 DX=GX(J1)*X3:G2=G2+GW(J1)*(GCT2(X0+DX)+GCT2(X0-DX))
NEXT J1:G2=G2*X3
EXIT SUB

INTEGRAND3:
FOR J1=1 TO 4
 DX=GX(J1)*X3:G2=G2+GW(J1)*(GCT3(X0+DX)+GCT3(X0-DX))
NEXT J1:G2=G2*X3
EXIT SUB

INTEGRAND4:
FOR J1=1 TO 4
 DX=GX(J1)*X3:G2=G2+GW(J1)*(GCT4(X0+DX)+GCT4(X0-DX))
NEXT J1:G2=G2*X3
END SUB

FUNCTION GCT1(X):REM-------------First of functions to be integrated.
TT=P1(1)*(2+X*(3-X*X))/4:GCT1=1/SQR((P1(2)-TT)*(4-X*X))/(1-TT)
END FUNCTION

FUNCTION GCT2(X)
TT=((P1(2)+P1(1))*2+(P1(2)-P1(1))*X*(3-X*X))/4
GCT2=1/SQR(TT*(4-X*X))/(1-TT)
END FUNCTION

FUNCTION GCT3(X)
S1=SQR(1-P1(2)*X):GCT3=1/SQR(1-P1(1)*X)/(S1+SQR(X*(1-P1(2))))
END FUNCTION

FUNCTION GCT4(X)
TT=((P1(2)+P1(1))*2+(P1(2)-P1(1))*X*(3-X*X))/4:T4=SQR(1-P1(1)/TT)/P1(3)
GCT4=(LOG((1+T4)/(1-T4))-2/(1-TT)/SQR(TT*(4-X*X))
END FUNCTION
FUNCTION RANG(X):REM-----------------------------0<RANG(X)<1
RANG =1/(1+EXP(X))
END FUNCTION

DEF FHPOLE(X)=((X+1)*LOG(X+1)-(X-1)*LOG(X-1))/PI

Program Results

06-26-1993 10:14:02 NPOLE1
Determines parameter values and evaluates flux into midplane (Em) and
pole (Ep) of ID, and excess flux coefficient for side of pole (Es).
K1,K2,K3 are obtained by multiplying the printed values by the scalar
potential of pole in Tcm. K1 is for maximum deflection angle, K2 for
trajectory length effect, and K3 for B0*period. D4=V0/B0 for V0=1.

<table>
<thead>
<tr>
<th>Em</th>
<th>Ep</th>
<th>Es</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.373E+00</td>
<td>1.515E+00</td>
<td>2.532E-01</td>
<td>8.055E+00</td>
<td>7.890E+00</td>
<td>7.310E+00</td>
<td>5.111E-01</td>
</tr>
</tbody>
</table>
Error of Flux Calculation for Finite Pole Width
with Excess Flux Coefficient

We have

\[h_0 = \int_0^\infty \frac{\sqrt{1 + t^2}}{\sqrt{a^2 + t^2}} \, dt \quad \text{and} \quad h_1 = \int_1^\infty \frac{\sqrt{1 - t^2}}{\sqrt{t^2 - a^2}} \, dt. \]

We introduce

\[\sqrt{a^2 + t^2} = \frac{1}{u}, \quad t = \sqrt{\frac{1}{u^2} - a^2} = \frac{\sqrt{1 - a^2 u^2}}{u} \]

\[dt = -\frac{a^2 u^2}{\sqrt{1 - a^2 u^2}} + \frac{1}{u^2} \, du = -\frac{1}{u^2 \sqrt{1 - a^2 u^2}} \, du \]

\[1 + t^2 = 1 - a^2 + \frac{1}{u^2} = b^2 + \frac{1}{u^2}, \quad b^2 = 1 - a^2 \]

we therefore have

\[h_0 = -\frac{1}{a} \int_0^{1/a} \frac{\sqrt{1 + b^2 u^2}}{\sqrt{1 - a^2 u^2}} \, du. \]

And given $au = \sin \varphi$, and $du = \frac{\cos \varphi \, d\varphi}{a}$,

$$h_0 = -\frac{1}{a} \int_0^{\pi/2} \sqrt{1 + \frac{b^2}{a^2} \sin^2 \varphi} \, d\varphi$$

$$= -\frac{1}{a} \int_0^{\pi/2} \sqrt{1 + \frac{b^2}{a^2} - \frac{b^2}{a^2} \cos^2 \varphi} \, d\varphi$$

$$= -\frac{1}{a^2} \int_0^{\pi/2} \sqrt{1 - b^2 \cos^2 \varphi} \, d\varphi$$

$$= -\frac{1}{a^2} E(b^2).$$

For $t = \frac{1}{u}$, $dt = -\frac{du}{u^2}$, and $u = \sin \alpha$

$$h_1 = -\int_0^1 \frac{\sqrt{1/u^2 - 1}}{\sqrt{1/u^2 - a^2}} \frac{du}{u^2}$$

$$= -\int_0^1 \frac{\sqrt{1 - u^2}}{\sqrt{1 - a^2 u^2}} \frac{du}{u^2}$$

$$= -\int_0^{\pi/2} \frac{\cos^2 \alpha \, d\alpha}{\sqrt{1 - a^2 \sin^2 \alpha}}$$

From Jahnke and Emde1:

$$h_1 = -\frac{K(a^2) - E(a^2)}{a^2}$$

and therefore

$$\frac{h_1}{h_0} = \frac{K(a^2) - E(a^2)}{E(1 - a^2)}.$$

1 Table of Functions with Formulae and Curves, Dover Publications, 1945: p. 56.
\[\pi F = \frac{2a}{t^2 - a^2} = \frac{1}{t + a} - \frac{1}{t - a} \]

\[\pi F = \ln \frac{t + a}{t - a} = \ln \frac{1 + a/t}{1 - a/t} \]

The flux into the poleface is

\[A(1) - A(\infty) = A_{\text{ideal}} = \frac{1}{\pi} \ln \frac{1 + a}{1 - a}. \]

Comparing this flux to the homogeneous flux and the excess flux for the end of a semi-infinite pole with half-gap = \(h_0 \), we have

\[A_{\text{approx}} = \frac{h_1}{h_0} + \frac{1}{\pi}(2 - \ln 4) = \frac{K(a^2) - E(a^2)}{E(1 - a^2)} + .195. \]

Therefore we have

\[G\left(\frac{h_1}{h_0} \right) = \frac{A_{\text{approx}} - A_{\text{ideal}}}{A_{\text{ideal}}} = \frac{A_{\text{approx}}}{A_{\text{ideal}}} - 1 = \frac{\frac{h_1}{h_0} + \frac{1}{\pi}(2 - \ln 4)}{\frac{1}{\pi} \ln \frac{1 + a}{1 - a}} - 1. \]
Program EXCFLTST.BAS

CLS
DEFDBL A-Z
PRINT DATES;" ;TIME$;" EXCFLTST"
REM--Error of flux calculation for finite width pole with excess flux
REM--coefficient. INPUT parameter = 1/2-width of pole / 1/2-gap.
P1=4*ATN(1):A1$="dA==##.###---- dx/H1==##.###----"
E1=(2-LOG(4))/PI:X2=1:DY=1E-6
DIM P1(0:2)
DO
INPUT:"H1/H0=":H0
X1=.9*X2:P1(0)=H0:REM--G1=2/(1+EXP(PI*H0+2)):E1=2/PI+(1-G1-LOG(2-G1))
CALL SECANTS(X1,X2,DY,Y2,P1())
A1=1/SQR(1+EXP(X2)):A0=LOG((1+A1)/(1-A1))/PI:AE=H0+E1
PRINT TAB(15);PRINT USING A1$;AE-A0;AE/A0-1;(AE-A0)/H0
LOOP

SUB SECANTS(X1,X2,DY,Y2,P1())
CALL FCTY(X1,Y1,P1()):CALL FCTY(X2,Y2,P1())
IF ABS(Y1)<ABS(Y2) THEN SWAP Y1,Y2:SWAP X1,X2
J1%=0
DO
DX=Y2*(X1-X2)/(Y2-Y1)
X1=X2:Y1=Y2:X2=X1+DX:J1%=J1%+1
CALL FCTY(X2,Y2,P1())
LOOP UNTIL ABS(Y2)<DY OR J1%=15
IF J1%=15 THEN PRINT "NOT CONVERGED"
END SUB

SUB FCTY(X1,Y1,P1())
A2=1/(1+EXP(X1))
Y1=(ELLK(A2)-ELLE(A2))/ELLE(1-A2)-P1(0)
END SUB

FUNCTION ELLK(X1)
X=1-X1:S1=.01451196212*X+.03742563713:S1=S1*X+.03590092383
S1=S1*X+.09666344259:S1=S1*X+1.88629436112:S2=.00441787012*X+.03328355346
S2=S2*X+.06880248576:S2=S2*X+.1249859597:S2=S2*X+.5
ELLK=S1-S2*LOG(X)
END FUNCTION

172
FUNCTION ELLE(X1)
X=1-X1:S1=.01736506451*X+.04757383546:S1=S1*X+.0626060122
S1=S1*X+.44325141463:S2=X*.00526449639+.04069697526
S2=S2*X+.09200180037:S2=S2*X+.2499836831
ELLE=X*S1+1-X*S2*LOG(X)
END FUNCTION

Program Results

06-16-1993 09:09:24 EXCFLTST
H1/H2=.1 dA= 4.832E-02 dA/A= 1.956E-01 dX/H1= 4.832E-01
H1/H2=.2 dA= 2.240E-02 dA/A= 6.022E-02 dX/H1= 1.123E-01
H1/H2=.3 dA= 1.129E-02 dA/A= 2.331E-02 dX/H1= 3.762E-02
H1/H2=.4 dA= 5.948E-03 dA/A= 9.920E-03 dX/H1= 1.462E-02
H1/H2=.5 dA= 3.074E-03 dA/A= 4.441E-03 dX/H1= 6.149E-03
H1/H2=.6 dA= 1.627E-03 dA/A= 2.050E-03 dX/H1= 2.712E-03
H1/H2=.7 dA= 8.645E-04 dA/A= 9.665E-04 dX/H1= 1.235E-03
H1/H2=.8 dA= 4.602E-04 dA/A= 4.626E-04 dX/H1= 5.752E-04
H1/H2=.9 dA= 2.452E-04 dA/A= 2.239E-04 dX/H1= 2.725E-04
H1/H2=1 dA= 1.307E-04 dA/A= 1.094E-04 dX/H1= 1.307E-04
H1/H2=2 dA= 3.008E-07 dA/A= 1.370E-07 dX/H1= 1.504E-07
Excess Flux Into Pole and Flux Into Side of Gm40

The conformal map is described by

$$\pi z = \frac{\sqrt{i}(a - 1)^2}{(t - 1)(t - a)^2}.$$

To determine the value a that produces the desired D, we use $t = a + \tau$, $|\tau| \ll a$. Expanding in τ gives

$$\frac{dz}{d\tau} = \frac{(a - 1)^2 \sqrt{a} \left(1 + \frac{\tau}{2a}\right)}{(a - 1) \left(1 + \frac{\tau}{a - 1}\right)} \cdot \frac{1}{\tau^2}.$$

Expanding more, and then integrating over the half-circle around $t = a$, we get

$$D = -(a - 1)\sqrt{a} \left(\frac{1}{2a} - \frac{1}{a - 1}\right)$$

$$= \sqrt{a} \cdot \frac{a + 1}{2a}$$

$$= \frac{1}{2} \left(\sqrt{a} + \frac{1}{\sqrt{a}}\right).$$

By substitution and integration, we have

$$\frac{\pi z}{(a - 1)^2} = \frac{\partial}{\partial a} \int \frac{\sqrt{i} dt}{(t - 1)(t - a)} = \frac{\partial}{\partial a} J,$$

April, 1993. Note 0131u-w.

175
where, for $t = W^2$ and $dt = 2W dW$,

\begin{align*}
J &= \int \frac{2t dW}{(t-1)(t-a)} \\
&= \int \frac{2}{a-1} \left(\frac{a}{t-a} - \frac{1}{t-1} \right) dW \\
&= \frac{1}{a-1} \int \left(\sqrt{a} \left(\frac{1}{W-\sqrt{a}} - \frac{1}{W+\sqrt{a}} \right) - \left(\frac{1}{W-1} - \frac{1}{W+1} \right) \right) dW \\
&= \frac{1}{a-1} \left(\sqrt{a} \ln \frac{\sqrt{a}-W}{\sqrt{a}+W} + \ln \frac{1+W}{1-W} \right).
\end{align*}

Further, we have that

\begin{align*}
\sqrt{a} \frac{\partial}{\partial a} \ln \frac{\sqrt{a}-W}{\sqrt{a}+W} &= \frac{1}{2} \left(\frac{1}{\sqrt{a}-W} - \frac{1}{\sqrt{a}+W} \right) = \frac{W}{a-t}, \\
\left(\frac{1}{\sqrt{a}-1/\sqrt{a}} \right)' &= -\frac{1}{2a} \cdot \frac{\sqrt{a}+1/\sqrt{a}}{(\sqrt{a}-1/\sqrt{a})^2} = -\frac{D}{(a-1)^2}, \\
\left(\frac{1}{a-1} \right)' &= -\frac{1}{(a-1)^2}.
\end{align*}

Thus,

\[J' = -\frac{1}{(a-1)^2} \left(\ln \frac{1+W}{1-W} + D \ln \frac{\sqrt{a}-W}{\sqrt{a}+W} \right) + \left(\frac{1}{a-1} \cdot \frac{W}{a-t} \right), \]

and therefore,

\[\pi z = (a-1) \frac{W}{a-t} + D \ln \frac{\sqrt{a}+W}{\sqrt{a}-W} - \ln \frac{1+W}{1-W}. \]

Further, for

\[\pi \hat{F} = -\frac{a-1}{(t-1)(t-a)} = \frac{1}{t-1} - \frac{1}{t-a}, \]

\[\pi F = \ln \frac{1-t}{1-t/a}. \]

The flux into the side of the pole, for $-\infty \leq t \leq 0$, is

\[A_S = \frac{1}{\pi} \ln(a). \]

176
We describe the excess flux into the poleface by

$$\Delta A_P = F(0) - F(1 - \varepsilon) - (z(0) - z(1 - \varepsilon)) \quad \text{follows} \quad \varepsilon \to 0,$$

$$\pi \Delta A_P = \ln \frac{1 - 1/a}{\varepsilon} + \left(1 + D \ln \frac{\sqrt{a} + 1}{\sqrt{a} - 1} - \ln \frac{2}{\varepsilon/2}\right),$$

$$\frac{a - 1 \varepsilon}{\varepsilon a} - \frac{a - 1}{4a},$$

$$\Delta A_P = \frac{1}{\pi} \left(1 + \ln \frac{a - 1}{4a} + D \ln \frac{\sqrt{a} + 1}{\sqrt{a} - 1}\right).$$

The definition of ΔA_P means that the flux into the pole surface is the same as the uniform flux into a pole whose width is increased, on both sides, by the product of the half-gap and the expression for ΔA_P. The definition of A_S means that the total flux into each side of the pole equals the product of the scalar potential of the pole and the expression for A_S.

From our expression for D, and $a - 2D\sqrt{a} + 1 = 0$, we have

$$\sqrt{a} = D + \sqrt{D^2 - 1}.$$

We may now eliminate a from A_S and ΔA_P. Thus,

$$A_S = 2 \frac{\ln(D + \sqrt{D^2 - 1})}{\pi},$$

and further,

$$1/\sqrt{a} = D - \sqrt{D^2 - 1},$$

$$\frac{\sqrt{a} + 1}{\sqrt{a} - 1} = \frac{D + 1 + \sqrt{D^2 - 1}}{D - 1 + \sqrt{D^2 - 1}} = \frac{\sqrt{D + 1} + \sqrt{D - 1}}{\sqrt{D - 1} + \sqrt{D + 1}} = \frac{D + 1}{D - 1},$$

$$\frac{a - 1}{4a} = \frac{\sqrt{a} - \sqrt{1/a}}{4\sqrt{a}} = \frac{\sqrt{D^2 - 1}}{2(D + \sqrt{D^2 - 1})} = \frac{1}{2(1 + 1/\sqrt{1 - 1/D^2})},$$

$$\Delta A_P = \frac{1}{\pi} \left(1 + \frac{D}{2} \ln \frac{D + 1}{D - 1} - \ln \left(2 \left(1 + \frac{D}{\sqrt{D^2 - 1}}\right)\right)\right).$$
Flux Transport Along Axial Direction of Electro-Magnetic Wiggler

\[
\begin{array}{c}
V \\
\rightarrow \Phi \\
\downarrow \\
0 \\
\end{array} \quad \text{flux conducting "pipe"}
\]

midplane

Figure 1.

Status characterized by status vector \(\mathbf{v} = \begin{pmatrix} V \\ \Phi \end{pmatrix} \), where \(V \) is the scalar potential with respect to the midplane, and \(\Phi \) is the flux transported to the right. Going "downstream", \(V \) and \(\Phi \) change because of the \(\int H ds \) "loss" in iron (and due to small gaps), and because of flux going to the midplane. Over a short distance,

\[
\frac{d\Phi}{dx} = -V \cdot \varepsilon ,
\]

with \(\varepsilon \) to 0th approximation (detailed later in this note) is given by

\[
\varepsilon = \frac{W}{\kappa},
\]

with \(\kappa \) having the value of the half-gap, and \(W \) being the width over which the flux "escapes" to the midplane.

\[
\frac{dV}{dx} = -\Phi \cdot k_2 ,
\]
with \(k_2 \) in 0th approximation (also detailed later) given by

\[
k_2 = \frac{1}{a \mu} = \gamma/a,
\]

where \(a \) is the cross-section area of the flux "duct", and \(\mu \) is the permeability. The voltage drop due to small gaps perpendicular to the flux flow will be added later. Within the section with constants \(k_2 \) and \(\varepsilon \), we get

\[
V'' = -k_2 \Phi' = V k^2 \quad \text{with} \quad k^2 = \varepsilon k_2.
\]

The solution within the uniform section of length \(x \) is

\[
V = \alpha C + \beta S \quad \text{with} \quad C = \cosh kx \quad \text{and} \quad S = \sinh kx,
\]

\[
\Phi = -V'/k_2 = -(\alpha S + \beta C)k/k_2,
\]

\[
v(x) = \begin{pmatrix} C \\ -Sk/k_2 \\ \Phi \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \quad \text{with} \quad \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -k_2/k \end{pmatrix} \begin{pmatrix} 0 \\ \beta \end{pmatrix},
\]

\[
v(x) = M \cdot v(0), \quad v = \begin{pmatrix} V \\ \Phi \end{pmatrix} \quad \text{and} \quad M = \begin{pmatrix} C & -Sk/k_2 \\ -Sk/k_2 & C \end{pmatrix}.
\]

By reversing the direction arrow of \(\Phi \), i.e., by re-defining the sign of \(\Phi \), the off-diagonal minus signs disappear. The sequence of sections with different properties are taken into account by multiplying their matrices. \(v \) remains unchanged when crossing the interface from one section to the next unless there is a (steering) coil, or a local field clamp, thus introducing an additive \(\Delta v \) when going through that interface.

It is clear that \(1/k \) is the important scaling distance that describes how transported flux decays.
Structure of Solution to Simple Problem.

There are field clamps at each end, i.e. at point 0 and point 5. There are $\pm \Delta V$ coils at the interfaces between points 1 and 2, and between points 3 and 4. The status vectors $v_0 = \begin{pmatrix} 0 \\ \Phi_0 \end{pmatrix}$ and $v_5 = \begin{pmatrix} 0 \\ \Phi_5 \end{pmatrix}$ describe that the points 0 and 5 are located in the midplane, and that they contain the to-be-determined values Φ_0 and Φ_5 which represent the fluxes going to the midplane through the field clamps. Of similar interest are the Φ-components of v_2 and v_4.

Given $\Delta v_0 = \begin{pmatrix} \Delta v_0 \\ 0 \end{pmatrix}$, we describe the coil(s) by

$$v_2 = M_{01} v_0 + \Delta v_0 .$$ \hspace{1cm} (7.1)$$

$$v_4 = M_{23} v_2 - \Delta v_0 = M_{23} M_{01} v_0 + (M_{23} - I) \Delta v_0 ,$$ \hspace{1cm} (7.2)$$

where I is the unit matrix.

$$v_5 = M_{45} v_4 = \frac{M_{05}}{a_{ik}} v_0 + \frac{M_{45} (M_{23} - I)}{b_{ik}} \Delta v_0 ,$$ \hspace{1cm} (7.3)$$
where a_{ik} and b_{ik} are elements of these matrices, and thus

$$v_5 = \Phi_0 \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} \\ b_{21} \end{pmatrix} \Delta V_0 = \begin{pmatrix} 0 \\ \Phi_5 \end{pmatrix}. $$

$$\Phi_0 = -\Delta V_0 b_{11}/a_{12}. \tag{7.4}$$

$$\Phi_5 = \Phi_0 a_{22} + \Delta V_0 b_{21} = \Delta V_0 (b_{21} - a_{22} b_{11}/a_{12})$$

$$\Phi_5 = \Delta V_0 (a_{12} b_{21} - a_{22} b_{11})/a_{12}. \tag{7.5}$$

With Φ_0 and Φ_5 now known, (7.1) and (7.2) give the flux produced by the coils in the section delimited by points 2 and 3.

Details of k_2.

One has to be careful to use the correct value for μ. If the field associated with this flux is parallel to the pre-existing field, one has to use $\mu = \frac{dB}{dH}$. If it is perpendicular to the pre-existing flux, one must use $\mu = \frac{B}{H}$ which is the "normal μ".

Now we must look at the effect of a thin gap over a large area. ΔV across that gap from flux Φ is gotten from $\Phi = \int \frac{\Delta V \, da}{g}$ and thus $\Delta V = \frac{\Phi}{\int \frac{da}{g}}$. If a gap-less length L of μ is associated with this gap, the total ΔV is given by

$$\Delta V = \Phi \left(\frac{1}{\int \frac{da}{g}} + \gamma \frac{L}{A} \right) = \Phi L \left(\frac{\gamma}{a} + \frac{1/L}{\int \frac{da}{a}} \right),$$

$$k_2 = \frac{\gamma}{a} + \frac{1/L}{\int \frac{da}{g}}. \tag{8}$$
Details of ε.

Only the general approach and the results derived in a separate note are given here. There are three contributions to ε: flux from the top, from the sides, and from the poles facing the midplane.

Figures 3(a) and 3(b).

Figures 3(c) and 3(d).

To get the flux into the top per unit length in direction perpendicular to the paper plane, we use as a model the solid block that touches the midplane of Figure 3(b). For the flux into each side, we use the geometry of Figure 3(c) and calculate the flux into the side. If the side has "pole structure" we take it into account with an excess voltage drop coefficient approximation (if necessary). For flux from the poles to the midplane, we calculate the flux for the geometry of Figure 3(d), and we use
the excess flux coefficient for a solid block of Figure 3(c) to correct the width $2W_0$ of the cross-section shown in Figure 3(a).

Results for the Geometry of Figure 3(d).

\[\varepsilon_P = \frac{\Phi(\lambda/4)}{V_0} \frac{4}{\lambda(W_0 + \Delta W_0)2}, \]
(9.1)

with \(\frac{\Phi(\lambda/4)}{V_0} \) calculated by POISSON or an analytical program.

We calculate \(\Delta W_0 \) from the geometry of Figure 3(c), with \(D = h_1/h_0 \),

\[D = h_1/h_0, \]
(9.2)

\[\Delta W_0 = h_0 \frac{1}{\pi} \left(1 + \frac{D}{2} \ln \left(\frac{D+1}{D-1} \right) - \ln \left(2 \left(1 + \frac{D}{\sqrt{D^2-1}} \right) \right) \right). \]
(9.3)

The contribution from the flux into the top is

\[\varepsilon_T = \frac{2}{\pi} \ln \frac{1 + a_1}{1 - a_1}, \]
(10.1)

where \(a_1 \) is determined from

\[\frac{h_1}{W_0} = \frac{E(b) - a_1^2 K(b)}{E(a_1) - b^2 K(a_1)} \]
(10.2)

with \(b^2 = 1 - a_1^2 \), and

\[E(a_1) = \int_0^{\pi/2} \sqrt{1 - a_1^2 \sin^2 \varphi} \, d\varphi \quad \text{and} \quad K(a_1) = \int_0^{\pi/2} \frac{d\varphi}{\sqrt{1 - a_1^2 \sin^2 \varphi}}. \]
(10.3)

The flux into the sides contributes

\[\varepsilon_S = \frac{4}{\pi} \ln \left(D + \sqrt{D^2 - 1} \right), \]

with \(D \) given by (9.2).
(11.1) assumes smooth sides, i.e., the excess potential drop is ignored. It should be noted that the area \(a \) in (8) is smaller than the cross-section shown in Figure 3(a), the latter includes the poles, while the former does not.

We make here further clarifications on units. If we were to deal with a uniform field over a width \(W \) of a flat pole, at distance \(h_0 \) from the midplane, \(\varepsilon \) would be exactly \(\varepsilon = \frac{W}{H} \). That is, \(\frac{d\Phi}{dx} \) and \(V \) have the same dimensions, meaning that either \(\mu_0 = 4\pi \cdot 10^{-7} \) is incorporated in the vector potential \(V \), or \(\mu_0 \) is left out of the definition of \(\Phi \). The meaning of \(\varepsilon \) is the flux per unit length in the axial direction of the structure on potential \(V \), divided by \(V \).

\(\varepsilon_S \) with excess potential drop is given by

\[
\varepsilon_S = \frac{4}{\pi} \ln \left(D_1 + \sqrt{D_1^2 - 1} \right)
\]

with

\[
D_1 = \frac{h_1 + \frac{2}{\pi} \Delta L}{h_0 + \frac{2}{\pi} \Delta L}.
\]

\[
\alpha = \frac{\lambda/4}{h_3} \quad \text{and} \quad \Delta L = \frac{h_3}{\pi} \left((\alpha + 1) \ln(1 + 1/\alpha) + (\alpha - 1) \ln(1 - 1/\alpha)\right).
\]

The effect of \(\Delta L \) will be very small under most circumstances. The excess flux
potential drop is too small to be of concern for ε_T.
3D Scalar Potential for Saturation-Caused Fields in the Insertion Device

This entails the same approach as for the case of \(\mu = \infty \), except that the condition \(\partial V / \partial x = 0 \) at \(y = h \) is to be dropped:

\[
V = \sum \cos nk_x z \cdot g_n(x, y),
\]

\[
\nabla^2 V = 0 \quad \implies \quad \nabla^2 g_n = n^2 k_x^2 g_n.
\]

We introduce \(nk_x x = u \), and \(nk_x y = v \):

\[
\nabla^2_{u,v} g = g. \tag{1}
\]

We construct \(g(u, v) \) that has the following properties: odd in \(y \), \(g(-v) = -g(v) \), and gives field approximating \(\cosh \varepsilon u - 1 \) for \(y = 0 \). \(\varepsilon \) is arbitrary, real or imaginary, and the field equals 0 for \(u = 0 \) when letting \(\varepsilon \to 0 \) at end.

We try \(g = \cosh \varepsilon u \sinh av \). To satisfy (1):

\[
\varepsilon^2 + a^2 = 1 \quad \text{and thus} \quad a = \sqrt{1 - \varepsilon^2}.
\]

has to hold. We add a function of \(v \), such that \(g'_v \) is proportional to \(\cosh \varepsilon u - 1 \) for \(v = 0 \). The only odd function of \(v \) that will satisfy this requirement and also satisfy (1) is \(-a \sinh v \), thus

\[
g = \cosh \varepsilon u \sinh av - a \sinh v. \tag{2}
\]

One can use the superposition of such functions with different \(\varepsilon \), but this would probably not be practical.

The expansion for \(\varepsilon \to 0 \) is

\[
g = \frac{\varepsilon^2}{2} (u^2 \sinh v - v \cosh v + \sinh v). \tag{3}
\]

For \(v = 0 \), we obtain the expected sextupole field:

\[
g'_v(u, 0) = \frac{\varepsilon^2}{2} u^2. \tag{4}
\]

At the pole, where \(v_h = nk_x h \),

\[
g'_v(u, v_h) = \frac{\varepsilon^2}{2} 2u \sinh v_h, \tag{5}
\]

It is this field in the \(x \)-direction that is responsible for the sextupole field in the midplane.

187
(5) allows us to make an estimate of the saturation effects in the midplane during the design phase. Thus,

$$\frac{g'(u, 0)}{g'(u, v_h)} = \frac{u}{2 \sinh v_h} = \frac{nk_z x}{2 \sinh nk_z h} = \frac{x}{2h} \cdot \frac{nk_z h}{\sinh nk_z h}.$$ \hspace{1cm} (6)

It is interesting to note that every additional expansion of (2) in ε^2 leads to a new solution to (1) describing the fields in the midplane to the highest orders $\sim x^4, x^6$, etc.

To check on (3), its expansion in k_z up to the 3rd order terms in $\{u, v\}$ gives, as expected,

$$g = \frac{\varepsilon^2}{2} \left(u^2 v - v \left(1 + \frac{v^2}{2} - \left(1 + \frac{v^2}{6} \right) \right) \right)$$

$$= \frac{\varepsilon^2}{2} \left(u^2 v - \frac{v^3}{3} \right)$$

$$= \frac{\varepsilon^2}{6} \Im (u + iv)^3.$$ \hspace{1cm} (7)
Scalar Potential for 3D Insertion Device Fields

In the 2D case,

\[V = \sum_{n=\text{odd}} b_n \cos nk_z z \cdot \sinh nk_z y \quad \text{with} \quad k_z = \frac{2\pi}{\lambda}. \]

In order to simplify matters, we drop the sum, and re-introduce it at the end.
The effects of lateral ends are equally periodic in \(z \), thus \(nk_z \Rightarrow k_z \), and

\[V_{LE} = \cos k_z z \cdot g(x, y). \]

Where \(g(x, y) \) is valid only in the vacuum region of the \(\{x, y\} \) space.
Further, we have that

\[\nabla^2 V = 0 \quad \Rightarrow \quad \nabla^2 g = k_z^2 g, \]

where \(g \) is the Fourier expansion coefficient as a function of \(x, y \),

At the pole surface, for integer \(\mu, z = \mu \lambda/2 \) and \(y = h = \text{half gap} \), \(B_x = B_y = 0 \). We expand \(g \) in a Fourier series in \(y \). We have that \(g \sim \sin mk_y y \) for \(k_y = \pi/h \), and

\[g = \sum a_m \sin mk_y y \cdot \cosh k_m x, \]

with \(k_m^2 = k_x^2 + m^2 k_y^2 \). We use \(a_m = b_0 b_m / \cosh k_m W \), where \(W \) is half the pole width, and we expect \(b_m \) to be only weakly dependent on \(W \).

\[
\begin{align*}
V &= \sum_{n=\text{odd}} b_n \cos nk_z z \cdot (\sinh nk_z y + g_n), \\
g_n &= \sum_{m=1} b_{nm} \sin mk_y y \cdot \cosh k_m x \\
k_m^2 &= n^2 k_x^2 + m^2 k_y^2, \quad \text{with} \quad k_z = 2\pi/\lambda, \quad k_y = \pi/h, \\
k_{nm}^2 &= m^2 k_y^2 \left(1 + \frac{n^2}{m^2} \left(\frac{k_z}{k_y} \right)^2 \right), \quad \text{with} \quad \frac{k_z}{k_y} = \frac{2h}{\lambda} = \text{gap}. \lambda.
\end{align*}
\]

Under most circumstances, \(\frac{k_z}{k_y} \leq .5 \). For \(n = 1 \), \(k_{nm} \approx mk_y \).

February, 1992. Note 0124u-w.

189

we want to measure \(\partial_{D_y}/\partial x \). We move a \(D_y \)-coil in the \(z \)-direction that is "long" in
In the region of interest, only the case of \(m = 1 \) is of importance. That is, the dominant term is

\[
g_1 = \frac{b_{11} \sin k_{3y} \cdot \cosh k_{11} x}{\cosh k_{11} W}.
\]

We may now proceed to conclude that

\[
-H_y = k_z \sum n b_{nc} \cos nk_z z \left(\cosh nk_x y + \sum b_{nm} \frac{mk_y}{nk_z} \cdot \frac{\cos mk_y y \cdot \cosh k_{nm} x}{\cosh k_{nm} W} \right).
\]

From (6), we expect \(b_{nm} < 0 \), and \(\frac{mk_y}{nk_z} \) to be in the order of 1, but probably less than 1.

Suggestions for Magnetic Measurements.

Make all measurements as function of \(z \), filter out random errors, and then do the harmonic analysis by measuring the quantities derived from \(\sinh nk_x y + g_n \). To measure field components, measure \(B_y \) at \(y = 0 \) for a number of values of \(x \) close enough to the lateral edge to get values of \(b_{n1} \) and \(b_{n2} \). Then measurements of \(B_x \) close to the lateral ends are made, at \(y \approx h/2 \), to check the validity of \(V(x, y, z) \). If agreement is reached, an investigation of whether \(b_{nm} \) are more easily obtained from \(B_x \) measurements is to be done. To verify the model, compare the measurements at individual points, without the harmonic analysis, to the model calculations.

After sufficient measurements, make a table that lists the \(b_{nm} \) coefficients as functions of two dimensionless products (i.e. \(\frac{h}{\lambda} \) and \(\frac{W}{h} \)), and possibly find a practical formula to represent the data. A possible complication may result from saturation in the iron which may dominate the behavior of the field as a function of \(x \).

Examination of experimental data shows that decay of field errors as one moves away from the lateral edge of the insertion device can be much slower than this description indicates. A possible cause of this may be \(H_x \) at pole surface caused by saturation.
(11.1) assumes smooth sides, i.e., the excess potential drop is ignored. It should be noted that the area a in (8) is smaller than the cross-section shown in Figure 3(a), the latter includes the poles, while the former does not.

We make here further clarifications on units. If we were to deal with a uniform field over a width W of a flat pole, at distance h_0 from the midplane, ε would be exactly $\varepsilon = \frac{W}{H}$. That is, $\frac{d\Phi}{dx}$ and V have the same dimensions, meaning that either $\mu_0 = 4\pi \cdot 10^{-7}$ is incorporated in the vector potential V, or μ_0 is left out of the definition of Φ. The meaning of ε is the flux per unit length in the axial direction of the structure on potential V, divided by V.

ε_S with excess potential drop is given by

$$\varepsilon_S = \frac{4}{\pi} \ln \left(D_1 + \sqrt{D_1^2 - 1} \right)$$

(11.2)

with

$$D_1 = \frac{h_1 + \frac{2}{\pi} \Delta L}{h_0 + \frac{2}{\pi} \Delta L}.$$

(11.3)

![Diagram of a pole structure with labeled dimensions](image)

Figure 4.

$$\alpha = \frac{\lambda/4}{h_3} \quad \text{and} \quad \Delta L = \frac{h_3}{\pi} \left((\alpha + 1) \ln(1 + 1/\alpha) + (\alpha - 1) \ln(1 - 1/\alpha) \right).$$

(11.4)

The effect of ΔL will be very small under most circumstances. The excess flux
potential drop is too small to be of concern for ε_T.
3D Scalar Potential for Saturation-Caused Fields in the Insertion Device

This entails the same approach as for the case of \(\mu = \infty \), except that the condition \(\partial V / \partial x = 0 \) at \(y = h \) is to be dropped:

\[
V = \sum \cos nk_z z \cdot g_n(x, y),
\]

\[\nabla^2 V = 0 \quad \Rightarrow \quad \nabla^2 g_n = n^2 k_z^2 g_n.\]

We introduce \(nk_z x = u \), and \(nk_z y = v \):

\[
\nabla^2_{u,v} g = g. \tag{1}
\]

We construct \(g(u, v) \) that has the following properties: odd in \(y \), \(g(-v) = -g(v) \), and gives field approximating \(\cosh \varepsilon u - 1 \) for \(y = 0 \). \(\varepsilon \) is arbitrary, real or imaginary, and the field equals 0 for \(u = 0 \) when letting \(\varepsilon \to 0 \) at end.

We try \(g = \cosh \varepsilon u \sinh av \). To satisfy (1):

\[
\varepsilon^2 + a^2 = 1 \quad \text{and thus} \quad a = \sqrt{1 - \varepsilon^2}.
\]

has to hold. We add a function of \(v \), such that \(g'_{\varepsilon} \) is proportional to \(\cosh \varepsilon u - 1 \) for \(v = 0 \). The only odd function of \(v \) that will satisfy this requirement and also satisfy (1) is \(-a \sinh v \), thus

\[
g = \cosh \varepsilon u \sinh av - a \sinh v. \tag{2}
\]

One can use the superposition of such functions with different \(\varepsilon \), but this would probably not be practical.

The expansion for \(\varepsilon \to 0 \) is

\[
g = \frac{\varepsilon^2}{2} (u^2 \sinh v - v \cosh v + \sinh v). \tag{3}
\]

For \(v = 0 \), we obtain the expected sextupole field:

\[
g'_{\varepsilon}(u, 0) = \frac{\varepsilon^2}{2} u^2. \tag{4}
\]

At the pole, where \(v_h = nk_z h \),

\[
g'_{\varepsilon}(u, v_h) = \frac{\varepsilon^2}{2} 2u \sinh v_h, \tag{5}
\]

It is this field in the \(x \)-direction that is responsible for the sextupole field in the midplane.

187
(5) allows us to make an estimate of the saturation effects in the midplane during the
design phase. Thus,

$$\frac{g'(u, 0)}{g'(u, v_h)} = \frac{u}{2 \sinh v_h} = \frac{n k_x x}{2 \sinh n k_x h} = \frac{x}{2 h} \cdot \frac{n k_x h}{\sinh n k_x h}. \quad (6)$$

It is interesting to note that every additional expansion of (2) in ε^2 leads to a new
solution to (1) describing the fields in the midplane to the highest orders $\sim x^4, x^6,$
etc.

To check on (3), its expansion in k_x up to the 3rd order terms in $\{u, v\}$ gives, as expected,

$$g = \frac{\varepsilon^2}{2} \left(u^2 v - v \left(1 + \frac{v^2}{2} - \left(1 + \frac{v^2}{6} \right) \right) \right)$$

$$= \frac{\varepsilon^2}{2} \left(u^2 v - \frac{v^3}{3} \right)$$

$$= \frac{\varepsilon^2}{6} \Im(u + iv)^3. \quad (7)$$
Scalar Potential for 3D Insertion Device Fields

In the 2D case,

\[V = \sum_{n=\text{odd}} b_n \cos nk_z z \cdot \sinh nk_z y \quad \text{with} \quad k_z = \frac{2\pi}{\lambda}. \]

In order to simplify matters, we drop the sum, and re-introduce it at the end. The effects of lateral ends are equally periodic in \(z \), thus \(nk_x \Rightarrow k_z \), and

\[V_{LE} = \cos k_z z \cdot g(x, y). \]

Where \(g(x, y) \) is valid only in the vacuum region of the \(\{x, y\} \) space. Further, we have that

\[\nabla^2 V = 0 \quad \Rightarrow \quad \nabla^2 g = k_z^2 g, \]

where \(g \) is the Fourier expansion coefficient as a function of \(x, y \). At the pole surface, for integer \(\mu, z = \mu\lambda/2 \) and \(y = h = \) half gap, \(B_x = B_y = 0 \). We expand \(g \) in a Fourier series in \(y \). We have that \(g \sim \sin mk_y y \) for \(k_y = \pi/h \), and

\[g = \sum a_m \sin m k_y y \cdot \cosh k_m x, \]

with \(k_m^2 = k_x^2 + m^2 k_y^2 \). We use \(a_m = b_0 b_m / \cosh k_m W \), where \(W \) is half the pole width, and we expect \(b_m \) to be only weakly dependent on \(W \).

\[
\begin{align*}
V &= \sum_{n=\text{odd}} b_n \cos nk_z z \cdot (\sinh nk_z y + g_n), \\
g_n &= \sum_{m=1} b_{nm} \sin m k_y y \cdot \cosh k_m x \frac{1}{\cosh k_m W}, \\
k_{nm}^2 &= n^2 k_x^2 + m^2 k_y^2, \quad \text{with} \quad k_x = 2\pi/\lambda, \quad k_y = \pi/h, \\
k_{nm}^2 &= m^2 k_y^2 \left(1 + \frac{n^2}{m^2} \left(\frac{k_x}{k_y}\right)^2\right), \quad \text{with} \quad \frac{k_x}{k_y} = 2 h = \frac{\text{gap}}{\lambda}.
\end{align*}
\]

Under most circumstances, \(\frac{k_x}{k_y} \leq .5 \). For \(n = 1 \), \(k_{nm} \approx m k_y \).

February, 1992. Note 0124u-w.
In the region of interest, only the case of \(m = 1 \) is of importance. That is, the dominant term is

\[
g_1 = \frac{b_{11} \sin k_{11} y \cdot \cosh k_{11} x}{\cosh k_{11} W}.
\]

We may now proceed to conclude that

\[
-H_y = k_z \sum n b_{n0} \cos nk_z z \left(\cosh nk_z y + \sum b_{nm} \frac{mk_y}{nk_z} \cdot \cos \frac{mk_y y}{nk_z} \cdot \cosh \frac{nk_z x}{W} \right).
\]

From (6), we expect \(b_{nm} < 0 \), and \(\frac{mk_y}{nk_z} |b_{nm}| \) to be in the order of 1, but probably less than 1.

Suggestions for Magnetic Measurements.

Make all measurements as function of \(z \), filter out random errors, and then do the harmonic analysis by measuring the quantities derived from \(\sinh nk_z y + g_n \). To measure field components, measure \(B_y \) at \(y = 0 \) for a number of values of \(x \) close enough to the lateral edge to get values of \(b_{n1} \) and \(b_{n2} \). Then measurements of \(B_x \) close to the lateral ends are made, at \(y \approx h/2 \), to check the validity of \(V(x, y, z) \). If agreement is reached, an investigation of whether \(b_{nm} \) are more easily obtained from \(B_x \) measurements is to be done. To verify the model, compare the measurements at individual points, without the harmonic analysis, to the model calculations.

After sufficient measurements, make a table that lists the \(b_{nm} \) coefficients as functions of two dimensionless products (i.e. \(h/\lambda \) and \(W/h \)), and possibly find a practical formula to represent the data. A possible complication may result from saturation in the iron which may dominate the behavior of the field as a function of \(x \).

Examination of experimental data shows that decay of field errors as one moves away from the lateral edge of the insertion device can be much slower than this description indicates. A possible cause of this may be \(H_x \) at pole surface caused by saturation.
Gradient Measurement in Insertion Device

The beam is in the z direction. The midplane is the $\{x, z\}$ plane. We use a vibrating coil to measure $\partial B_y / \partial x$.

As a general mechanical design principle, make the wanted resonance frequency and its harmonics different from the resonance frequencies of other vibrating modes.

We want to measure $\partial B_y / \partial x$. We move a B_y-coil in the x direction that is "long" in z and short in x. The problem arises that this motion may excite vibration in the y direction, adding a $\partial B_y / \partial y$ signal. A better way to collect the same information is to measure $\partial B_x / \partial y$, by vibrating a B_x-coil in the y direction such that it is "long" in z and short in y. Possible contamination due to $\partial B_z / \partial z$ drops out in the Fourier analysis in z.

Undulator Trajectory and Radiation

We begin with the following definitions:

\[\ddot{r} \gamma m = -e(e_x \dot{x} + e_y \dot{y} + e_z \dot{z}) \times e_y B, \]

\[\ddot{x} \gamma m = e \dot{z} B = e \dot{z} A_z', \]

\[\dot{x} \gamma m = e A(x), \]

\[dt \beta c = ds = dz \sqrt{1 + x'^2}, \quad \dot{x} = x' \frac{\beta c}{\sqrt{1 + x'^2}}, \]

\[A = B_0 \int \cos kzd z = \frac{B_0}{k} \sin k z \]

\[\frac{x'}{\sqrt{1 + x'^2}} = \varepsilon \sin k z, \quad \varepsilon = \frac{B_0/k}{\beta \gamma mc/e} = \frac{K}{\gamma}, \]

\[\frac{1}{x'^2} + 1 = \frac{1}{\varepsilon^2 \sin^2 k z}, \quad \boxed{\dot{x}' = \frac{\varepsilon s}{\sqrt{1 - \varepsilon^2 \sin^2 k z}}}. \]

Thus,

\[J = \int \dot{x} e^{i \varphi} dt, \]

where

\[\varphi = \omega \left(t - \frac{z}{c} \right) = \frac{\omega}{\beta c} (\beta ct - \beta z) = \frac{\omega}{\beta c} \int \left(\sqrt{1 + x'^2} - \beta \right) dz, \]

\[1 + x'^2 = \frac{1}{1 - \varepsilon^2 \sin^2 k z}, \]

\[\beta = \sqrt{1 - \frac{1}{\gamma^2}} \approx 1 - \frac{1}{2 \gamma^2}. \]

and furthermore,

\[\sqrt{1 + x'^2} - \beta = 1 + \frac{\varepsilon^2 \sin^2 k z}{2} - 1 + \frac{1}{2 \gamma^2} = \frac{1}{2 \gamma^2} (1 + \varepsilon^2 \gamma^2 \sin^2 k z), \]

and

$$
\varphi = \frac{\omega}{2\beta c\gamma^2} \int (1 + K^2 \sin^2 k z) dz = \frac{\omega}{2\beta c\gamma^2} \int \left(1 + \frac{K^2}{2} \right) \left(1 + \frac{K^2}{2} \cos 2k z \right) dz,
$$

where, for $\beta \approx 1$,

$$
\varphi = \frac{\omega}{2c\gamma^2} \left(1 + \frac{K^2}{2} \right) z - \frac{\omega}{2c\gamma^2} \frac{K^2 \sin 2k z}{2k}.
$$

Therefore,

$$
J = \int z' dz' e^{i\varphi}, \quad \text{with} \quad \frac{\omega}{c} = k_L,
$$

$$
J = \frac{\varepsilon}{2i} \int e^{i\left(\frac{k_L}{2\gamma^2} \left(1 + \frac{K^2}{2} \right) - k \right) z - i\left(\frac{k_L}{2\gamma^2} \frac{K^2 \sin 2k z}{2k} \right)} dz,
$$

where

$$
\Delta k = \left(\frac{k_L}{2\gamma^2} \left(1 + \frac{K^2}{2} \right) - k \right),
$$

$$
e^{i\alpha \sin x} = \sum J_n(u) e^{iux}, \quad \text{with} \quad u = \frac{k_L K^2}{8\gamma^2 k} \quad \text{and} \quad x = k z.
$$

Thus,

$$
J = \frac{\varepsilon}{2i} \int e^{i(\Delta k z - 2nk z)} J_n(u) dz.
$$

Further, from

$$
\frac{k_L(1 + K^2/2)}{2\gamma^2} - (2n + 1) k = 0,
$$

and solving for $\frac{k_L}{k}$, we have

$$
u = \frac{(n + 1/2) K^2/2}{1 + K^2/2}.
$$
Mathematical Representation of Undulator and Wiggler Fields

Undulator and wiggler fields that are not uniform in the transverse direction are usually derived from

\[V = V \cosh k_1 x \sinh k_2 y \cos z \quad \text{with} \quad k_1^2 + k_2^2 = k^2. \]

(1)

Starting with \(\nabla^2 V \) in cylindrical co-ordinates, we have

\[r^2 \nabla^2 V = \left(r^2 \frac{\partial^2}{\partial r^2} + r \frac{\partial}{\partial r} + \frac{\partial^2}{\partial \varphi^2} + r^2 \frac{\partial^2}{\partial z^2} \right) V = 0. \]

Assuming, without loss of generality, midplane symmetry, we write

\[V = \sum F_n \sin n \varphi \cos k z, \]

(2.1)

thus getting

\[\left(r^2 \frac{\partial^2}{\partial r^2} + r \frac{\partial}{\partial r} - n^2 - k^2 r^2 \right) F_n = 0. \]

(3)

and therefore,

\[F_n = a_n I_n(kr). \]

(2.2)

An interesting consequence is that whether one uses (1) or (2), one would get the same fields and pole shapes for a sufficiently small \(kr \).

\[\sum a_n I_n(kr) \sin n \varphi = V_0 \cosh(k_1 r \cos \varphi) \sinh(k_2 r \sin \varphi), \]

(4)

and, in particular, this means that

\[a_n I_n(kr) \pi = V_0 \int_0^{2\pi} \cosh(k_1 r \cos \varphi) \sinh(k_2 r \sin \varphi) \sin n \varphi d\varphi. \]

(5)

This must hold in particular for \(kr \ll 1 \), i.e. by comparing the lowest order term in \(r \) and executing the trivial integrations, one gets \(a_n \) which then leads to an extremely interesting integral representation of \(I_n(kr) \).

July, 1986. Note 0055u-w.
Publications of Klaus Halbach
(October 1994)

44. K. Halbach: “Strong Rare Earth Cobalt Quadrupoles, Proceedings of the 1979 Particle Accelerator Conference.

Technical Notes of Klaus Halbach

<table>
<thead>
<tr>
<th>Database Reference</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001bpm</td>
<td>"Notes on a beam position monitor"</td>
<td>86</td>
</tr>
<tr>
<td>0002bpm</td>
<td>Beam position error due to error in electric signals</td>
<td>86</td>
</tr>
<tr>
<td>0003bpm</td>
<td>2D pickup electrode design (square box)</td>
<td>86</td>
</tr>
<tr>
<td>0004bpm</td>
<td>Position monitor signal for finite size beam</td>
<td>86</td>
</tr>
<tr>
<td>0005bpm</td>
<td>Justification for treating beam position monitors 2D and statically</td>
<td>86</td>
</tr>
<tr>
<td>0006bpm</td>
<td>2D pickup electrode system design (diamond box)</td>
<td>86</td>
</tr>
<tr>
<td>0007bpm</td>
<td>Moments (g_m = \int z^m \rho(x,y) dx dy) of charge distributions, and properties of Gaussian distribution</td>
<td>86</td>
</tr>
<tr>
<td>0008bpm</td>
<td>Measurement of harmonic coefficients of beam pos. monitor model</td>
<td>86</td>
</tr>
<tr>
<td>0009bpm</td>
<td>Harmonics for various mixing patterns of beam position detector signals & their use</td>
<td>86</td>
</tr>
<tr>
<td>0010bpm</td>
<td>Algorithms for evaluation of fields from electrode in diamond duct</td>
<td>86</td>
</tr>
<tr>
<td>0011bpm</td>
<td>Formula summary</td>
<td>86</td>
</tr>
<tr>
<td>0012bpm</td>
<td>Specific design options; double electrode systems</td>
<td>86</td>
</tr>
<tr>
<td>0013bpm</td>
<td>Length normalization, and desirable duct size</td>
<td>86</td>
</tr>
<tr>
<td>0014bpm</td>
<td>(F) from dipole moment (q' \Delta z) on duct surface</td>
<td>86</td>
</tr>
<tr>
<td>0015bpm</td>
<td>Actual integrated charge on electrode</td>
<td>86</td>
</tr>
<tr>
<td>0016bpm</td>
<td>Map of duct with photon slot onto circular disk</td>
<td>86</td>
</tr>
<tr>
<td>0017bpm</td>
<td>Expansion coefficients of finite size round electrodes flush in 2D duct</td>
<td>86</td>
</tr>
<tr>
<td>0018bpm</td>
<td>Reciprocity theorem for current (\rightarrow) pickup loop</td>
<td>86</td>
</tr>
<tr>
<td>0019bpm</td>
<td>Outline for calculation of integrated harmonics along an axis that is skewed relative to axis of finite length multipole</td>
<td>86</td>
</tr>
<tr>
<td>0020bpm</td>
<td>Algorithm for calculation of beam position from measurements</td>
<td>86</td>
</tr>
<tr>
<td>0021bpm</td>
<td>[W = \int_{-\infty}^{+\infty} V(z)dz] from finite length electrode in 2D geometry</td>
<td>86</td>
</tr>
<tr>
<td>0022bpm</td>
<td>Exact, complete proofs of reciprocity theorems for electrostatic and magnetostatic beam monitors</td>
<td>86</td>
</tr>
<tr>
<td>0023bpm</td>
<td>Design objectives to be achieved by electrode placements in duct</td>
<td>86</td>
</tr>
<tr>
<td>0024bpm</td>
<td>Performance requirements for BPM signal processing system</td>
<td>86</td>
</tr>
<tr>
<td>0025bpm</td>
<td>Details about model time domain transfer functions for BPM signal process</td>
<td>86</td>
</tr>
<tr>
<td>0026bpm</td>
<td>Farler method to design single and double integrator</td>
<td>86</td>
</tr>
<tr>
<td>0027bpm</td>
<td>Design of wide flat top (F(u))</td>
<td>86</td>
</tr>
<tr>
<td>0028bpm</td>
<td>Some thoughts on integrators</td>
<td>86</td>
</tr>
</tbody>
</table>
Possible problems, and fixes, associated with charges induced on magnetic pick up “loop”

Generalization of $\mathbf{J}_B \leftrightarrow \varphi_{coil}$ reciprocity for coil with finite conductor cross section, and some interesting applications

Listings of old BPM program

Formulas for new integrator programs

Initial work on $F(u) = u^2 e^{-u} + a \alpha^2 u^2 e^{-a u}$ with $F^n = 0$ for $n = m, m + 1, m + 2, \ldots$

Magnetostatic and electrostatic F - mixing formulas

Solution to Dirichlet problem in unit circle

Copy of 2/86 note on flux into cylindric pole

BPM models for C_n measurement

Difficulties to get p2 with 4 sensor system as proposed for ATA, ALS

G's to 3rd order for $p_2 = ae^{2i\alpha}$

Eddy current integrator for BPM

Properties of duct \leftrightarrow circular disk maps

Expansion coefficients of $\tan \alpha, \tanh \alpha$

Normalization of POISSON runs for mapping information

Expansion coefficients of finite size round electrodes flush in 2D duct, #2

Effect of perturbation in z-boundary on translation matrix

Equivalent circuit for eddy current disk or cylinder, to serve as integrator

Solution to problems in circular disk

Centroid determination during injection into storage ring

INTEGR 3

TRANS L 1

References from Paul Concus

Damping of electromagnetic wave between two parallel plates

Newton's method in 2D for BPM signal reduction

BPM in Gm1 duct

Choice of a_2 in $y = -a_2 x^2 + a_4 x^4$

Electromagnetic waves between two parallel plates

EM waves in (general) cylindrical wave guides

Expansion coefficients for round electrode in infinitely long duct

2D reciprocity relations for MS pickup

Index for 2D reciprocity relations for MS pickup

Inductance of round conductor in round SC pipe & next to SC plane
0062bpm Multipole expansion of field produced by circular electrode in circular duct 89
0063bpm Proof that for reciprocity potential in BPM duct 89
 \[G(x,y,s) = \left(\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} \right) \int V_3(x + sz, y, z) dz \neq 0 \text{ for } s \neq 0 \]
0064bpm Uniqueness of beam position from BPM signals 93
0065bpm BPM data reduction program BPM5 93
0066bpm Proper signs of coefficients for \(F(z) \) for electrostatic BPM 93
0067bpm Uniqueness of beam location from BPM signals 93
0068bpm BPM designed to measure \(p_2 \) 93
0069bpm BPM in parallel plate duct, without harmonic expansion 93
0070bpm BPM in parallel plate duct, with harmonic expansion 93
0071bpm Map of interior of Gm1 onto circular unit disk for BPM creation 93
0001csem Description of REC material in magnetic circuit 78
0002csem Analytical fields for 4-pole with 2 REC blocks in 45 d sector 78
0003csem REC quadrupole with continuously changing M direction 78
0004csem Permanent REC multipole with continuously changing magnetization direction 78
0005csem Properties of REC magnetic buckets with geometry invariant against rotation by \(2\pi/M \) 78
0006csem Ideas about manufacturing procedures for REC quads 78
0007csem Production of solenoidal fields with REC 78
0008csem Properties of REC multipole buckets (includes easy axis rotation theorem) 78
0009csem Reduction of REC material in "my" REC quadrupoles by replacing part of it with \(\mu = \infty \) steel 78
0010csem Magnetization of hexagon and triangle for quadrupole production 78
0011csem Tuning parameters for 16-piece REC quad 78
0012csem Multiple REC quad: design and tolerances 78
0013csem Multiple REC multipole 78
0014csem Efficiency of REC use in continuous quadrupole 78
0015csem Multiple quad with Ron-shaped pieces 78
0016csem Properties of Ron-shaped poles 78
0017csem Recommended geometry for PIGMI quads 78
0018csem Memo to Swenson, Farrell, Knapp 78
0019csem Quad from magnetized REC circular rods of given size 78
0020csem Magnetic fields produced by some REC configurations 78
Different method to drive fields for continuous REC multipoles and optimum design

Segmented REC multipole in μ = ∞ shell

Linear array of REC magnets as plasma bucket wall (with bucket physics)

Data for Ron's 16-piece quad, and general REC price information

Elimination of first allowed harmonic in multipiece REC multipoles

REC quad with circular rods

Various methods to calculate fields produced by REC pieces

Fields produced by rectangular charge sheet

Nomogram for wiggler design

Helical wiggler performance evaluation

Continuous helical REC wiggler; Fourier expansion of \(\mathbf{H}_c \)

Helical wiggler fields, with all Fourier components

Fourier decomposition of \(\mathbf{H}_c \) in segmented helical multipoles

Continuous helical multipole magnet

Rough comparison between REC wiggler and REC wiggler with steel pole

REC in circular \(\mu = \infty \) shell

Fringe fields at the ends of REC multipoles (general properties)

A possible REC undulator for SSRL

Periodic solenoidal fields with continuous REC easy axis orientation

Optimum easy axis orientation of REC to produce solenoidal field \(= \sin kz_0 \)

REC dipole with \(\mu = \infty \) steel

Field on axis produced by REC rings with fixed easy axis

List of problems to be done for prod of solenoidal fields with pure REC structures

Finite REC structure (for solenoidal fields) with \(H_{z,\text{center}} = \text{Max} \) with given \(r_1 \)

Optimization of field at center of single cylindrical REC shell

Perturbation effects in segmented REC multipoles

Numbered equations of my REC multipole paper

Fields on axis of 1/0 long filamentary helix

Fringe fields of REC undulator in direction perp beam: primitive model

Forces between 2 halves of linear undulator

Stray field from continuous REC undulator in direction perp beam
<table>
<thead>
<tr>
<th>Ref</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0052csem</td>
<td>Quadrupole fringe field calculations</td>
<td>79</td>
</tr>
<tr>
<td>0053csem</td>
<td>Fringe field at the end of quadrupole, with num. evaluation and Apple program</td>
<td>79</td>
</tr>
<tr>
<td>0054csem</td>
<td>Fourier decomposition of \mathbf{H}_c</td>
<td>79</td>
</tr>
<tr>
<td>0055csem</td>
<td>Fringe field at entrance and exit end of continuous linear 2D array of REC</td>
<td>79</td>
</tr>
<tr>
<td>0056csem</td>
<td>Fringe field at entrance and exit end of continuous linear 2D array of REC with Fourier transformation</td>
<td>79</td>
</tr>
<tr>
<td>0057csem</td>
<td>Summary of fields outside segmented REC quad</td>
<td>79</td>
</tr>
<tr>
<td>0058csem</td>
<td>Segmented REC quad with 8 trapezoidal and eight rectangular blocks</td>
<td>79</td>
</tr>
<tr>
<td>0059csem</td>
<td>Harmonics produced by rectangular REC block</td>
<td>80</td>
</tr>
<tr>
<td>0060csem</td>
<td>Summary for undulator fringe field perpendicular to beam</td>
<td>80</td>
</tr>
<tr>
<td>0061csem</td>
<td>Periodic linear array to give maximum B_y at $z_0 = n\lambda$</td>
<td>80</td>
</tr>
<tr>
<td>0062csem</td>
<td>Upper limit of magnetic field achievable with REC and steel undulator</td>
<td>80</td>
</tr>
<tr>
<td>0063csem</td>
<td>Strength of REC quad assembled from rectangular pieces</td>
<td>80</td>
</tr>
<tr>
<td>0064csem</td>
<td>Fields produced by REC magnets, and displaced and/or rotated REC magnets</td>
<td>80</td>
</tr>
<tr>
<td>0065csem</td>
<td>REC inside circular shell with $\mu = \infty$, and quadrupole with shell</td>
<td>81</td>
</tr>
<tr>
<td>0066csem</td>
<td>REC dipole with steel</td>
<td>81</td>
</tr>
<tr>
<td>0067csem</td>
<td>Quad fields produced by 2 concentric REC quads rotated against each other</td>
<td>81</td>
</tr>
<tr>
<td>0068csem</td>
<td>Change of force on circular REC cylinder when displaced in external magnetic field</td>
<td>81</td>
</tr>
<tr>
<td>0069csem</td>
<td>Field from axially magnetized circular REC cylinder</td>
<td>81</td>
</tr>
<tr>
<td>0070csem</td>
<td>Radial bearing test stand</td>
<td>81</td>
</tr>
<tr>
<td>0071csem</td>
<td>2D REC quad assembled from circular disks</td>
<td>81</td>
</tr>
<tr>
<td>0072csem</td>
<td>Inexpensive REC quad for linear collider</td>
<td>80</td>
</tr>
<tr>
<td>0073csem</td>
<td>REC multipole magnet assembled from rectangular pieces</td>
<td>81</td>
</tr>
<tr>
<td>0074csem</td>
<td>REC quad with elliptical aperture</td>
<td>80</td>
</tr>
<tr>
<td>0075csem</td>
<td>Force and torque on REC in 2D</td>
<td>81</td>
</tr>
<tr>
<td>0076csem</td>
<td>Earnshaw's theorem for non-permeable material</td>
<td>81</td>
</tr>
<tr>
<td>0077csem</td>
<td>Analysis and optimization of steel and REC double magnet</td>
<td>81</td>
</tr>
<tr>
<td>0078csem</td>
<td>Design of strong REC and steel quadrupole</td>
<td>81</td>
</tr>
<tr>
<td>0079csem</td>
<td>Optimization of a REC block in a REC and steel dipole magnet</td>
<td>81</td>
</tr>
<tr>
<td>0080csem</td>
<td>REC and steel wiggler performance limitations</td>
<td>81</td>
</tr>
<tr>
<td>0081csem</td>
<td>K in formulas for wiggler and undulator radiation</td>
<td>81</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>0082csem</td>
<td>Conversion between coordinate system used in iron and REC perturbation papers and conventional measurement coordinate system</td>
<td>81</td>
</tr>
<tr>
<td>0083csem</td>
<td>EFB of REC quad next to steel plate</td>
<td>81</td>
</tr>
<tr>
<td>0084csem</td>
<td>REC and steel quadrupole design</td>
<td>82</td>
</tr>
<tr>
<td>0085csem</td>
<td>Different methods for understanding, or design, of REC magnets</td>
<td>82</td>
</tr>
<tr>
<td>0086csem</td>
<td>CTR multi-aperture magnet MAM</td>
<td>82</td>
</tr>
<tr>
<td>0087csem</td>
<td>A new method to design REC and steel (hybrid) magnets</td>
<td>82</td>
</tr>
<tr>
<td>0088csem</td>
<td>Fields produced by a REC helical undulator (summary)</td>
<td>82</td>
</tr>
<tr>
<td>0089csem</td>
<td>Fields produced by coils with rectangular cross section (ELF #51)</td>
<td>82</td>
</tr>
<tr>
<td>0090csem</td>
<td>Formulas for REC-steel (hybrid) dipole corner: excess flux and flux from REC</td>
<td>82</td>
</tr>
<tr>
<td>0091csem</td>
<td>Excess flux in Gm2</td>
<td>82</td>
</tr>
<tr>
<td>0092csem</td>
<td>Excess flux in Gm3 corner 3\pi/4 corner</td>
<td>82</td>
</tr>
<tr>
<td>0093csem</td>
<td>Excess flux in Gm3 corner with arbitrary angle</td>
<td>82</td>
</tr>
<tr>
<td>0094csem</td>
<td>Excess flux in Gm5 corner with arbitrary angle</td>
<td>82</td>
</tr>
<tr>
<td>0095csem</td>
<td>Flux deficiency of Gm6 corner with arbitrary angle</td>
<td>82</td>
</tr>
<tr>
<td>0096csem</td>
<td>Flux deficiency of 90° inside corner</td>
<td>82</td>
</tr>
<tr>
<td>0097csem</td>
<td>Summary of formulas for calculation of excess flux and flux deficiencies at corners</td>
<td>82</td>
</tr>
<tr>
<td>0098csem</td>
<td>Hybrid dipole formulae</td>
<td>82</td>
</tr>
<tr>
<td>0099csem</td>
<td>Incorporation of finite (\mu - 1) of REC into hybrid design</td>
<td>82</td>
</tr>
<tr>
<td>0100csem</td>
<td>Flux deposition by magnetic charge between two parallel plates (3D)</td>
<td>82</td>
</tr>
<tr>
<td>0101csem</td>
<td>HFIX notes (old)</td>
<td>81</td>
</tr>
<tr>
<td>0102csem</td>
<td>3D quad fringe field note (old)</td>
<td>81</td>
</tr>
<tr>
<td>0103csem</td>
<td>Hybrid wiggler/undulator optimization - notes</td>
<td>81</td>
</tr>
<tr>
<td>0104csem</td>
<td>Hybrid wiggler design information</td>
<td>82</td>
</tr>
<tr>
<td>0105csem</td>
<td>Fraction of magnetic charge deposited on steel plate</td>
<td>82</td>
</tr>
<tr>
<td>0106csem</td>
<td>Harmonics produced by a rectangular block</td>
<td>82</td>
</tr>
<tr>
<td>0107csem</td>
<td>Excess flux into “open end” of steel of hybrid dipole/wiggler</td>
<td>82</td>
</tr>
<tr>
<td>0108csem</td>
<td>Excess flux into Gm7</td>
<td>82</td>
</tr>
<tr>
<td>0109csem</td>
<td>Analytical hybrid wiggler model</td>
<td>82</td>
</tr>
<tr>
<td>0110csem</td>
<td>Ideas and program to develop a variable strength hybrid quadrupole and dipole</td>
<td>82</td>
</tr>
<tr>
<td>0111csem</td>
<td>Conjecture about charge deposited (in V-Q model) by dipole</td>
<td>82</td>
</tr>
<tr>
<td>0112csem</td>
<td>Charge deposition on 3D steel surfaces of V-Q model by magnetic charge and dipole</td>
<td>82</td>
</tr>
<tr>
<td>0113csem</td>
<td>Force, torque on rotatable ring in VSHQ</td>
<td>82</td>
</tr>
</tbody>
</table>
A simple method to correct harmonics of segmented quad with trapezoidal pieces

A method to correct excitation errors of poles of adjustable strength quads

Comment on notation in notes in this file

“Proper” design of $\mu = \infty$ periodic wiggler pole

Flux-potential matrix for hybrid quad

Correction of excitation errors in variable hybrid quad

Gm8 corner fields, potentials

Permanent REC (or ferrite) dipole with all REC touching steel (for H.W.)

Hybrid quad design numbers (1)

Hybrid quad design formulae and program (2)

Program for design (analysis) of adjustable hybrid quad, with prog and sample

Splitting of VSHQ excitation into midplane - symmetric and antisymmetric part

Optimization of REC in corner of dipole

Methods to avoid or correct skew quad component in variable strength hybrid quad

Fields in Gm9, especially “exponential decay”

Box CSEM dipole magnet

Thoughts on determining and then correcting field errors caused by CSEM tolerances

Magnetic field between 45° line and points on a straight side of pole, with CSEM touching pole

VSHQ issues, problems, solutions

Force, torque, to rotate ring in VSHQ

Temperature compensation of hybrid permanent magnet

Pattern of harmonics produced by direct and indirect error fields in VSHQ

Excitation of exponentially decaying fields by I, Q

VSHQ implementation ideas

Excitation variation, and B_{max} at outer boundary of poles, of VSHQ

\vec{B}, \vec{B}_{e} between 45° line and points on straight side of pole, with CSEM (easy-axis perpendicular to z-axis) touching side of pole

HDIP printout rotation

1/8 box hybrid dipole magnet - with program and sample run

Stored energy in CSEM
<table>
<thead>
<tr>
<th>Document Code</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0143csem</td>
<td>Flux distribution symmetry theorem</td>
<td>82</td>
</tr>
<tr>
<td>0144csem</td>
<td>Design of hybrid wiggler pole for “perfect” cosine field</td>
<td>83</td>
</tr>
<tr>
<td>0146csem</td>
<td>Equivalent circuit analysis of hybrid wiggler with midplane symmetry</td>
<td>83</td>
</tr>
<tr>
<td>0147csem</td>
<td>List of work by Nestle</td>
<td>83</td>
</tr>
<tr>
<td>0148csem</td>
<td>LBL hybrid wiggler members</td>
<td>83</td>
</tr>
<tr>
<td>0149csem</td>
<td>Effectiveness of CSEM in “unused corner” of 2D box magnet, and in a 3D magnet</td>
<td>83</td>
</tr>
<tr>
<td>0150csem</td>
<td>Behavior of F, F_{dz}, F^\prime in vicinity of a corner</td>
<td>83</td>
</tr>
<tr>
<td>0151csem</td>
<td>Optimization of PM wiggler for max intensity of light received by small receiver at λ</td>
<td>83</td>
</tr>
<tr>
<td>0152csem</td>
<td>Thoughts and comments to wiggler optimization</td>
<td>83</td>
</tr>
<tr>
<td>0153csem</td>
<td>Optimization of PM wiggler for max light into receiver small in bend plane and integrating in dir. perp bendplane</td>
<td>83</td>
</tr>
<tr>
<td>0154csem</td>
<td>Variation of undulator λ , K with gap for fixed K, λ</td>
<td>83</td>
</tr>
<tr>
<td>0155csem</td>
<td>3D off axis pot. and fields for 1/0 periodic array of dipole rings</td>
<td>83</td>
</tr>
<tr>
<td>0156csem</td>
<td>3D fields on axis from dipole ring magnet</td>
<td>83</td>
</tr>
<tr>
<td>0157csem</td>
<td>3D off axis potential from 3D on axis potential for ring dipole</td>
<td>83</td>
</tr>
<tr>
<td>0158csem</td>
<td>Necessary r_1 of ring dipole to get given field quality in 2D</td>
<td>83</td>
</tr>
<tr>
<td>0159csem</td>
<td>Matrix representation of ladder network with coupling across 2 rungs</td>
<td>82</td>
</tr>
<tr>
<td>0160csem</td>
<td>Correction of hybrid dipole field strength by changing gap</td>
<td>82</td>
</tr>
<tr>
<td>0161csem</td>
<td>Execution of dipole with anomalously small overhang</td>
<td>82</td>
</tr>
<tr>
<td>0162csem</td>
<td>Suggestions for execution of stack design for low overhang dipole</td>
<td>82</td>
</tr>
<tr>
<td>0163csem</td>
<td>Triplet, with $k_1 = k_2, \varphi_1 = \varphi_2$, hard edge, with given L, \bar{f}</td>
<td>82</td>
</tr>
<tr>
<td>0164csem</td>
<td>Design of cos 2φ quadrupole</td>
<td>82</td>
</tr>
<tr>
<td>0165csem</td>
<td>Hard edge solenoid as objective, and comparison of mass with that of hard edge tripllett</td>
<td>82</td>
</tr>
<tr>
<td>0166csem</td>
<td>Steering magnet</td>
<td>82</td>
</tr>
<tr>
<td>0167csem</td>
<td>Linear model of outer pole circle of VSHQ, to calculate strength range, field on pole surface, torque, field in CSEM for split-ring strength adjuster</td>
<td>82</td>
</tr>
<tr>
<td>0168csem</td>
<td>Suitability of matrix, from harmonics pattern from 3 sources, for inversion</td>
<td>82</td>
</tr>
<tr>
<td>0169csem</td>
<td>Excess flux in Gm10</td>
<td>82</td>
</tr>
<tr>
<td>0170csem</td>
<td>Representation of gap between CSEM and steel on sloping side of VSHQ, for use in POISSON-tolerance run</td>
<td>82</td>
</tr>
<tr>
<td>0171csem</td>
<td>Summary of excess flux formulae</td>
<td>82</td>
</tr>
<tr>
<td>0172csem</td>
<td>Extraction of absolute tolerances of VSHQ from POISSON runs</td>
<td>82</td>
</tr>
</tbody>
</table>
Fraction of charge deposited on several surfaces on $V = 0$

"DNA-Project" (Vachette)

Investigation of possible geometries for dipoles and quadrupoles suitable as elements of an e-storage ring

Reprints left at Orsay

Use of HD1P2, VHYBQ6, 7; LEFF

Optimum operating point of CSEM

Effectiveness of CSEM in "unused" corner of 2D box magnet, and in a 3D magnet

Calculation of $\int_{-\infty}^{0} \frac{V(x)dx}{V_0}$ for Gm11

Calculation of $\int_{-\infty}^{0} \frac{V(x)dx}{V_0}$ for Gm11 (more concise)

Excess flux into corner in Gm12

Excess flux into Gm13

Conceptual design procedure for hybrid wiggler with superimposed "uniform" field

Charge deposition in wiggler excited as a dipole

Excess flux in Gm14 and Gm15

Hybrid undulator with superimposed quadrupole field

Practical approximations for flux deposition from charge sheet in Gm16

SC transf. of Gm17, and excess flux, for POLE

Design procedure for a hybrid-hybrid wiggler (ELF #93)

2D hybrid-hybrid design formulae (ELF #94)

Hybrid wiggler with 1/0-thin pole

H^* and F produced by trapezoidal block of CSEM

Calculation of H^* and F produced by "polygonal" block of CSEM

Measurement of magnetic properties of trapezoidal block of CSEM for multiple magnet

Estimate of Leff of hybrid quad without field clamp

Minimization of excitation errors in hybrid quads

$\int B^2 dx$ -- deficiency in midplane of Gm8

Design of CSEM damping wiggler - (for DW1 program)

Summary of excess flux formulae and copies

Calculation of gradient off axis from gradient on axis

Formulae for optimization of volume of ring magnet to produce given field

Program for development of balloon magnet
0204csem Program and printout of optimum dipole ring magnet for given field
0205csem Tolerances that lead to field errors in hybrid U/W
0206csem “Simple flux” into conical surfaces in cyl. geometry
0207csem Ring-magnet design program LA1
0208csem Antisymmetric Undulator to make vertically polarized or circularly polarized light
0209csem Hybrid pole width optimization (neomax)
0210csem CSEM “no center piece” septum magnet
0211csem Thoughts on the design of antisymmetric hybrid W/U
0212csem Antisymmetric hybrid W/U analysis/design
0213csem HDIP5
0214csem Field produced by rectangular charge sheet (87 - Zylin note)
0215csem ∫ Vdx in Gm18 corner
0216csem Representation of hybrid W/U by ladder network
0217csem V, A in Gm19
0218csem SC transformation and fields in Gm20
0219csem Scheme to achieve cancellation of net flux into beam region of U due to change gap
0220csem Flux load on V-bus due to statistical fluctuations in CSEM flux deposition on poles
0221csem Direct flux to midplane due to half-gap change of one pole
0222csem Flux deposition on V = constant surface from magnetic charges, with anisotropic medium
0223csem Even vs. odd number of poles in U/W
0224csem New approximation for flux deposition from charge sheets in Gm16
0225csem Explicit expansion of fields for x → ∞ in Gm16
0226csem Charge deposition from coil on pole in 2D
0227csem An apparent paradox associated with charge deposition from coil on pole in 3D
0228csem “Excess” flux at inside corner of Gm3
0229csem Flux into end of hybrid quad
0230csem End flux in VHBQ (for HQ1)
0231csem VHBQ end flux formulas for comp. progr.
0232csem 2D hybrid U/W that is equivalent to helical hybrid U/W
0233csem “Flux” seen by straight trajectory under one CSEM block pair in pure CSEM undulator
0234csem Measurement of properties of CSEM block to be used in CSEM-iron circuit
0235csem Fields in Gm16

B - 10
A = \int B \cdot B_r \cdot \frac{da}{V_0 |B_r|} \text{ for some geometries between two circular cylinders}

I/\gamma \text{ for Gm21}

Optimization of flux into circular cylinder next to 1/0 plane

V-bus with varying circular cross-section

Flux density in PM assisted V-bus for hybrid quadrupole

\int V ds/V_0 \text{ in field of circular cylinder next to infinite plane}

Correlation functions associated with (1/cosh x), (x/cosh x)

Fourier transforms of (1/cosh x), (x/cosh x)

V-surface to orient homogeneously a block of CSEM

V-surfaces for homogeneous orientation of 2D CSEM ellipse

V-surfaces for homogeneous orientation of 2D CSEM circle

Formulas for calculation of flux induced on surfaces by CSEM in Gm16 geometry

Microtron magnet (for Louis A) (M/C1)

e trapping with PM in ALS pump (ALS1)

Laterally long pure CSEM “quadrupole”

Field on t = constant line in Gm16 (HW4)

Harmonics for CSEM ring with \alpha = m\psi, but externally centered

Multiple aperture hybrid quadrupole system

B_{max} in pole of hybrid quad

HIFQ1

Field inside homogeneously magnetized CSEM rotational ellipsoid

PM assisted electromagnets \rightarrow laced em

Field lines in Gm22

Program for expansion of F in Gm16, and \int V(y)dy, \int V(x)dx

Hybrid buckets
0271csem Design of bucket system (Physics) 86
0272csem Thoughts on CSEM and iron solenoid magnet for Ed Rowe 86
0273csem Excess voltage in Gm16 86
0274csem Excess voltage in Gm16 (see work of 10/86 note) 88
0275csem Ideas on producing strong solenoidal fields with a hybrid CSEM system (for Aladdin user) 86
0276csem Execution of strong hybrid solenoid design 86
0277csem Excitation of cylindrical box magnet/hybrid solenoid 86
0278csem CSEM ring dipole assembled with square blocks 86
0279csem Analysis of low field performance of PM assisted em 86
0280csem HQ1, B_{max} for HQ1 86
0281csem Laud quad 86
0282csem $V = \text{constant surfaces inside CSEM multipole (n} \geq 2)$ 87
0283csem Solenoid fields from CSEM cylinder, axially magnetized (for Ian Brown) 87
0284csem Stan Ruby's problem 87
0285csem New version of bitter map for Gm17 88
0286csem An important theorem, and a new map for Gm17 87
0287csem Manageable integrals for map of Gm17 88
0288csem F_{01} and F_{12} for small n for Gm5 88
0289csem $\int B' \, dz$ for CSEM quad with conical ends 88
0290csem Some excess flux geometries that are very easily analyzed 88
0291csem Fields, flux, etc. in 2D hybrid wiggler with 0 thickness poles 88
0292csem Calculation of flux entering $\mu = \infty$ surfaces 88
0293csem ΔB^* due to displacement of rectangular 2D CSEM block in vacuum 88
0294csem Use of 2D excess flux formulae in cylindrical geometry and for 3D edges 88
0295csem Excess flux into pole in Gm34 88
0296csem Excess flux into Gm35 88
0297csem Preliminary design of hybrid orange spectrometer 88
0298csem Orange spectrometer ray tracing in midplane 88
0299csem Excess flux in Gm2 88
0300csem Efficiency of use of CSEM in Ian B.'s magnet 88
0301csem Hybrid U/W design in dipole geometry 88
0302csem Excess flux in Gm36 88
0303csem Excess flux coefficients/calculation for the end of hybrid multipoles 88
0304csem H^* at edge of CSEM block, with recipe for $3 \ln \frac{z-z_2}{z-z_1}$ 88
0305csem Laced cylindrical electromagnet 88

B - 12
Continuously laced cylindrical magnet
Ian Brown's cylindrical hybrid
Weber/Vrakking magnet
Some points that help to visualize/calculate the force between coil(s)
and block(s) of CSEM
Determination of b for mapping of Gm1 onto Gm37
Tuning block efficiency
Maximum achievable field in hybrid (CSEM and iron) quadrupole
Further work on hybrid quadrupole performance
Shorting ring in hybrid quadrupole
Flux between cylinder next to infinite plane, and that plane
Proper placement of CSEM in adjustable hybrid quadrupole
Cylindrical magnetic bucket system with 1 "must" hole
Direct flux from round block of CSEM with $B_r = \text{constant}$, in
general, and in Gm38
Ellipse with μ_1 inside medium with μ_2
Effect of hole through yoke of spectrometer on field in business
region
Generalization of flux calculation with reciprocity theorem
$\int B_y \cos kzd \, dx$ from individual (error free) CSEM blocks in iron-
free $M' = 4$ insertion device
Steering and displacement of electron beam from individual (error
free) CSEM blocks in iron-free $M' = 4$ insertion device
Summary of steering, displacement, and $\int B_y \cos kzd \, dz$
Shaped bucket pole
Excess flux coefficient for Gm39
Excitation of hybrid quadrupole
Excess flux on 0-thickness pole
Torque and force on uniformly magnetized CSEM cylinder in H
Periodic pole structure SC map
Excess flux formulae for Gm30
Summary of excess flux formulae for Gm3, Gm18, and
G0208cm30
Flux induced by rectangular and horizontal CSEM block between
three circles
Cyclotron magnet
H^* at end of CSEM block
Integral for excess flux calculation
Comments and background for EXCESFL
Fields from charge sheet in xy-plane at $z = 0$

Field perturbation of homogeneous field by sphere

\[2K = \int \frac{B(B_o - B)}{B_o^2} \, dz \] for Gm24

\[2K = \int \frac{B(B_o - B)}{B_o^2} \, dz \] for Gm42

Flux and EFB for corner magnet (Gm24)

At least one focus for any hard edge magnet

First order optics for swap magnet without space charge

First order matrices for bending magnet

Bend magnet with two EFBs parallel to each other

Some optical properties of reflection sweep magnet

Extrapolated penetration for exponential field

Achromatization condition for displacement in reflection magnet

Continuation of 0011ctr

Two-step field distribution to give minimum of extrapolated penetration

Results of transmission magnet and various notes

How to deal with multiple beams in bendplane

Space charge effects on a straight line in phase space

Effects of constant \mathbf{E} on phase space point

Space charge effects in bend beam

Scraping of beam at walls parallel to the midplane (two versions)

Minimum spot size and maximum density in bend magnet

Production of second half of reflection matrix

Analytical bend plane matrix properties

Actual numbers for power deposition normalization

First order matrix in bend plane for \(B_2(x,y) = B(y) \)

Matrix perpendicular to bendplane (two versions)

Trajectories in strip magnet III

Trajectories in strip magnet II (Reference trajectory in midplane)

Trajectories in strip magnet I

Fluxes in Gm25 for three stacked dipoles

Three stacked dipoles with three power supplies

Summary of optics formulae

Eddy currents effects from cylinder excited by multipole field

Conducting cylinder in time dependent homogenous field perpendicular to axis
0034ctr Eddy currents in cylinder in time dependent field parallel to axis 77
0035ctr Strip magnet orientation 77
0036ctr Power density perpendicular to reference trajectory 77
0037ctr New method to calculate power densities, including Gaussian distributions 77
0038ctr Eddy currents in ferromagnetic spherical shells and balls 77
0039ctr Summary of eddy currents formulae 77
0040ctr Transmission through two apertures 77
0041ctr $C = BA$ 77
0042ctr Aperture projection for curved source and drift I 77
0043ctr Aperture projection for curved source and drift II 77
0044ctr Aperture projection 77
0045ctr Transmission through two half apertures 77
0046ctr Transmission through apertures with general m_{11} and m_{12} 77
0047ctr General aperture projection 77
0048ctr Flux exclusion from Gm1 77
0049ctr Superconducting circular pipe in multipole field 77
0050ctr Thoughts on eddy current problem 77
0051ctr A potentially useful conformal transformation 77
0052ctr Superconducting and $\mu = \infty$ elliptical pipe 77
0053ctr Approximation to S-C transform of outside of Gm1 to outside of Gm37 77
0054ctr Eddy current distribution in a special box 77
0055ctr Phase space transform 77
0056ctr Field perturbation by superconducting box 77
0057ctr Shielding bar optimization results 78
0058ctr Steel grid with maximum pumping 77
0059ctr Aperture projection for curved source and drift space, and application 77
0060ctr Absolute duct protection program 77
0061ctr Projection of general duct into starting phase space, for general transform matrix 77
0062ctr Eddy current fields from D3, neutral beam boxes (and other notes) 77
0063ctr Pressure distribution in neutralizer tube 77
0064ctr Properties of molecular flow in general duct 78
0065ctr Probability treatment of molecular flow in general duct 77
0066ctr Optimization of flow role through neutralizer 78
0067ctr Chevron transmission coefficient 78
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>Transmission of fields through shielding bars</td>
</tr>
<tr>
<td>78</td>
<td>Field penetration through shielding bars</td>
</tr>
<tr>
<td>78</td>
<td>Duct with changing cross-section (A) and circumference (U)</td>
</tr>
<tr>
<td>77</td>
<td>Temperature rise in insertion device, two layer structure</td>
</tr>
<tr>
<td>77</td>
<td>Transmission numbers through duct, with absolute protection</td>
</tr>
<tr>
<td>77</td>
<td>Angular distribution for 2D flow, if 3D distribution follows Lambert's law (Original and Corrected version)</td>
</tr>
<tr>
<td>78</td>
<td>Absolute protection of tilted duct</td>
</tr>
<tr>
<td>78</td>
<td>What is (\frac{\partial^2 T}{\partial m_{11}^2}) for (m_{11} = \partial)</td>
</tr>
<tr>
<td>78</td>
<td>Transmission through aperture with general (m_{11}, m_{12}), for (T159)</td>
</tr>
<tr>
<td>78</td>
<td>Simple representation of “streaming” into duct</td>
</tr>
<tr>
<td>78</td>
<td>Behavior of eddy current caused power dissipation</td>
</tr>
<tr>
<td>78</td>
<td>Eddy current power dissipation in thin walled, infinitely long cylinder with field parallel and perpendicular to axis</td>
</tr>
<tr>
<td>78</td>
<td>Eddy current — energy deposition</td>
</tr>
<tr>
<td>78</td>
<td>Eddy current — energy deposition</td>
</tr>
<tr>
<td>78</td>
<td>Working formulas for eddy current energy deposition</td>
</tr>
<tr>
<td>78</td>
<td>Power density perpendicular beam</td>
</tr>
<tr>
<td>78</td>
<td>Extreme location of full energy</td>
</tr>
<tr>
<td>78</td>
<td>Eddy current energy deposition in whale bone pipe structure</td>
</tr>
<tr>
<td>78</td>
<td>(T159) program for shielding bar calculations</td>
</tr>
<tr>
<td>78</td>
<td>Pressure changes due to change of conductance or pumping speed</td>
</tr>
<tr>
<td>78</td>
<td>Summary of formulas of interest for 2D-shielding</td>
</tr>
<tr>
<td>78</td>
<td>Two shielding problems</td>
</tr>
<tr>
<td>78</td>
<td>Magnetic field inside eddy current shielded box</td>
</tr>
<tr>
<td>78</td>
<td>Loss of beam on poleface</td>
</tr>
<tr>
<td>78</td>
<td>Feasibility of decreasing power density at calorimeter at the expense of some transmission loss at symmetric collimator down, by choosing appropriate focal point</td>
</tr>
<tr>
<td>78</td>
<td>Calorimeter power density and collimator transmission versus FP</td>
</tr>
<tr>
<td>78</td>
<td>Calorimeter power density and collimator transmission versus FP for various (z_{00})</td>
</tr>
<tr>
<td>78</td>
<td>Absolute duct protection geometry in vertical direction</td>
</tr>
<tr>
<td>78</td>
<td>Ellipse made of superconductor, or steel, or both</td>
</tr>
<tr>
<td>78</td>
<td>Cylindrical shielding with conductors, steel, conducting steel</td>
</tr>
<tr>
<td>78</td>
<td>Tapered shielding finger system with maximum conductance</td>
</tr>
<tr>
<td>78</td>
<td>Realistic (\mu = \infty) finger shielding factor</td>
</tr>
<tr>
<td>78</td>
<td>Shielding of inside of Gm40 against dipole field</td>
</tr>
</tbody>
</table>
0101ctr T-measurement in plate 78
0102ctr A useful procedure for measurement of total power in an isolated ion species on D3 injector beam dump 78
0103ctr Point on inclined plate where power density is independent (to 1st order) of \(z^0 \) 78
0104ctr Thermistor location procedure 78
0105ctr Temperature rise in solid insertion device plate 76
0106ctr Temperature distribution on ion dump resulting from non-uniform energy deposition 78
0107ctr Summary of TI59 runs to determine best location for thermistor array on beam dump 79
0108ctr Aperture projection program for TI59 79
0109ctr Effect of collimator on power density in beam dump 79
0110ctr Beam dump sensors problem 79
0111ctr Insertion device power density on axis perpendicular to beam for ZEPHYR 80
0001u-w Analysis of bus system 85
0002u-w Analysis of undulator with V-busses 85
0003u-w Formulas for new POLE/HH progr. 85
0004u-w Summary of formulas for new POLE/HH progr. 85
0005u-w Optimization of wiggler coil area 85
0006u-w Flux into pole Gm23 from end of CSEM block 85
0007u-w Design of pole of EM wiggler with rectangular coil 85
0008u-w 2nd optimization of EM wiggler pole shape 85
0009u-w Trajectory displacement due to a single pole (above and below midplane), and \(\pm \) pairs of poles, of an iron wiggler array 85
0010u-w Design of wiggler taper adjustment system that avoids trajectory displacement 85
0011u-w Trajectory displacement due to \(\gamma \)-change in wiggler consistency of 12 1 modules 85
0012u-w \[\int_{-\infty}^{+\infty} B(z) z^2 dz \] for \(B(-z) = B(z) \) from ELF wiggler 85
0013u-w Steering strategy for ATA wiggler: definition of problem 85
0014u-w Summary of work on displacement in EM w, and methods to avoid it (chronologically) 85
0015u-w Translation of excitation patterns in EM W/U into CSEM needed for excitation of hybrid U/W 85
0016u-w Recent work talk, 3/26/85 85
0017u-w Error of pattern 1-2 3-4 3-2 1 85
<table>
<thead>
<tr>
<th>Document</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0018u-w</td>
<td>Detailed formulae for design of tapered EM U/W (with no focusing) that gives no deflection and displacement</td>
</tr>
<tr>
<td>0019u-w</td>
<td>Formulas for design of tapered W/U: asymmetric derivation</td>
</tr>
<tr>
<td>0020u-w</td>
<td>Tapered W/U excitation with patterns encompassing an even or an odd number of poles (displacement, but there are errors)</td>
</tr>
<tr>
<td>0021u-w</td>
<td>Flux traversed by e when in flat region of U/W with iron poles</td>
</tr>
<tr>
<td>0022u-w</td>
<td>Flux traversed by e in U/W with iron poles</td>
</tr>
<tr>
<td>0023u-w</td>
<td>Parabolic wiggler profile with $\gamma = $ constant: comparison between continuous field amplitude change, ± pole pairs with same excitation, and poles with individual excitation</td>
</tr>
<tr>
<td>0024u-w</td>
<td>Achievable field in EM U with rectangular pole and coil</td>
</tr>
<tr>
<td>0025u-w</td>
<td>Different formulation of achievable B in EM with straight pole and coil</td>
</tr>
<tr>
<td>0026u-w</td>
<td>Achievable field in EM U with shaped pole and rectangular coil</td>
</tr>
<tr>
<td>0027u-w</td>
<td>Achievable field in EM U with shaped pole and two rectangular coils</td>
</tr>
<tr>
<td>0028u-w</td>
<td>Achievable field in EM U with shaped pole and coil that fills all non-iron space between poles</td>
</tr>
<tr>
<td>0029u-w</td>
<td>Achievable field in CSEM assisted EM U with rectangular pole and coil</td>
</tr>
<tr>
<td>0030u-w</td>
<td>Notation in 8/85 notes on EM U with straight shaped poles, and computer runs</td>
</tr>
<tr>
<td>0031u-w</td>
<td>Vertical steering due to horizontal displacement of Ted poles</td>
</tr>
<tr>
<td>0032u-w</td>
<td>Effect of steering in the presence of focusing</td>
</tr>
<tr>
<td>0033u-w</td>
<td>Calculation of flux associated with horizontal steering</td>
</tr>
<tr>
<td>0034u-w</td>
<td>Displacement of electron beam in flat part of undulator/wiggler for $\gamma = $ constant</td>
</tr>
<tr>
<td>0035u-w</td>
<td>Excitation pattern for U/W with focusing</td>
</tr>
<tr>
<td>0036u-w</td>
<td>Switching from U/W excitation pattern 1-2 1 to 1-3 3-1</td>
</tr>
<tr>
<td>0037u-w</td>
<td>A possible reason for the increase of $\Delta B/B$ with g/λ in hybrid undulator/wiggler</td>
</tr>
<tr>
<td>0038u-w</td>
<td>Overlapping area of straight line poles of SU</td>
</tr>
<tr>
<td>0039u-w</td>
<td>Design formulas and progr. for (PM assisted) strong EM U/W</td>
</tr>
<tr>
<td>0040u-w</td>
<td>Coil system to measure “non-zero-ness” of field integrals of Ted poles excited with flux = 0 pattern</td>
</tr>
<tr>
<td>0041u-w</td>
<td>Detailed flux analysis in pole of PM assisted em U/W</td>
</tr>
<tr>
<td>0042u-w</td>
<td>OHFX</td>
</tr>
<tr>
<td>0043u-w</td>
<td>Implementation of non-linear tapers with order 4 binomial coefficients</td>
</tr>
<tr>
<td>Document Number</td>
<td>Title</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>0044u-w</td>
<td>Quadrupole field produced by canted CSEM blocks in pure CSEM U/W</td>
</tr>
<tr>
<td>0045u-w</td>
<td>Propagation of perturbations along single string of hybrid U/W poles</td>
</tr>
<tr>
<td>0046u-w</td>
<td>Single string of hybrid undulator/wiggler poles with C_1, C_2, C_3</td>
</tr>
<tr>
<td>0047u-w</td>
<td>Low energy resonance equi. for synchrotron/FEL radiation</td>
</tr>
<tr>
<td>0048u-w</td>
<td>Design of end of hybrid W/U without coil, Method 1</td>
</tr>
<tr>
<td>0049u-w</td>
<td>Design of end of hybrid W/U without coil, Method 2</td>
</tr>
<tr>
<td>0050u-w</td>
<td>Design of end of hybrid W/U without coil, Method 3</td>
</tr>
<tr>
<td>0051u-w</td>
<td>Steering in hybrid U/W due to easy axis error</td>
</tr>
<tr>
<td>0052u-w</td>
<td>Flux from Paladin CSEM blocks to midplane</td>
</tr>
<tr>
<td>0053u-w</td>
<td>Steering/displacement correction strategy #1</td>
</tr>
<tr>
<td>0054u-w</td>
<td>Steering correction systems</td>
</tr>
<tr>
<td>0055u-w</td>
<td>Mathematical representation of U/W fields</td>
</tr>
<tr>
<td>0056u-w</td>
<td>Explicit comparison between two different U/W with Ted poles</td>
</tr>
<tr>
<td>0057u-w</td>
<td>Placement of CSEM in hybrid to get binomial order three potentials on poles</td>
</tr>
<tr>
<td>0058u-w</td>
<td>Analysis of flux into pole of prototype strong em U</td>
</tr>
<tr>
<td>0059u-w</td>
<td>Comp. runs (by Bob Lown) for end correction of U with CSEM alone</td>
</tr>
<tr>
<td>0060u-w</td>
<td>Quad excited as dipole</td>
</tr>
<tr>
<td>0061u-w</td>
<td>“Quadrupole” module excitation for production of helical undulator field</td>
</tr>
<tr>
<td>0062u-w</td>
<td>Fields in helical U consisting of quadrupole modules excited as dipoles</td>
</tr>
<tr>
<td>0063u-w</td>
<td>A simple, but better, model for the fields in modular helical undulator, and the remitting harmonics</td>
</tr>
<tr>
<td>0064u-w</td>
<td>Optimum deposition of CSEM in strong em U</td>
</tr>
<tr>
<td>0065u-w</td>
<td>Peak field, range, that are achievable in Paladin-type U</td>
</tr>
<tr>
<td>0066u-w</td>
<td>Modeling functions for V, excess flux in hybrid undulator pole</td>
</tr>
<tr>
<td>0067u-w</td>
<td>W-end correction with coil</td>
</tr>
<tr>
<td>0068u-w</td>
<td>W/U optics correction</td>
</tr>
<tr>
<td>0069u-w</td>
<td>Hybrid U/W steering with coils on side</td>
</tr>
<tr>
<td>0070u-w</td>
<td>Capacities between pole of hybrid W and midplane, and other poles</td>
</tr>
<tr>
<td>0071u-w</td>
<td>EM W/U design (for Boscolo)</td>
</tr>
<tr>
<td>0072u-w</td>
<td>Some general thoughts about 1st order optics - corrected W/U</td>
</tr>
<tr>
<td>0073u-w</td>
<td>Calculation for 1st order lumped symm. systems [version 3]</td>
</tr>
<tr>
<td>0074u-w</td>
<td>Calculation for 1st order lumped symm. systems [version 2]</td>
</tr>
<tr>
<td>0075u-w</td>
<td>Calculation for 1st order lumped symm. systems [version 1]</td>
</tr>
</tbody>
</table>
Execution of design of 1st order W/U compensation system, to 1st order in wiggler focusing

Path length error in 1 $\lambda_u \rightarrow$ phase shift

Effect of small angle between two halves of U/W

Capacity between ID poles, next to midplane, for poles filling all available space

Signal from 2d easy axis error measurement apparatus

Propagation of field errors on 3-C ladder system

Error in ID field integral caused by gap error of one pole and CSEM orientation error close to midplane

$\int B_y dz$ produced by easy axis orientation error of “short” CSEM blocks

Steering caused by end-rotation

Zero-steering insertion device entry system with one, and two, parameter

Formulas for insertion device entry design, and one for design of end of ID

Insertion device Parameter Calculation WH-RS-01 (Roland Savoy)

Steering produced by two tuners and use to tune U

Coil to measure steering in U/W

Excitation of semi-infinite U in vicinity of an end, and flux into pole 0

Decay eigenvalues for three-capacitor ladder array

Steering in hybrid U from indirect fields

Systematic classification of perturbations and tolerances in hybrid ID

Indirect flux contributions to displacement without steering

Direct flux sources for generation of displacement without steering

Excess coefficient for $\int F^{-2} dz$ on pole of Gm16

Calculation of steering in hybrid insertion device from $\lambda/2$ model measurements

2D force and torque on CSEM rotators

Effect of pole saturation in ID

Calculation of $\frac{B(g)}{B(g_0)}$ and $\frac{\Delta B(g)}{\Delta B(g_0)}$

U trajectory and radiation

Femtosecond time resolution with a two undulator system (discussed with S. Ruby and K. Halbach)

Helical U with "quads"

Geometry of central pole
0105u-w Asymmetric W
0106u-w C_0 / C_2 as function of gap for small gaps
0107u-w Flux split and excess potential drop in Gm16
0108u-w Design of hybrid asymmetric (Goulon) wiggler
0109u-w Entry into Goulon-W
0110u-w Entry into Goulon-W
0111u-w Entry into Goulon-W
0112u-w Displacement-free iron free undulator for $M' = 4$
0113u-w Decay cond. for Goulon-W
0114u-w Line integrals over fields produced by line changes
0115u-w Steering from a round finite length block of CSEM
0116u-w Displacement from around finite length block of CSEM
0117u-w Steering without displacement with 2 round blocks of CSEM
0118u-w Coil system to measure steering between field free region at end of ID, and periodic part of ID
0119u-w Steering with flooding pole 0
0120u-w Gradient measurement in ID
0121u-w Displacement-free entry system for “2-wire” helical U
0122u-w Procedure to correct ends of ID
0123u-w Determination of B/H_c of CSEM with Helmholtz coil
0124u-w Scalar potential for 3D ID fields
0125u-w 3D scalar potential for saturation caused fields in ID, Vers. 2
0126u-w 3D scalar potential for saturation caused fields in ID, Vers. 1
0127u-w Direct flux from CSEM corrector in ID
0128u-w “Impedance” for hybrid ID
0129u-w Flux transport along axial direction of EM wiggler
0130u-w Flux into top of rectangular block on $V = 1$
0131u-w Excess flux into pole, and flux into side of Gm40
0132u-w Effects of excess potential drop on flux into side of pole
0133u-w Error of flux calculation for finite pole width with excess flux coefficient
0134u-w NPOLE
0135u-w Wiggler parameter K definitions
0136u-w Simple analytical model for fields from one pole of hybrid ID
0137u-w $\rho, A_0/B_1$ for hybrid insertion device
0138u-w Connection between undulator field errors and optical phase
0139u-w Comparison of first and second order contributions of error fields to phase shift

B - 21
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0140u-w</td>
<td>Normalization factors ε_1 and ε_2 for comparison of first order to second order phase shifts, with analytical model for $b(z)$</td>
</tr>
<tr>
<td>0141u-w</td>
<td>Least square fit of $f(z)$ with $a + bz$ in $0 \leq z \leq 1$</td>
</tr>
<tr>
<td>0142u-w</td>
<td>Magnetic measurement and data reduction to identify some specific (undesirable) error field consequences (Talk ANL)</td>
</tr>
<tr>
<td>0143u-w</td>
<td>Field integrals for iron-free ID</td>
</tr>
<tr>
<td>0144u-w</td>
<td>Scalar Potential for 3D Fields in "Business Region" of insertion device with finite width poles</td>
</tr>
<tr>
<td>0145u-w</td>
<td>Consequences of Field Perturbations in ID</td>
</tr>
<tr>
<td>0001misc</td>
<td>Solenoid lens, different derivation</td>
</tr>
<tr>
<td>0002misc</td>
<td>Solenoid lens, solenoid field on axis</td>
</tr>
<tr>
<td>0003misc</td>
<td>Multipole shielding</td>
</tr>
<tr>
<td>0004misc</td>
<td>Velocity selector</td>
</tr>
<tr>
<td>0005misc</td>
<td>Homopolar ion source</td>
</tr>
<tr>
<td>0006misc</td>
<td>Matrix describing 2nd order effects to 2nd order, in one dimension</td>
</tr>
<tr>
<td>0007misc</td>
<td>"Resonances" in r and z directions, without coupling</td>
</tr>
<tr>
<td>0008misc</td>
<td>Beam optics in periodic machine, with no acceleration</td>
</tr>
<tr>
<td>0009misc</td>
<td>Weak focusing</td>
</tr>
<tr>
<td>0010misc</td>
<td>Phase space matching of ellipses and parallelograms (2D phase space only)</td>
</tr>
<tr>
<td>0011misc</td>
<td>Matching of two beam ellipses with single lens</td>
</tr>
<tr>
<td>0012misc</td>
<td>Description and some simple properties of phase space parallelograms</td>
</tr>
<tr>
<td>0013misc</td>
<td>Doublet optimization</td>
</tr>
<tr>
<td>0014misc</td>
<td>Transmission of periodic sequence of quadrupoles</td>
</tr>
<tr>
<td>0015misc</td>
<td>Bad method</td>
</tr>
<tr>
<td>0016misc</td>
<td>Gas filled magnetic spectrometer</td>
</tr>
<tr>
<td>0017misc</td>
<td>Velocity selector</td>
</tr>
<tr>
<td>0018misc</td>
<td>Homogeneous field velocity separator with fringe fields to first order</td>
</tr>
<tr>
<td>0019misc</td>
<td>Strong focusing vel. separator to first order (only strong focus modification)</td>
</tr>
<tr>
<td>0020misc</td>
<td>Phase space matrix, and achromatic spot size</td>
</tr>
<tr>
<td>0021misc</td>
<td>"Optimum" dispersive system</td>
</tr>
<tr>
<td>0022misc</td>
<td>Optimized dispersive system</td>
</tr>
<tr>
<td>0023misc</td>
<td>Polynomial $a_0x + a_1x^2 + a_2x^3 = y$ having same y value for $x_1 = 1$, $x_2 = \frac{1+c}{2}$, $x_3 = c$</td>
</tr>
<tr>
<td>0024misc</td>
<td>Vel. spectrometer</td>
</tr>
<tr>
<td>0025misc</td>
<td>Vel. spectrometer</td>
</tr>
</tbody>
</table>
0026misc Twister, achromatic 71
0027misc Achromatic twister 71
0028misc Twister condition 71
0029misc Easy to design twister with periodic system 71
0030misc Four quadrupole twister 70
0031misc Impossibility to make any twister (i.e. it does not have to have a simple drift space) with symmetrical system having only four magnets 71
0032misc Impossibility to make symmetrical twister with 4 thin lenses 71
0033misc First order twister-theory 70
0034misc Achromatic spot size in both planes 71
0035misc Solenoid to first order 71
0036misc Long, periodic, symmetric, beam transport line 71
0037misc Elimination of singularities of integrand at ends of integration interval 69
0038misc Linear least squares with erroneous matrix 71
0039misc Fierz's planet orbits 71
0040misc HAT-detector 72
0041misc "Stiff catenary" = "axially stressed beam" 72
0042misc Network to give 1 + \(\mu\) plot (Gm33) 72
0043misc "Harmonic polynomials" for \(V\) in cylindrical geometry 70
0044misc Exact \(\sqrt{\lambda}/4\) plate" from two plates 72
0045misc Integrator drift 72
0046misc "Buffed" doublett 73
0047misc Beam bending 73
0048misc Vibrating beam, right end free, left end clamped 73
0049misc Different method to derive formula for curvature of a mapped curve 73
0050misc Change of curvature along tangent 75
0051misc Heat conduction in cylindrical shells 73
0052misc Foil thickness measurement with specular reflection measurements 72
0053misc Dimensional analysis of space charge flow 73
0054misc Bending angle for particle in \(\phi\)-independent field 73
0055misc \(\varepsilon_1\) and \(\varepsilon_2\) relaxation 73
0056misc Optimum overrelaxation factor 73
0057misc \(\Delta\)-properties 74
0058misc Optimization of \(\varepsilon\) for linearized \(P_e\)-cycle 74
0059misc Difference equations from variational principle, specifically for geoth. transform with \(k^2\) \(V\) term 74
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0060misc</td>
<td>Determination of dominant eigenvalues and associated quantities</td>
<td>74</td>
</tr>
<tr>
<td>0061misc</td>
<td>$\int V^\nu , d\nu$ over tetrahedron, for $V = \text{linear function of } x, y, z$</td>
<td>74</td>
</tr>
<tr>
<td>0062misc</td>
<td>$\int r \nu^\nu , da$ over triangle for $\nu_\nu = \text{linear function of } x, y$</td>
<td>74</td>
</tr>
<tr>
<td>0063misc</td>
<td>Current deposition in POISSON</td>
<td>74</td>
</tr>
<tr>
<td>0064misc</td>
<td>Explicit expressions for geothermal difference equations</td>
<td>73</td>
</tr>
<tr>
<td>0065misc</td>
<td>Kerr cell apodizer</td>
<td>74</td>
</tr>
<tr>
<td>0066misc</td>
<td>Potential distribution for 2D elst. lens</td>
<td>74</td>
</tr>
<tr>
<td>0067misc</td>
<td>2D and cylindrical elst. lens</td>
<td>74</td>
</tr>
<tr>
<td>0068misc</td>
<td>Increase of convergence rate of sums with integration</td>
<td>74</td>
</tr>
<tr>
<td>0069misc</td>
<td>Determination of width of distribution function with slit</td>
<td>74</td>
</tr>
<tr>
<td>0070misc</td>
<td>$\int_\Gamma W^{*N-n} , W^n , dW$</td>
<td>74</td>
</tr>
<tr>
<td>0071misc</td>
<td>Young overrelaxation</td>
<td>71</td>
</tr>
<tr>
<td>0072misc</td>
<td>Push-pull effect from two parameters with nearly identical effects</td>
<td>74</td>
</tr>
<tr>
<td>0073misc</td>
<td>Input impedance of “bridged” op-amplifier</td>
<td>74</td>
</tr>
<tr>
<td>0074misc</td>
<td>Minimization of $\int y^2(x) , dx$, $y =$ joined straight lines in equidistant x-intervals (re-creation of 1966 work)</td>
<td>75</td>
</tr>
<tr>
<td>0075misc</td>
<td>Fast conventional Fourier series</td>
<td>75</td>
</tr>
<tr>
<td>0076misc</td>
<td>Evaluation of polynomial with real coefficients, but complex argument</td>
<td>75</td>
</tr>
<tr>
<td>0077misc</td>
<td>Simpler derivation of evaluation of polynomial of z</td>
<td>76</td>
</tr>
<tr>
<td>0078misc</td>
<td>Analytical $F(z)$ in upper half-plane from $F(x)$</td>
<td>75</td>
</tr>
<tr>
<td>0079misc</td>
<td>Analytical $F(z)$ in upper half-plane from $A(x)$; $V(x)$ (new version)</td>
<td>75</td>
</tr>
<tr>
<td>0080misc</td>
<td>Propagation of sound in layered structure</td>
<td>75</td>
</tr>
<tr>
<td>0081misc</td>
<td>Equation of motion in S-C-mapped geometry</td>
<td>75</td>
</tr>
<tr>
<td>0082misc</td>
<td>Two-plane imaging with doublet</td>
<td>75</td>
</tr>
<tr>
<td>0083misc</td>
<td>Phase space detected by detector of width $2x_0$</td>
<td>74</td>
</tr>
<tr>
<td>0084misc</td>
<td>Periodic doublet system for beam transport over long distances</td>
<td>75</td>
</tr>
<tr>
<td>0085misc</td>
<td>Representation of matrix by ideal lens and 2 drift spaces</td>
<td>75</td>
</tr>
<tr>
<td>0086misc</td>
<td>Hippi modification = design of strong focusing bending magnet</td>
<td>75</td>
</tr>
<tr>
<td>0087misc</td>
<td>Estimate of necessary aperture for Hippi-beam transport</td>
<td>75</td>
</tr>
<tr>
<td>0088misc</td>
<td>Proof that necessary aperture for infinite periodic beam transport system does not necessarily represent an upper limit for aperture of phase space matching system for same beam</td>
<td>75</td>
</tr>
<tr>
<td>0089misc</td>
<td>Buffered doubletts, distributed and lumped elements as cell for periodic system</td>
<td>75</td>
</tr>
<tr>
<td>0090misc</td>
<td>Graphical representation of transform. of phase space ellipse through drift space and thin lens</td>
<td>75</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>0091misc</td>
<td>Computation and graphical representation of transformation of</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>phase space matrix through drift space and thin lens (from Steffer)</td>
<td></td>
</tr>
<tr>
<td>0092misc</td>
<td>PEP-interaction region solenoid compensation schemes</td>
<td>75</td>
</tr>
<tr>
<td>0093misc</td>
<td>Properties of total H-system that has pure drift matrix</td>
<td>75</td>
</tr>
<tr>
<td>0094misc</td>
<td>$M_x = M_y$ system</td>
<td>75</td>
</tr>
<tr>
<td>0095misc</td>
<td>Beam transport system with axisymmetric transfer matrices</td>
<td>75</td>
</tr>
<tr>
<td>0096misc</td>
<td>2 identical systems, but with opposite polarities, in series</td>
<td>76</td>
</tr>
<tr>
<td>0097misc</td>
<td>Triplett telescope (thin lenses)</td>
<td>75</td>
</tr>
<tr>
<td>0098misc</td>
<td>Optimization of $n = 1$, two compensated coil system for harmonic</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>analysis</td>
<td></td>
</tr>
<tr>
<td>0099misc</td>
<td>Effect of field errors on observation in detector plane</td>
<td>75</td>
</tr>
<tr>
<td>0100misc</td>
<td>Analytical continuation of $1/(z - a)$ with N-term Taylor series</td>
<td>75</td>
</tr>
<tr>
<td>0101misc</td>
<td>Schwarz's formula, with z_0 inside or outside circle</td>
<td>75</td>
</tr>
<tr>
<td>0102misc</td>
<td>Some thoughts on analytical continuation for measurement evaluation</td>
<td>75</td>
</tr>
<tr>
<td>0103misc</td>
<td>Coil structure adjustment of 2D magnetic measurements</td>
<td>75</td>
</tr>
<tr>
<td>0104misc</td>
<td>Trajectories in some bending magnets</td>
<td>75</td>
</tr>
<tr>
<td>0105misc</td>
<td>Location of minimum aperture of 2D beam</td>
<td>75</td>
</tr>
<tr>
<td>0106misc</td>
<td>2D parallel duct as a virtual leak</td>
<td>75</td>
</tr>
<tr>
<td>0107misc</td>
<td>Properties of tape wound coil geometry</td>
<td>75</td>
</tr>
<tr>
<td>0108misc</td>
<td>Parabola extremum finder and equation solver</td>
<td>75</td>
</tr>
<tr>
<td>0109misc</td>
<td>Lawson's ring</td>
<td>75</td>
</tr>
<tr>
<td>0110misc</td>
<td>Simple method to determine location of focal plane of optical system</td>
<td>75</td>
</tr>
<tr>
<td>0111misc</td>
<td>Retroreflecting optical system</td>
<td>75</td>
</tr>
<tr>
<td>0112misc</td>
<td>Search routine for maximum finder</td>
<td>76</td>
</tr>
<tr>
<td>0113misc</td>
<td>An interesting data analysis and error analysis problem</td>
<td>76</td>
</tr>
<tr>
<td>0114misc</td>
<td>3 ways to calculate Fourier coefficients</td>
<td>76</td>
</tr>
<tr>
<td>0115misc</td>
<td>Trajectory with air resistance; slightly different approach</td>
<td>77</td>
</tr>
<tr>
<td>0116misc</td>
<td>Trajectory with air resistance</td>
<td>76</td>
</tr>
<tr>
<td>0117misc</td>
<td>Eriter Maclanrim formula derivation</td>
<td>76</td>
</tr>
<tr>
<td>0118misc</td>
<td>Expansions in γ_0</td>
<td>76</td>
</tr>
<tr>
<td>0119misc</td>
<td>Trajectory with curvature concept</td>
<td>76</td>
</tr>
<tr>
<td>0120misc</td>
<td>Particle trajectories in $E + B$ field with $E_\phi = 0$, $B_\phi = 0$</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>with Lagrange function</td>
<td></td>
</tr>
<tr>
<td>0121misc</td>
<td>Particle trajectories in $E + B$ field with $E_\phi = 0$, $B_\phi = 0$</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>with equation of motion</td>
<td></td>
</tr>
<tr>
<td>0122misc</td>
<td>Particle trajectories in $E + B$ field with $E_z = 0$, $B_z = 0$</td>
<td>76</td>
</tr>
<tr>
<td>0123misc</td>
<td>1st order "radial" particle trajectory in electric field</td>
<td>76</td>
</tr>
<tr>
<td>0124misc</td>
<td>Coefficients of polynomial after factoring one or two roots (Horner)</td>
<td>76</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>0125misc</td>
<td>More sophisticated model for integration of $x'' \bar{x} + x' \nu' + ax\nu'' = 0$</td>
<td>76</td>
</tr>
<tr>
<td>0126misc</td>
<td>Expansion of solution of $-2Uy'' = (1 + y^2)(U'_x y' - U'_y)$ about starting point</td>
<td>76</td>
</tr>
<tr>
<td>0127misc</td>
<td>Self-consistent potential and field in Gm1-mesh</td>
<td>76</td>
</tr>
<tr>
<td>0128misc</td>
<td>Momentum-derivative of matrix elements of magnetic beam transport system</td>
<td>76</td>
</tr>
<tr>
<td>0129misc</td>
<td>Chromaticity of axisymmetry condition of “my” 4-pole system</td>
<td>76</td>
</tr>
<tr>
<td>0130misc</td>
<td>Hydrodynamic lift</td>
<td>76</td>
</tr>
<tr>
<td>0131misc</td>
<td>Numbers, and their application, for symmetrical air foil NACA 0009</td>
<td>76</td>
</tr>
<tr>
<td>0132misc</td>
<td>Numerical integration of $y'' = f(x, y, y')$</td>
<td>76</td>
</tr>
<tr>
<td>0133misc</td>
<td>Lorentz transformation of plane e.m. wave</td>
<td>77</td>
</tr>
<tr>
<td>0134misc</td>
<td>S-C-transform of Gm1</td>
<td>77</td>
</tr>
<tr>
<td>0135misc</td>
<td>POISSON potentials for one string of points between equi potentials</td>
<td>77</td>
</tr>
<tr>
<td>0136misc</td>
<td>Two different ways to evaluate Fourier coefficients from data</td>
<td>77</td>
</tr>
<tr>
<td>0137misc</td>
<td>Lines of equal phase shift in source for point detector (for B. Billard)</td>
<td>77</td>
</tr>
<tr>
<td>0138misc</td>
<td>Coordinate transformation caused by reflections in multiple 2D mirror system</td>
<td>77</td>
</tr>
<tr>
<td>0139misc</td>
<td>Coordinate transformation caused by reflections off mirrors and transmission through interfaces between different media</td>
<td>77</td>
</tr>
<tr>
<td>0140misc</td>
<td>A new method for matrix inversion</td>
<td>78</td>
</tr>
<tr>
<td>0141misc</td>
<td>A property of 3D trajectories in 2D magnetic field</td>
<td>78</td>
</tr>
<tr>
<td>0142misc</td>
<td>Mathematics of Moirce patterns</td>
<td>78</td>
</tr>
<tr>
<td>0143misc</td>
<td>1st order optics with $\Delta \rho / \rho$ and ΔL</td>
<td>79</td>
</tr>
<tr>
<td>0144misc</td>
<td>Additional considerations about 1st order optics with $\Delta \rho / \rho$ and ΔL</td>
<td>79</td>
</tr>
<tr>
<td>0145misc</td>
<td>Algorithm for computation of Taylor series coefficients of $F(z) = \left(\sum_{n=0}^{N} A_n z^n \right)^m$</td>
<td>79</td>
</tr>
<tr>
<td>0146misc</td>
<td>Energy in CM system of two colliding particles</td>
<td>79</td>
</tr>
<tr>
<td>0147misc</td>
<td>Local interpolation with continuous function and first derivative</td>
<td>79</td>
</tr>
<tr>
<td>0148misc</td>
<td>“Reverse” parabola equ. solver, and generalization</td>
<td>79</td>
</tr>
<tr>
<td>0149misc</td>
<td>Path length aberration for strip magnet</td>
<td>79</td>
</tr>
<tr>
<td>0150misc</td>
<td>Phase space matrix; diff. equ. for envelope, with acceleration and space charge</td>
<td>79</td>
</tr>
<tr>
<td>0151misc</td>
<td>Reference trajectory and first order matrices in linear undulator</td>
<td>79</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>0152misc</td>
<td>Minimum beam size in system described by $M = \begin{pmatrix} \cos \phi & \sin \phi / k \ -k \sin \phi & \cos \phi \end{pmatrix}$</td>
<td>79</td>
</tr>
<tr>
<td>0153misc</td>
<td>Fourier series/transform facts, for FFT use</td>
<td>79</td>
</tr>
<tr>
<td>0154misc</td>
<td>EFB of dipole to produce desired beam spot location</td>
<td>80</td>
</tr>
<tr>
<td>0155misc</td>
<td>Power density produced on target by scanning</td>
<td>80</td>
</tr>
<tr>
<td>0156misc</td>
<td>Scanner optics</td>
<td>80</td>
</tr>
<tr>
<td>0157misc</td>
<td>Combination of scanning dipole with quadrupole to correct chromatic aberration of center trajectory</td>
<td>80</td>
</tr>
<tr>
<td>0158misc</td>
<td>Scanning properties of hard edge strip magnet</td>
<td>80</td>
</tr>
<tr>
<td>0159misc</td>
<td>Scanning caused by hard edge magnet with circular pole</td>
<td>80</td>
</tr>
<tr>
<td>0160misc</td>
<td>Exact equ. of motion in 2D multipole field</td>
<td>77</td>
</tr>
<tr>
<td>0161misc</td>
<td>Ray tracing in oriented wedge dipole-quadrupole (Ray's quad)</td>
<td>80</td>
</tr>
<tr>
<td>0162misc</td>
<td>2D multipole transmitter</td>
<td>80</td>
</tr>
<tr>
<td>0163misc</td>
<td>Strip transmission magnet for given deflection of two given in species</td>
<td>80</td>
</tr>
<tr>
<td>0164misc</td>
<td>Beam dump with arbitrary orientation</td>
<td>80</td>
</tr>
<tr>
<td>0165misc</td>
<td>Application of Bernoulli's equ. to water pipe system</td>
<td>80</td>
</tr>
<tr>
<td>0166misc</td>
<td>Trajectory displacement because of soft edge, composed to hard edge of magnet</td>
<td>80</td>
</tr>
<tr>
<td>0167misc</td>
<td>General midplane ray tracing with homog. fields, and straight and circular boundaries</td>
<td>80</td>
</tr>
<tr>
<td>0168misc</td>
<td>TRACE</td>
<td>80</td>
</tr>
<tr>
<td>0169misc</td>
<td>Axisymmetric quadrupole quadruplett</td>
<td>80</td>
</tr>
<tr>
<td>0170misc</td>
<td>Aperture projection into starting phase space for lumped optical system</td>
<td>80</td>
</tr>
<tr>
<td>0171misc</td>
<td>Trajectory and first order matrix in bend plane of 2D magnet</td>
<td>80</td>
</tr>
<tr>
<td>0172misc</td>
<td>Computation and properties of first order optics matrices</td>
<td>80</td>
</tr>
<tr>
<td>0173misc</td>
<td>Ultrasfish variables</td>
<td>81</td>
</tr>
<tr>
<td>0174misc</td>
<td>Envelope of $E_{critical}$ vs. θ curves</td>
<td>81</td>
</tr>
<tr>
<td>0175misc</td>
<td>Space charge limit on focusing of round zero-emittance beam in drift space</td>
<td>80</td>
</tr>
<tr>
<td>0176misc</td>
<td>Effect of exit impedance of duct on $\int pdx$ from outgassing</td>
<td>81</td>
</tr>
<tr>
<td>0177misc</td>
<td>Local interpolation with continuous function and its first N derivatives</td>
<td>81</td>
</tr>
<tr>
<td>0178misc</td>
<td>1st order optics of $E = \text{constant deflector}$</td>
<td>81</td>
</tr>
<tr>
<td>0179misc</td>
<td>Size of beam (of rhomboidal shape in phase space) in optical system</td>
<td>81</td>
</tr>
<tr>
<td>0180misc</td>
<td>Design of TRW spectrometer magnet</td>
<td>81</td>
</tr>
<tr>
<td>0181misc</td>
<td>Index and comments to notes sent to Phil Kidd (TRW)</td>
<td>81</td>
</tr>
</tbody>
</table>
0182misc Probabilistic treatment of “pencil standing on its tip” - problem
0183misc How long can a pencil stand on its tip?
0184misc Things that work, and do not work
0185misc Adjustable strength axisymmetric permanent quadrupole system
0186misc Axisymmetric negative drift: detailed design
0187misc An interesting property of symmetrical telescopes with power of -1
0188misc Finite length doublets, tripletts
0189misc Slow FFT with round-off error protection
0190misc Viscous gravity flow in pipe with constriction at end
0191misc Triplet matrix, for $k_1 = k_2$, but $\varphi_2 \neq \varphi_1$
0192misc General symmetric triplet, $k_1 \neq k_2$ and $\varphi_2 \neq \varphi_1$
0193misc Symmetric triplet, with $k_1 = k_2$ and $\varphi_2 \neq \varphi_1$, and D between elements
0194misc Triplet with x and y FP's at same location
0195misc Triplet properties, disregarding different location of FP's in two planes
0196misc Some numbers for final lens
0197misc Comparison of quadrupole (triplet) focusing with solenoid focusing
0198misc Doublet with $f_x = f_y$ and same FP location on one side
0199misc Corrective element in telescope to change target distance and to compensate for temperature effects on f of objective
0200misc Analytical test problem for program that finds (matrix) solutions to $x'' + K^2(z)x = 0$
0201misc Extraction from SUPERFISH field line plot the location where movement of wall produces no resonance frequency change
0202misc Expansion of $y(x)$, defined by $y + y^m = x$, $m = even$, for case $y(0) = -1$
0203misc Taylor expansion of $y(x)$, defined by $y + ay^m = x$, for case $y(0) \neq 0$
0204misc $y + ay^m = x$; expansion of $y(x)$ in Taylor series in x, for case $y(0) = 0$
0205misc Removal of singularities from the ends of integration intervals
0206misc First order matrix for particles in quad with superimposed homogeneous solenoid field
0207misc Swing optics central trajectory
0208misc Optimum synchr. light focusing
0209misc Optics of meridional rays in solenoid (3rd order)
0210misc Stripping of H^- in B
0211misc Thermal analysis of 1D layered structure (THERM progr.)
Composite material for heat insulation
Duct projection, for Jack Petersen
At what photon energy shows wiggler spectrum structure
Transmission through grid for ions transported by gas flow and \(E \)
Matching into a periodic system
Numerical evaluation of \(F(z) = \ln \frac{z-z_2}{z-z_1} \)
Transformer “theory”
Synchrotron radiation from one electron (in W/U)
Synchrotron radiation from electron in U with field errors
Bendplane optics in wiggler with \(B = 1 + kx^2 \)
Behavior of \(n_2(x) \) in vicinity of sharp absorption edge
Proof that \(\nu_g < C \) where \(\epsilon_1 = 0 \) for all \(\epsilon_1(W) \geq 0 \)
Focusing in planar undulator with curved poles
Trajectory of electron in wiggler/undulator with strong field in midplane parallel to midplane
Thoughts on effect of field errors in U on radiated spectrum
Synchrotron radiation from sinusoidal trajectory in arbitrary direction
Thermal noise from general passive linear electric system in thermal equilibrium
3rd order errors inside quadrupole
2nd order kick at entrance of dipole
Lowest order nonlinear kick in fringe field region of multipole
\[I = \int_a^b \frac{f(t)dt}{\sqrt{a-t-b}} \]
\[I = \int_a^b \frac{f(x)dx}{\sqrt{x-a-b-x}} \]
Some notes on electrical circuits
Shortest twilight
Map of circular disk on “nearly” elliptical disk (W)
Weighted interpolation with \(N = 1 \) parabolas and equidistant intervals
Large \(\gamma \) electron buncher/debuncher
\[K = \int_0^\infty e^{-z\cosh t} \cosh ntdt = K(z,n) \]
Satisfying an incomplete set of linear equations \(Mr = b \), and \(\sum W_n r_n^2 = \text{Min.} \)
\[
F_2 = \int_{-\infty}^{\infty} \frac{e^{-x^2}}{x + z_0} dx, \exists z_0 > 0
\]

0242misc Multilayer mirrors 1) basics
0243misc Multilayer mirrors 2) periodic structures
0244misc Summary of multilayer design formulae and procedures
0245misc Some thoughts on design of multilayer mirrors
0246misc Jacobian \(J = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} \) in complex notation
0247misc Determination of circle that connects three points
0248misc Map of straight line segment \(z_1, z_2 \) with \(W = kz^2 \)
0249misc Necessary condition for conformality
0250misc Reflection magnet with achromatic zero offset
0251misc Location and size of waist in driftspace from \(\beta_2, \beta_1, \Delta z \)
0252misc Achromatic spots
0253misc \[[J_0(\xi) - J_1(\xi)]^2 \]
0254misc \[[J_0(\xi) - J_1(\xi)]^2 \text{ for } x = \frac{1/2}{1+2/k^2} \leq \frac{1}{2} \]
0255misc Decay of error fields in (ideal) \(\leftarrow \) (not all is correct) symmetrical iron dominated quad
0256misc Malcolm's mechanism, note #1
0257misc Mechanism for Malcolm H., note #2 (on airplane from SFO to JFK)
0258misc Synchrotron light phase shifter
0259misc Trajectory in gradient magnet
0260misc Least square fitting of function
0261misc Design of quadrupole system with \(M_x + M_y = 0 \)
0262misc Twister condition (re-write of 1971 note, for SSRL)
0263misc Twister condition
0264misc Letter-Herman/Heinz (some notes)
0265misc Expansion of Taylor series, raised to some power \(p \), into a Taylor series (for Bozoki)
0266misc Inversion of a Taylor series, with recursion formulae
0267misc Analog integrator dynamics
0268misc \[F(x) = \int_0^\pi J_0(x \cos \varphi) d\varphi \]
0269misc New bumps
0270misc \[I_2 = \int_0^{+\infty} \frac{x^2}{\cosh x} dx \]
Chromaticity correction with sextupole
Simple proof for “amusing geometry theorem”
An amusing geometry theorem
Radiative energy loss by accelerated charge
Analysis of analog integrator
Analysis of analog integrator (Milan)
β function in unstructured focusing quadrupole
Dimensional analysis of trajectory of non-relativistic charged particles in stationary electric and magnetic fields
Gravity drive “train”
Map of interior of unit circles with centers at \(z = 0, \omega = 0 \)
Simpler map of interior of circular disks onto each other
Map of circular unit circles onto each other, with given maps of two points on circumferences
Mathematical framework for production of achromatic spot, using only quadrupoles and/or solenoids
Production of achromatic spot with a beam transport system consisting only of quadrupoles and solenoids
Memo to participants of the discussion on linear beam transport systems at LASL, November 3–4, 1977
Fringe fields
A simple derivation of the Lorentz transformation without talking about light
General map of circular disks onto each other
Math for MATROPT (document, programs and assorted notes)
\[J = \int_{-\infty}^{+\infty} (F(x) - F(x - a))^2 dx \]
Multipole fields
Statistics
Statistics
Mother-Daughter Detection
Statistics for decay time measurements
Application of generating function of two variables to specific problem
Generating Function with several variables
First order matrix-differential equation for relativistic particle
Field in twisted symmetrical multipole
Beam optics for long, twisted quadrupole
\(I_2^\gamma \) calculations
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0302misc</td>
<td>Spline function</td>
<td>67</td>
</tr>
<tr>
<td>0303misc</td>
<td>Radial stability for constant guide field</td>
<td>67</td>
</tr>
<tr>
<td>0304misc</td>
<td>Electron ring acceleration in guide field B_z with RF mode that has only $E_x B_y$, B_z fields</td>
<td>67</td>
</tr>
<tr>
<td>0305misc</td>
<td>Asymptotic injection</td>
<td>68</td>
</tr>
<tr>
<td>0306misc</td>
<td>Space charge blow-up of beam</td>
<td>68</td>
</tr>
<tr>
<td>0307misc</td>
<td>Dimensional analysis and partial differential equation</td>
<td>68</td>
</tr>
<tr>
<td>0308misc</td>
<td>Heat conduction for septum</td>
<td>67</td>
</tr>
<tr>
<td>0309misc</td>
<td>Compton scattering</td>
<td>68</td>
</tr>
<tr>
<td>0310misc</td>
<td>Particle trajectory in B</td>
<td>68</td>
</tr>
<tr>
<td>0311misc</td>
<td>Superinsulation</td>
<td>68</td>
</tr>
<tr>
<td>0312misc</td>
<td>Solutions $z^2 - 2zb + 1 = 0$ for complex b</td>
<td>69</td>
</tr>
<tr>
<td>0313misc</td>
<td>Dependence of maximum of absorption signal after low frequency demodulation on modulation amplitude</td>
<td>69</td>
</tr>
<tr>
<td>0314misc</td>
<td>Derivation of Lorentz transformation</td>
<td>70</td>
</tr>
<tr>
<td>0315misc</td>
<td>Space travel with constant acceleration in moving cycle</td>
<td>70</td>
</tr>
<tr>
<td>0316misc</td>
<td>Correlation matrix and best weight matrix for past least square evaluation of parameters</td>
<td>70</td>
</tr>
<tr>
<td>0001thry</td>
<td>$\frac{1}{H_x}$ - expansion</td>
<td>65</td>
</tr>
<tr>
<td>0002thry</td>
<td>Bump size test</td>
<td>65</td>
</tr>
<tr>
<td>0003thry</td>
<td>Thoughts on elimination of 6 pole components resulting from saturation</td>
<td>65</td>
</tr>
<tr>
<td>0004thry</td>
<td>Thoughts on how to specify desired field</td>
<td>65</td>
</tr>
<tr>
<td>0005thry</td>
<td>Sliding intersection between “centered ellipse” and “displaced” hyperbola</td>
<td>66</td>
</tr>
<tr>
<td>0006thry</td>
<td>Magnetic field energy calculations</td>
<td>66</td>
</tr>
<tr>
<td>0007thry</td>
<td>Skin effect in Fe</td>
<td>66</td>
</tr>
<tr>
<td>0008thry</td>
<td>Penetration of fields into iron (transients)</td>
<td>68</td>
</tr>
<tr>
<td>0009thry</td>
<td>Curvature of field lines in a quadrupole</td>
<td>66</td>
</tr>
<tr>
<td>0010thry</td>
<td>Absolutely necessary width of pole of magnet</td>
<td>66</td>
</tr>
<tr>
<td>0011thry</td>
<td>Solid conducting sphere in homogeneous AC field</td>
<td>66</td>
</tr>
<tr>
<td>0012thry</td>
<td>Effect of eddy currents in strap coils on field distribution in omniront synchrotron magnet</td>
<td>66</td>
</tr>
<tr>
<td>0013thry</td>
<td>4-pole field with added higher multipole components</td>
<td>66</td>
</tr>
<tr>
<td>0014thry</td>
<td>6-pole run as 4-pole</td>
<td>66</td>
</tr>
<tr>
<td>0015thry</td>
<td>Rotating fields</td>
<td>66</td>
</tr>
<tr>
<td>0016thry</td>
<td>Basic symmetries of magnets</td>
<td>66</td>
</tr>
<tr>
<td>0017thry</td>
<td>Consequences of field symmetries for editing purposes</td>
<td>66</td>
</tr>
</tbody>
</table>
0018thry Fields at center and on center of pole tip in 3-pole case 66
0019thry Ideal quadrupole 66
0020thry Perfect 6-pole 67
0021thry Sheet current ellipse and $\mu = \infty$ shield for production of homogeneous field inside ellipse 67
0022thry Current filaments in circular $\mu = \infty$ iron shell with $r = r_0$ 67
0023thry Septum problem 67
0024thry Field perturbation in septum magnet 67
0025thry Errors from non-uniform current distribution in return path (near yoke) of septum magnet 68
0026thry Numerical solution of algebraic equations 68
0027thry Measurement in 6-pole of second order contribution to signal measured with pick up coil 67
0028thry Field perturbation produced by bump 68
0029thry Effective length of a magnet 68
0030thry Field produced by two superconducting current sheets 67
0031thry Magnetic field inside of ellipse with uniform j over its total area 68
0032thry Field energy for $\mathbf{B} \approx \mathbf{H}$ 68
0033thry Summary of formulas for energy, force and torque 67
0034thry General force formula for cylindrical geometry 68
0035thry Two-dimensional field produced by “odd”-shaped conductor with constant current density 68
0036thry Vector potential measured by bundle of wires with polygon as boundary 68
0037thry Pick up coil system for harmonic analysis with suppression of all harmonics up to n 68
0038thry Experimental zero-field point determination in sextupole 68
0039thry The number of zero-field points in the aperture region of a multipole magnet 68
0040thry Octupole component produced by a sextupole run as a quadrupole 68
0041thry Sextupole with one pair of poles having different excitation or different spacing 68
0042thry Better method to drive error fields produced by error excitation of one pole of a symmetric 4-pole 68
0043thry Symmetrical 4-pole with only one pole excited 68
0044thry Amplitude and phase errors in harmonic analysis 68
0045thry Current distribution and power dissipation in conductors in two-dimensional fields 68
0046thry 1/4 of Panofski quadrupole with non-constant current densities 68

B - 33
0047thry 1/4 of Panofski quadrupole with unequal current densities 68
0048thry 1/4 of Panofski quadrupole 68
0049thry Application of trim to a cavity problem 68
0050thry Quadrupole with filaments to give sextupole 68
0051thry End of septum magnet 68
0052thry Field distribution in shielding plate (SLAC problem) 68
0053thry Multipole expansion of the sector potential in a circular aperture 68
0054thry Schwarz's formula 68
0055thry Calculation of fields, gradients and multipole coefficients by contour integrals over circle 68
0056thry Qualitative considerations concerning field corrections with special coil windings and "chunks" of iron, using the 2D current flow or fluid flow analogue 68
0057thry More details about the "vane-skim" 68
0058thry Minimization of stray fields of magnet by optimizing "steel shield" 68
0059thry Fourier analysis of numerical data 68
0060thry Fields in Gm8 68
0061thry Combined skew 4-pole and normal 6-pole 68
0062thry 12-pole with straight slots for combined skew 4-pole - "normal" 6-pole 68
0063thry Transformation of curvature under conformal map 68
0064thry Methods to eliminate or reduce long time dynamical drift of systems ("creepy magnet") 68
0065thry Optimization of a function of more variables than number of restraints plus one 68
0066thry Heating of kicker magnet "coils" 68
0067thry Integrated multipole strengths for skew axis 68
0068thry Power with eddy currents in sheet 68
0069thry Optimization of coil slot for combined 6-pole and skew 4-pole 68
0070thry Multipole components with respect to displaced axis 68
0071thry Sensitivity of solution of linear equations to change of an individual matrix element 68
0072thry Change of determinant for small changes of one element of the matrix that describes a system that is least squares optimized with restraints and has least squares limitations on parameters 68
0073thry Allowable relative errors of the elements of matrices describing system to be optimized 68
0074thry Error analysis for parameters obtained from least squares optimization with restraints and least squares bound on parameters 68
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient method to solve homogeneous system of linear diff. equ.</td>
<td>68</td>
</tr>
<tr>
<td>with const coefficients</td>
<td></td>
</tr>
<tr>
<td>Data analysis of stripping cross-section measurements</td>
<td>68</td>
</tr>
<tr>
<td>Corner saturation</td>
<td>69</td>
</tr>
<tr>
<td>Transmission of rotation angles through universal joint</td>
<td>69</td>
</tr>
<tr>
<td>Summary of integrator roles from Dec. 63</td>
<td>69</td>
</tr>
<tr>
<td>Fields in magnet with midplane symmetry in (r, \varphi z)</td>
<td>69</td>
</tr>
<tr>
<td>2D fields in slab (no iron or singularities) in region of description</td>
<td>69</td>
</tr>
<tr>
<td>Logarithmic spiral</td>
<td>69</td>
</tr>
<tr>
<td>B and H variation in direction of center of curvature of (V = \text{constant}) and (A = \text{constant}) lines in 2D isotropic, homogeneous, nonlinear iron</td>
<td>69</td>
</tr>
<tr>
<td>Reduction of (B(H)) measurements on torus</td>
<td>69</td>
</tr>
<tr>
<td>Capacitor stray field (for Bob Smith)</td>
<td>69</td>
</tr>
<tr>
<td>Power dissipation in tape wound quadrupoles</td>
<td>69</td>
</tr>
<tr>
<td>Field quality criterion</td>
<td>69</td>
</tr>
<tr>
<td>Field error criterion for non-circular aperture</td>
<td>70</td>
</tr>
<tr>
<td>Some general field relations expressed in complex form</td>
<td>69</td>
</tr>
<tr>
<td>Effective length of quadrupole</td>
<td>70</td>
</tr>
<tr>
<td>Comparison between (L_1 = \frac{</td>
<td>B</td>
</tr>
<tr>
<td>Better formulation of effective length of 4-pole for first order optics</td>
<td>70</td>
</tr>
<tr>
<td>Force between HILAC quadrupoles</td>
<td>67</td>
</tr>
<tr>
<td>Total extinction lines produced by magneto-birefringent material</td>
<td>69</td>
</tr>
<tr>
<td>between crossed polaroid jitters multipole magnet</td>
<td></td>
</tr>
<tr>
<td>Weights for calculating potential from potentials at surrounding</td>
<td>69</td>
</tr>
<tr>
<td>points if pot. satisfies Laplace's equation</td>
<td></td>
</tr>
<tr>
<td>Resistance of specific 2D sheet structure</td>
<td>70</td>
</tr>
<tr>
<td>Computation of upper and lower limits of impedances of 2D structures with variational principle</td>
<td>70</td>
</tr>
<tr>
<td>Relation between (H_x) at pole face and (H_y) in midplane of magnet</td>
<td>69</td>
</tr>
<tr>
<td>Measurement of Fourier coefficients of field between two (\mu = \infty) plates</td>
<td>69</td>
</tr>
<tr>
<td>Calculation of Fourier coefficients of (H^*)</td>
<td>69</td>
</tr>
<tr>
<td>Representation of fields between two parallel plates of (\mu = \infty) iron</td>
<td>69</td>
</tr>
</tbody>
</table>
0103thry General relationships of fields in linear, location independent, anisotropic medium 70
0104thry Effect of nonlinearity of iron on the effect of small perturbations in 3D 70
0105thry Scalar potential and pole face for \(\mu = \infty \) bending magnet with cylindrical symmetry, and given inhomogeneous field in midplane 70
0106thry Scalar potential and \(\mu = \infty \) poleface for inhomogeneous field with midplane symmetry in cylindrical magnet with axis outside field region 70
0107thry Scalar potential and \(\mu = \infty \) poleface to get given inhomogeneous field with midplane symmetry in cylindrical magnet with axis far outside of field region 70
0108thry Correct POISSON equation for cylindrical geometry 70
0109thry Effect of current sheet in midplane of windowframe magnet 70
0110thry Additional effective "force" length and "field" length of corners 70
0111thry \(F(z) = \int_0^z \ln(1+t) \frac{dt}{t} \) 70
0112thry Orthogonal 2D analogue for 2D and cylindrical geometry magnetic fields 70
0113thry Energy in magnetostatic field, and derivation of field equations from variational principles 70
0114thry Derivation of TRIM equ's from variational principle 70
0115thry TRIM equ's for anisotropic medium 70
0116thry Evaluation of \(b(H) \) curve from flux measurements on "washer"-shaped iron ring 70
0117thry Evaluation of \(b(H) \) curve from flux measurements on "washer"-shaped ring (without Fourier transform) 71
0118thry Feeding of 4-poles 70
0119thry Eddy current loss in Fe for \(\bar{H} = \bar{H}_0 \cos \omega t \) with Pryntig reactor 74
0120thry Eddy current loss in Fe for \(\bar{B} = \sin \omega t \) 71
0121thry Rise time of magnetic field and eddy current - energy deposition in pulsed magnet (old version) 70
0122thry Power dissipation and "\(\mu_{eff} \)" of Cu conductor in pulsed magnet 71
0123thry \(\mathcal{L}^{-1} \left(\frac{e^{-\alpha \sqrt{p}}}{p^{3/2}} \right) \) 73
0124thry \(\mathcal{L}^{-1} \left(\frac{e^{-\alpha \sqrt{p}}}{p^{3/2}} \right) \) 73
0125thry \(\mathcal{L}^{-1} \left(\frac{\coth \sqrt{p}}{p^{3/2}} \right) \) 73
\begin{align*}
0126\text{thry} & \quad \text{Energy dissipation in vacuum vessel} & 71 \\
0127\text{thry} & \quad \text{Eddy current effects for ramp excitation (one pulse)} & 71 \\
0129\text{thry} & \quad \text{Important eddy current formulae} & 74 \\
0130\text{thry} & \quad \text{Eddy current effects in pulsed magnet} & 71 \\
0131\text{thry} & \quad \text{Eddy currents (does not take nonlinearity-induced apparent anisotropy into account)} & 70 \\
0132\text{thry} & \quad \text{Rotating } E \text{ quadrupole and DC magnetic field as mass filler} & 71 \\
0133\text{thry} & \quad \text{RF } B_{ax} & 71 \\
0134\text{thry} & \quad \text{Matrix for cylindrical lens for } \phi(z) = \phi_0 + \frac{\phi_0 z}{1 + k z} & 71 \\
0135\text{thry} & \quad \text{Effect of gap above HT-conductor} & 71 \\
0136\text{thry} & \quad \text{Effect of horizontal gap on } Ht\text{-distribution produced by } Ht\text{-filament} & 71 \\
& \quad \text{(reformulation of S/71 notes)} \\
0137\text{thry} & \quad \text{Eddy current time constants in Fe-magnets} & 70 \\
0138\text{thry} & \quad \text{Beneficial effects of saturation in yoke-connected field clamp} & 71 \\
0139\text{thry} & \quad \text{Eddy currents for cylindrical geometry} & 72 \\
0140\text{thry} & \quad \text{Turn-on procedure of magnet to avoid } \text{"overdriving" } B(H) \text{ curve} & 71 \\
0141\text{thry} & \quad B(H) \text{ measurement with two rings; cancellation of contributions } B', B', B'' & 71 \\
0142\text{thry} & \quad \text{Normal TRIM-equation} & 71 \\
0143\text{thry} & \quad \text{Simultaneous compensation of two time constants} & 71 \\
0144\text{thry} & \quad \text{Procedure to make small changes of field level in large magnet so that } \text{inhomogeneities in gap decay} \text{ as fast as possible, and to reach new field level in shortest time} & 71 \\
0145\text{thry} & \quad \text{Dynamical system to drive } \text{"loudspeaker"} & 71 \\
0146\text{thry} & \quad \text{Coating of steel with } Cu \text{ to reduce eddy current losses} & 71 \\
0147\text{thry} & \quad \text{SLAC - bubble chamber eddy current problem} & 71 \\
0148\text{thry} & \quad \text{Power loss in coil in limit of } \text{"small" } \text{cross section} & 71 \\
0149\text{thry} & \quad \text{Eddy current power in the limit of } \text{"small" } \text{losses} & 71 \\
0150\text{thry} & \quad \text{Losses in } \text{"loudspeaker" } \text{coil (SLAC)} & 71 \\
0151\text{thry} & \quad \text{Qualitative considerations for } \text{SLAC bubble chamber - "loudspeaker"} & 71 \\
0152\text{thry} & \quad \text{Numbers for bubble chamber } \text{"loudspeaker"} & 71 \\
0153\text{thry} & \quad \text{Convergence test (originally done spring 1970; notes lost; this written in spring 1972)} & 72 \\
0154\text{thry} & \quad \text{Windowframe tolerances} & 71 \\
0155\text{thry} & \quad \text{Slit effect for } \mu = \infty & 71 \\
\end{align*}
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>0156thry Purcell gap: necessary accuracy of field level in gap and allowable $n = 3$ in gap</td>
</tr>
<tr>
<td>71</td>
<td>0157thry Matrix method to calculate effect of Ht at one boundary of Purcell gap on field in working gap</td>
</tr>
<tr>
<td>71</td>
<td>0158thry Expansion of field from conductor in Gm24 geometry in e^{kz}</td>
</tr>
<tr>
<td>71</td>
<td>0159thry Model for necessary height of slit</td>
</tr>
<tr>
<td>71</td>
<td>0160thry Slit, necessary height</td>
</tr>
<tr>
<td>72</td>
<td>0161thry B calculation in ellipse of different μ</td>
</tr>
<tr>
<td>72</td>
<td>0162thry B^2 calculation for cylindrical POISSON, and differential equation</td>
</tr>
<tr>
<td>70</td>
<td>0163thry Effect of turns at ends of 4-pole (letter to Bohm)</td>
</tr>
<tr>
<td>72</td>
<td>0164thry Slot in windowframe: elimination of $e^{-\pi z}$ perturbation term for $\mu = \infty$</td>
</tr>
<tr>
<td>72</td>
<td>0165thry Slot in windowframe: compensation of $e^{-\pi z}$ perturbation with geometry for $\mu = \infty$</td>
</tr>
<tr>
<td>72</td>
<td>0166thry Slot in windowframe: elimination of $e^{-\pi z}$ perturbation with filament for $\mu = \infty$</td>
</tr>
<tr>
<td>72</td>
<td>0167thry Effective width of pole; original, working version</td>
</tr>
<tr>
<td>72</td>
<td>0168thry Operating point of naked permanent bar magnet</td>
</tr>
<tr>
<td>72</td>
<td>0169thry Symmetrical corner/curtain</td>
</tr>
<tr>
<td>74</td>
<td>0170thry $\frac{1}{E^2}$</td>
</tr>
<tr>
<td>72</td>
<td>0171thry Square box with rounded box inside that has $</td>
</tr>
<tr>
<td>70</td>
<td>0172thry Field error criteria for non-circular aperture</td>
</tr>
<tr>
<td>72</td>
<td>0173thry $\frac{B_y(B_0 - B_y)dx}{2hB_0^2} = K$ for Gm25</td>
</tr>
<tr>
<td>72</td>
<td>0174thry Execution of expansion of $\frac{R^2}{r}$ into exponentials</td>
</tr>
<tr>
<td>72</td>
<td>0175thry Best excitation of 8-pole to produce dipole</td>
</tr>
<tr>
<td>72</td>
<td>0176thry Best excitation of 8-pole to produce dipole</td>
</tr>
<tr>
<td>72</td>
<td>0177thry Best excitation of 12-pole to produce dipole</td>
</tr>
<tr>
<td>74</td>
<td>0178thry Production of $n = 3$ or $n = 4$ in 12-pole</td>
</tr>
<tr>
<td>74</td>
<td>0179thry Summary of harmonics produced by "abnormal" excitation of perfect symmetrical multipole magnets</td>
</tr>
<tr>
<td>73</td>
<td>0180thry Field measurement with cylindrical coil</td>
</tr>
<tr>
<td>73</td>
<td>0181thry Pole face windings</td>
</tr>
<tr>
<td>73</td>
<td>0182thry Curvature of 3D $V = \text{constant surface}$</td>
</tr>
<tr>
<td>73</td>
<td>0183thry One-pole shimming of dipole with $n = 3$ component</td>
</tr>
<tr>
<td>73</td>
<td>0184thry Axial motion of particle in cylindrical magnet with $B_z = B_0 = \text{constant, and } B_r = B'r$</td>
</tr>
</tbody>
</table>
0185thry Reduction of bending length because of slit

0186thry Harmonics production by symmetrical cut at pole ends of 4-pole,
(a transcript of notes made during Dec 72–Feb 73)

0187thry Excitation loss for \(\mu = \infty \) laminations with finite insulation thickness

0188thry Torque acting on ellipse with \(\mu = \infty \) in homogeneous field

0189thry Single shim first and second order

0190thry First and second order shimming of \(H \)-magnet with slot

0191thry Coil position for 1st and 2nd order corrected fields

0192thry 1st and 2nd order shimming with two filaments

0193thry Mapping of magnet with pole with slanted side

0194thry Jim Walter's lamination thickness

0195thry 2D eddy current distribution in lamination of anisotropic steel

0196thry \(W = -iz^2 \), map of circular pole of 4-pole

0197thry Saturating yoke and poles in 4-pole

0198thry Analytical \(B-H \) curve description

0199thry Long coil to measure \(\partial B_y / \partial y \) in 2D

0200thry Coil system to measure \(\partial B_z / \partial z \) in 3D

0201thry Coil system to measure \(\partial B_z / \partial x \) in 3D

0202thry Epics flux splitting

0203thry Properties of magnetic line integrals

0204thry Change of harmonic content of multipole due to change of width of
 (all) poles

0205thry Pole shimming methods

0206thry Shimming with knife edge pole and filaments

0207thry Shimming of pole with filament at \(t = -a \), strength \(m \)

0208thry Power in thick storage ring wall

0209thry Finite thickness current sheet on poleface (for HAT)

0210thry Eddy currents when driving magnet very hard into saturation
 ("charging" permanent magnet with coil)

0211thry Field modification in ideal quadrupole by round pipe, to first order
 in \(\mu - 1 \)

0212thry Seminar on 8/10/73 at LASL

0213thry EFB - coil geometry - effect on EFB (done at LASL)

0214thry Torque on vane in homogeneous field

0215thry Ellipse in homogeneous field

0216thry Evaluation of first vane run

0217thry Position of vane in 2-vane correction system
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0218thry</td>
</tr>
<tr>
<td>0219thry</td>
</tr>
<tr>
<td>0220thry</td>
</tr>
<tr>
<td>0221thry</td>
</tr>
<tr>
<td>0222thry</td>
</tr>
<tr>
<td>0223thry</td>
</tr>
<tr>
<td>0224thry</td>
</tr>
<tr>
<td>0225thry</td>
</tr>
<tr>
<td>0226thry</td>
</tr>
<tr>
<td>0227thry</td>
</tr>
<tr>
<td>0228thry</td>
</tr>
<tr>
<td>0229thry</td>
</tr>
<tr>
<td>0230thry</td>
</tr>
<tr>
<td>0231thry</td>
</tr>
<tr>
<td>0232thry</td>
</tr>
<tr>
<td>0233thry</td>
</tr>
<tr>
<td>0234thry</td>
</tr>
<tr>
<td>0235thry</td>
</tr>
<tr>
<td>0236thry</td>
</tr>
<tr>
<td>0237thry</td>
</tr>
<tr>
<td>0238thry</td>
</tr>
<tr>
<td>0239thry</td>
</tr>
<tr>
<td>0240thry</td>
</tr>
<tr>
<td>0241thry</td>
</tr>
<tr>
<td>0242thry</td>
</tr>
<tr>
<td>0243thry</td>
</tr>
<tr>
<td>0244thry</td>
</tr>
<tr>
<td>0245thry</td>
</tr>
<tr>
<td>0246thry</td>
</tr>
<tr>
<td>0247thry</td>
</tr>
<tr>
<td>0248thry</td>
</tr>
<tr>
<td>0249thry</td>
</tr>
<tr>
<td>0250thry</td>
</tr>
<tr>
<td>0251thry</td>
</tr>
</tbody>
</table>
0252thry Measurement of pure quadrupole with displaced coil rotating about a skewed axis 75
0253thry 2D field in homogeneity ↔ curvature and displacement of field line 75
0254thry $|\Delta B|^2$ from allowed harmonics in symmetric quadrupole 76
0255thry Magnetization data for Texas A&M magnet 76
0256thry Multipole production by pole asymmetry of 4-pole 76
0257thry Stored energy in permanent magnet assembly 76
0258thry Alternate way to excite quadrupole with filaments on pole to give sextupole 77
0259thry Production of $n = 3$ in quadrupole with poleface filament 77
0260thry Production of sextupole field in quadrupole with current sheet on pole surface 77
0261thry PEP staircase 4-pole 77
0262thry Measurements to give field quality outside “normal” convergence radius of quadrupole 77
0263thry AC force on 2D conducting steel plate 77
0264thry Eddy currents for fast permanent magnet magnetization 77
0265thry Stored energy in cylindrical and 2D geometry and in cylindrical geometry with $rA =$ constant surface 77
0266thry Field errors because of parabolic segment cut from pole 77
0267thry Effect of circular arc carved into pole of dipole 77
0268thry Polynomials for edit in cyl. geometry 78
0269thry SC transform of Gm26 with ellipse integral 78
0270thry SC transformation of Gm27 78
0271thry Minimization of correction coil current 78
0272thry “Superconducting” kicker magnet 72
0273thry Shimming of pole with filament model 78
0274thry Eddy currents in cylindrical yoke-ring 78
0275thry Eddy current summary for TPC 78
0276thry Error analysis for Don Sorenson's measurement coil system 78
0277thry Decay of V in pipe 74
0278thry Poleface for weak focusing bend magnet with cyl. symm. 78
0279thry \vec{B} through plate excited by two coils 78
0280thry Lee Heflinger's notes on coil system stability 78
0281thry Current increase necessitated by hole in steel 79
0282thry Flux through $\mu = \infty$ bodies in uniform magnetic field 79
0283thry Eddy current - caused force and torque on conducting circular plate 79
0284thry Eddy current - force and torque on long thin sheet in 2D field 79
0285thry Force and torque on 2D body with $\mu = \infty$ or $\sigma = \infty$ in 2D multipole field

0286thry Model for eddy current forces and torques on 2D structures with incomplete flux exclusions

0287thry Complex potential for $\mu = \infty$ or $\sigma = \infty$ ellipse in pure multipole field

0288thry Summary for $2D, \sigma = \infty, \mu = \infty$ forces and torques

0289thry $\int jdv$

0290thry Re-formulation of model for forces and torques on 2D structures with incomplete flux exclusion by eddy currents, and for $\mu = \infty$

0291thry 1/2 dipole magnet with hole in septum

0292thry WNR stripping magnet

0293thry Effect of hole in yoke of PSR dipole

0294thry 1/2 quadrupole with hole in mirror plate

0295thry 2D field model for D3 magnetic coil system

0296thry Field distortion from bellows welds in Bevatron

0297thry Corner flux

0298thry 1D model of eddy currents in non-linear steel

0299thry Re-creation of optimization of 2-coil measurement system for quadrupoles

0300thry Force on coil in 2D and cylindrical geometry

0301thry Axial forces on HISS coil

0302thry Decay of cylindrical symmetrical field between two parallel plates with $\mu = \infty$

0303thry B. Price magnet

0304thry Charged circle next to plane; minimization of E_{max} for given ΔV and center of circle

0305thry "Closed" charged surface with constant $|E^*|$ next to conducting plane

0306thry Curved electrodes with $|E^*| = \text{constant}$, next to conducting plane

0307thry Dipole steering with quadrupole

0308thry Dipole steering with quad in 2 extreme cases

0309thry Representation of laminated steel by anisotropic medium

0310thry Analysis of cylindrically symmetric solenoid system with a symmetry-violating perturbation

0311thry Approxim. calcul. of flux going into cyl. hoop, and consequences of satur. of hoop

0312thry Effective edge associated with step in pole

0313thry Jeff associated with coil-ends in HIF quadrupole

0314thry Leff of HIF quadrupole
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>Etst. field from plate with circular hole</td>
</tr>
<tr>
<td>80</td>
<td>Axisymmetric elongated ellipsoid in field parallel axis</td>
</tr>
<tr>
<td>80</td>
<td>NBS race track K-iron magnet</td>
</tr>
<tr>
<td>80</td>
<td>Fringe field flux in some magnets</td>
</tr>
<tr>
<td>80</td>
<td>Force estimates for ideal superconducting undulator</td>
</tr>
<tr>
<td>80</td>
<td>Far field expansion of A_φ (cylindrical geometry)</td>
</tr>
<tr>
<td>80</td>
<td>Simulation of “rest of universe” in cyl. geometry</td>
</tr>
<tr>
<td>80</td>
<td>Deductive proof that for 2D fields, only A_φ is needed</td>
</tr>
<tr>
<td>80</td>
<td>Test for aberrations for far off midplane trajectories in strip magnet</td>
</tr>
<tr>
<td>80</td>
<td>B_y = constant curves in Gm10</td>
</tr>
<tr>
<td>81</td>
<td>3rd order kick at end of semi-infinite quadrupole</td>
</tr>
<tr>
<td>81</td>
<td>Rogowski quadrupole: formulation of problem</td>
</tr>
<tr>
<td>81</td>
<td>Compensation of ripple from coil (for D3)</td>
</tr>
<tr>
<td>81</td>
<td>Compensation of ripple from coil (for D3)</td>
</tr>
<tr>
<td>81</td>
<td>Adaptive optics correction element</td>
</tr>
<tr>
<td>81</td>
<td>VECAN; disk 52</td>
</tr>
<tr>
<td>81</td>
<td>Fourier analysis of vector pot. in X/4-section</td>
</tr>
<tr>
<td>81</td>
<td>Field penetration through 2D slit</td>
</tr>
<tr>
<td>81</td>
<td>$\overline{B_r, B_\varphi}$ in cylindrical geometry, from $rA = V =$ linear function in Δ</td>
</tr>
<tr>
<td>81</td>
<td>Eddy current in conductor with circular cross section exposed to (previously) uniform AC field</td>
</tr>
<tr>
<td>81</td>
<td>Eddy currents in lamination</td>
</tr>
<tr>
<td>81</td>
<td>Poleface correction of LANL AT2 quads</td>
</tr>
<tr>
<td>81</td>
<td>1st order shim of pole</td>
</tr>
<tr>
<td>81</td>
<td>Design of center part of “Rug's” quadrupole</td>
</tr>
<tr>
<td>81</td>
<td>TRW undulator problem with floating wire</td>
</tr>
<tr>
<td>82</td>
<td>Force on REC and small sphere of $\mu = \infty$ steel in external field</td>
</tr>
<tr>
<td>82</td>
<td>Design and properties of Helmholtz coil system</td>
</tr>
<tr>
<td>82</td>
<td>Superconducting wiggler with coil surface = field line with $</td>
</tr>
<tr>
<td>82</td>
<td>Shielding inside of 2D “box” with elliptical outer contour</td>
</tr>
<tr>
<td>82</td>
<td>Shielding of long box against transverse field in presence of longitudinal field</td>
</tr>
<tr>
<td>82</td>
<td>Summary of formulas for shielding in transverse direction only</td>
</tr>
<tr>
<td>82</td>
<td>Shielding considerations for neutral beam injection module containing 4 individual lines</td>
</tr>
<tr>
<td>82</td>
<td>Production on quadrupole field modulated by $\sin k_z$</td>
</tr>
<tr>
<td>82</td>
<td>Shielding of cylinder with superconducting sheet, or steel</td>
</tr>
<tr>
<td>0349thry</td>
<td>Production and properties of 2D E field that has on x-axis the properties $E_y = E_o$, $E_x = f(x)$, with Gm28</td>
</tr>
<tr>
<td>0350thry</td>
<td>Optimization of T-M coil system for quad</td>
</tr>
<tr>
<td>0351thry</td>
<td>j and H caused by two displaced solenoids with opposite polarities</td>
</tr>
<tr>
<td>0352thry</td>
<td>Force between charge sheet and pole (2D)</td>
</tr>
<tr>
<td>0353thry</td>
<td>Force on solenoid (between steel poles) due to radial motion</td>
</tr>
<tr>
<td>0354thry</td>
<td>Axial force on TPC coil due to axial displacement</td>
</tr>
<tr>
<td>0355thry</td>
<td>"Rogowski"-shield (for TRW)</td>
</tr>
<tr>
<td>0356thry</td>
<td>PSR stripper 2: magnet optimization</td>
</tr>
<tr>
<td>0357thry</td>
<td>PSR stripper 1: conformal map, fields</td>
</tr>
<tr>
<td>0358thry</td>
<td>Single stripping magnet with eddy current driven Cu sheet</td>
</tr>
<tr>
<td>0359thry</td>
<td>Pulsed wiggler field inside circular cylinder with thin conducting wall</td>
</tr>
<tr>
<td>0360thry</td>
<td>Timing of ELF wiggler use</td>
</tr>
<tr>
<td>0361thry</td>
<td>Fields in ribbon-beam-electrode system</td>
</tr>
<tr>
<td>0362thry</td>
<td>Foraday-rotator-magnet</td>
</tr>
<tr>
<td>0363thry</td>
<td>Fieldline bow ↔ field error in cyl. geometry</td>
</tr>
<tr>
<td>0364thry</td>
<td>Jose Alonso magnet</td>
</tr>
<tr>
<td>0365thry</td>
<td>Measurement coil for small quads</td>
</tr>
<tr>
<td>0366thry</td>
<td>Questions about properties of 2D, 3D magnet codes</td>
</tr>
<tr>
<td>0367thry</td>
<td>Application of the V-Q theory to the design of electromagnets</td>
</tr>
<tr>
<td>0368thry</td>
<td>Decay of fields in $\mu = \infty$ steel box</td>
</tr>
<tr>
<td>0369thry</td>
<td>Stability of current carrying wire in magn. field</td>
</tr>
<tr>
<td>0370thry</td>
<td>Eddy currents in circular pipe in quadrupole</td>
</tr>
<tr>
<td>0371thry</td>
<td>Filament-wiggler (for Sandia)</td>
</tr>
<tr>
<td>0372thry</td>
<td>Production of quadrupole field with windings on cylinder surface, surrounded by shells of various properties</td>
</tr>
<tr>
<td>0373thry</td>
<td>Quadrupole with thin sheet excitation, surrounded, at a distance, by a thin sheet of finite conductivity</td>
</tr>
<tr>
<td>0374thry</td>
<td>Finite thickness plate in homogeneous field</td>
</tr>
<tr>
<td>0375thry</td>
<td>Thoughts on description of fringe fields of dipoles</td>
</tr>
<tr>
<td>0376thry</td>
<td>Comments to representation of 2D dipole fringe fields</td>
</tr>
<tr>
<td>0377thry</td>
<td>Thin sheet eddy current damper</td>
</tr>
<tr>
<td>0378thry</td>
<td>Behavior of F, $\int F dz$, F' in vicinity of a corner</td>
</tr>
<tr>
<td>0379thry</td>
<td>3rd order kick in fringe field of quadrupole</td>
</tr>
<tr>
<td>0380thry</td>
<td>Estimate of flux going into pole of multipole</td>
</tr>
<tr>
<td>0381thry</td>
<td>Treatment of 2D quadrupole, with excitation sheet, eddy current sheets, etc., with matrices (in Laplace domain) (Version 1)</td>
</tr>
</tbody>
</table>
0382thry Using different matrices for 2D quad description 83
0383thry Treatment of 2D quadrupole, with excitation sheet, eddy current sheets, etc., with matrices (in Laplace domain) (Version 2) 83
0384thry Details of coils for 3rd gradient, including induced voltage 83
0385thry Eddy current H for cylinder with hole 83
0386thry Eddy current H in cylindrical disk 83
0387thry Unified matrix representation of fields produced by externally driven and eddy current sheets for two gradient systems 83
0388thry Gradient fields inside thick steel shell 83
0389thry Tests of gradient field quality 83
0390thry Time constant necessary to make eddy current sheet infinitely thick 83
0391thry Energy deposition by eddy currents in thin conducting sheets 83
0392thry "Interference"-effects in eddy current energy dissipation in sheets 83
0393thry Negative restoring torque in ring dipole magnet 83
0394thry $F = \Sigma_1 C_n z^n$ from $F = \Sigma_1 b_n t^n$ and $z = \Sigma_1 a_n t^n$ 83
0395thry Expansion of fields in Gm29 in harmonics 83
0396thry Eddy currents in laminations \rightarrow necessary thickness 83
0397thry Rogowski dipole 83
0398thry Flux induced into Helmholtz coil system by small volume of CSEM with easy axis perpendicular to z-axis 84
0399thry Sandia storage ring steering magnet 84
0400thry Transcription of letter regarding the calculation of forces and torques between magnets 83
0401thry A 2D field paradox 84
0402thry Stored magnetic field energy in vacuum and $\mu = \infty$ material, and circular cross-section conductors 84
0403thry Numerical examples for ε' in quadrupole 84
0404thry Stored energy in some pure circular conductor excited quadrupoles 84
0405thry ε modification of quadrupole by circular outside shield that is superconducting or has $\mu = \infty$ 84
0406thry Design and properties of Helmholtz coil system for measurement of magnetic dipole moment of REC 82
0407thry Design and performance of Helmholtz coils with finite winding area 84
0408thry Eddy currents in thin conducting sheets 83
0409thry Eddy currents in thin conducting sheets in LAMPF2 magnets 84
0410thry Electric field between laminations of AC magnet 84
0411thry 2D needle with $\text{LE} = \text{constant}$ on rounded part 84
0412thry F from I if B perpendicular to a part of boundary, and parallel to the rest, or vice versa 85
<p>| 0413thry | 2D electrode system to produce prescribed (|E|) on a (V = \text{constant}) surface of prescribed shape | 85 |
| 0414thry | Exact solution for 2D electrodes that give (|E| = \text{constant}) on (V = 0) surface given by curvature (= \cos(k\text{-curve length})) | 85 |
| 0415thry | Re-creation of eddy current overshoot limit | 85 |
| 0416thry | Penetration of potential (+ fields) into a hollow cylindrical shell of zero potential and semi-infinite length | 70 |
| 0417thry | Magnetic spring constants for radial and axial displacement of SLD coil | 84 |
| 0418thry | (B(H)) interpolation function | 85 |
| 0419thry | (\vec{j}) for circular bend of conductor (for POISSON) | 85 |
| 0420thry | Representation of a rectangular 2D conductor with non-uniform (j) by a rectangular conductor with uniform (j) | 85 |
| 0421thry | BNL measurement system deficiencies (quad system) | 85 |
| 0422thry | Fields around (x_0 = y_0 = z_0 = 0) from centered rectangular (\pm) charge sheet pair at (\pm z) | 85 |
| 0423thry | Beam spreader magnet optics | 86 |
| 0424thry | Beam spreader quadrupole: first cut | 86 |
| 0425thry | GM in source magnet | 86 |
| 0426thry | Fields, and flux into center pole, of cyl. in source magnet | 86 |
| 0427thry | Field in vicinity of corner | 86 |
| 0428thry | Design of poles of quadrupole for general shape of good field region | 86 |
| 0429thry | Quadrupole, made with filaments, inside a dipole | 86 |
| 0430thry | Filaments for dipole field parallel to midplane in midplane of dipole | 86 |
| 0431thry | Sextupole (= 0) from linear superposition of contributions from vacuum and iron | 83 |
| 0432thry | Field change inside circular (\mu = \text{constant}) shell in (\sin n\varphi) multipole with circular outer iron shell | 86 |
| 0433thry | ALS combined function bend magnet (Note #1) | 86 |
| 0434thry | ALS combined function bend magnet (Note #2) | 86 |
| 0435thry | ALS laminated combined function bend magnet (Note #3) | 86 |
| 0436thry | Aberrations in a curved laminated combined function bend magnet | 86 |
| 0437thry | Penetration of solenoidal field through conducting shell | 86 |
| 0438thry | Characterization of dipole fringe fields with field integrals | 86 |
| 0439thry | Field from four semi-infinite line charges | 86 |
| 0440thry | Flux in shell of Richard's refrigerator | 86 |
| 0441thry | Math details for "perfect" quad end | 86 |
| 0442thry | Math details index | 86 |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>Quadrupole with “perfect” ends</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>Three coil quad measurement system</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>Method to calculate effect of iron connection between parts of symmetric multipoles</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>C between poles of symmetrical multipole</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>Excitations necessary in sextupole to produce given sextupole</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>Flux into poles of sextupole for various excitation patterns</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>C between poles of 2D undulator or wiggler with $V = 0$ midplane</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>C between poles of 2D undulator (general case of two linear arrays of poles)</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>“Invisible Flux” to $V = \text{constant surface}$: sextupole run as skew quadrupole. Correct method to calculate flux from a surface to other surfaces on varying potentials</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>$\overline{B}_{\text{max}}$ in “coil section” of pole of quadrupole</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>$\overline{B}_{\text{max}}$ in CSEM section of quadrupole</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>Max of \overline{B} in pole of quadrupole, general formulation</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>Comments and sum notes for excitation coefficients in iron dominated multipoles</td>
<td>86</td>
</tr>
<tr>
<td>87</td>
<td>E^* from 2D charge distribution</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>E^* from uniform σ inside ellipse</td>
<td>87</td>
</tr>
<tr>
<td>86</td>
<td>Analysis of flux pattern in ALS sextupole</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>Running iron dominated sextupole as a dipole</td>
<td>86</td>
</tr>
<tr>
<td>87</td>
<td>L_{eff} of dipole with thin field clamp</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>Excess flux in Gm30</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>Field from current sheet on $\mu = \infty$ pole of dipole</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>Definition and measurement of imperfect multipole magnet center</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>Field from $0 < \mu < \infty$ sphere</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>Unimportance of magnetic length of dipole in ring</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>“Corner problem” for CTI</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>S-C-transform of Gm31</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>Thick septum eddy currents</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>$I = \int ds z^4$ over ellipse with half-axes a, b</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>“Screwdriver-effect”</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>Estimate of harmonics produced by thin $0 < \mu - 1 << 1$ vacuum chamber</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>Field from “slightly” magnetic material in H_0</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>Tolerable $\mu - 1$ for ALS booster vacuum chamber</td>
<td>87</td>
</tr>
<tr>
<td>88</td>
<td>Effect of stacking factor η on B_{air}</td>
<td>88</td>
</tr>
</tbody>
</table>
\(\bar{B} , B_0 \) in bend dipole

Description of the properties of an ellipse

Fields produced by eddy currents in thin elliptical vacuum chamber in dipole with \(\mu = \infty \) poles, to 1st order

Procedure to get \(f[g(x,y)] \) with \(\nabla^2 f = 0 \), when \(\nabla^2 g \neq 0 \)

Useful techniques for designing a 2D non-dipole in dipole geometry

De-normalization of fields and currents in quadrupole

Excess flux in Gm32

Total flux into 1st quadrant pole of quad when excited as dipole

Thoughts about the (asymmetric) ALS ring quadrupole

"Production" of nonlinear \(I_0 \) (\(V_0 \)) for quadrupole shunt

Summary of properties of fringe fields of multipoles

3rd order kick in fringe field region of semi 1/0 quad

Force in cylindrical symmetry on 1/2 tones

A general theorem about integrals over Cartesian vacuum field components, and applications to field integral measurements

Propagation of fast perturbation in dipole

Boundary condition vacuum-conducting iron

Flux into rectangular box

Boundary condition at iron-air interface for AC, and application to 2D circle

AC shielding of circular cylinder

Propagation of AC fields in 1D

Decay of fields between parallel plates, and in circular cylinder, with eddy current boundary condition

\(\Omega(x) \) properties

Summary of eddy current modified \(H \) in \(\mu \geq 1, \sigma \geq 0 \) material

Inadequacy of ID eddy current analysis

Quad measurement coil system on surface of cylinder

Sextupole measurement coil system

Effect of (thin) gap in yoke of quadrupole

"Math part" of ID eddy current analysis in iron

Model functions for \(H(B) \) without hysteresis

\(|B|\) at the edge of a multipole pole, and \(\bar{B} \) between edges

Analytical design of dipoles with vanishing \(N = 3 \); and \(N = 3, 5, 7 \) (no success)

Eddy currents in \(\mu \sigma \neq 0 \) spherically symmetric system
Δν generated at joint of inner shell of a two shell system with points in same location in both shells

Effect of a gap in μ-metal shielding, for DC fields

Polarity jump associated with flux going across joint

Estimate of effectiveness of double shell DC shielding

Fields in cylinder with eddy boundary condition and potential jump—V₀ at φ = ±π/2

Propagation of EM fields between two plates with different properties

2D field harmonics from measurement of |B|

A simpler way to do \(\int_0^1 \ln \frac{1+x}{1-x} \frac{\sqrt{1-x^2}}{x} \, dx = J \)

Calculation of F produced by small "bump" in \(v = \) constant surface in SC mapped geometry

\(\int V dx \) across top of gap in Gm41

\[I_2 = \int -\frac{dx}{x^2+1} \text{ and } J = \int_0^{\infty} \frac{d\omega}{1+\omega^2} \]

Maximum achievable field in conventional quadrupole

Strongest possible conductor dominated quadrupole

\[A = \int_0^{2\pi} \cos^3 \varphi \cdot e^{(a\cos^2 \varphi)} d\varphi \]

Reduction of saturation induced movement of trajectory at center of symmetric dipole magnet

\[\ln |B| \]

Effect of iron end plate on fields of ALS gradient magnet

Driving two coils with some amplitude, but 90 degrees phase shift, currents from one source

\(\mu^T = \mu \text{ and } e^T = e \) from scratch

Data reduction for some hybrid ID measurements

Harmonics in S.C. dipole due to horizontal and vertical splits in iron yoke

Three representations of notation to \(\nabla^2 V = 0 \) in cylindrical geometry

\(\mu_1, r_1 \) circle at \(z = 0 \) in 2D multipole field

Harmonics from HIII at top and bottom of "tall" window frame dipole

Mid-plane symmetrical window-frame magnet with excitation to produce quadrupole, sextupole

Design of window-frame with quadrupole not equal to 0, sextupole equal to 0
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Design of window-frame magnet coil that gives no sextupole even though it cannot touch poles</td>
</tr>
<tr>
<td>90</td>
<td>Flux carried by ferromagnetic conduction bolt</td>
</tr>
<tr>
<td>90</td>
<td>(F(z)) outside circle from (A) (or (V)) on circle (if well behaved outside circle)</td>
</tr>
<tr>
<td>90</td>
<td>Mapping exterior of ellipse to exterior of unit circle</td>
</tr>
<tr>
<td>90</td>
<td>Procedure to "fake nut of universe" outside elliptical boundary in POISSON</td>
</tr>
<tr>
<td>90</td>
<td>Line integral measurement with circular coil of magnet with non-parallel straight EFB ideal</td>
</tr>
<tr>
<td>90</td>
<td>Properties of field integral along circular arc through a magnet with a field that depends on (x, y,) but not (z)</td>
</tr>
<tr>
<td>90</td>
<td>Europe Notes — POISSON</td>
</tr>
<tr>
<td>89</td>
<td>Calculation of 2D harmonics from exotic measurements</td>
</tr>
<tr>
<td>90</td>
<td>POISSON notes, Europe 1990</td>
</tr>
<tr>
<td>90</td>
<td>Circular cyclotron magnet design</td>
</tr>
<tr>
<td>90</td>
<td>Curvature of (\omega = z^2/2) map of circle</td>
</tr>
<tr>
<td>90</td>
<td>Curvature of (\omega = z^n) map of circle</td>
</tr>
<tr>
<td>90</td>
<td>Flux induced onto (\mu = \infty) surface by coil with (I)</td>
</tr>
<tr>
<td>90</td>
<td>Change in EFB due to movement of coil, to 1st order</td>
</tr>
<tr>
<td>90</td>
<td>Coil system to measure precisely the (integrated) strength of a (small) quadrupole</td>
</tr>
<tr>
<td>89</td>
<td>(I') shimmed vertical steering magnet</td>
</tr>
<tr>
<td>90</td>
<td>Penetration of external fields into gap of semi-infinite dipole</td>
</tr>
<tr>
<td>90</td>
<td>Penetration of external field into gap of dipole with finite pole thickness</td>
</tr>
<tr>
<td>90</td>
<td>Multipole expansion of skew fields produced by filaments and sheets</td>
</tr>
<tr>
<td>90</td>
<td>Dipole field from environmental field in fig 8 quad</td>
</tr>
<tr>
<td>91</td>
<td>General procedure to get perturbation effects in non-ideal 2D magnets "without" finite element code</td>
</tr>
<tr>
<td>90</td>
<td>CERN Permeameter: primitive analytical model</td>
</tr>
<tr>
<td>90</td>
<td>Techniques for evaluating (F(C, A) = \int_0^{2\pi} [G(C + A\cos\varphi)\cos\varphi,d\varphi])</td>
</tr>
<tr>
<td>90</td>
<td>(\int_0^{2\pi} \cos k(C + A\sin\varphi)\sin\varphi,d\varphi = J)</td>
</tr>
<tr>
<td>90</td>
<td>Amplitude dependent shift correction for modified sextupoles</td>
</tr>
<tr>
<td>91</td>
<td>Field in iron quadrupole from (I' = \cos 2\varphi)</td>
</tr>
<tr>
<td>91</td>
<td>Currents (\approx \cos n\varphi) on circle in iron multipole</td>
</tr>
<tr>
<td>91</td>
<td>Thin walled circular conducting shell in multipole field</td>
</tr>
<tr>
<td>0562thry</td>
<td>Generation of 3rd harmonic in mapped geometry with filaments in ideal multipole</td>
</tr>
<tr>
<td>0563thry</td>
<td>Generation of 2nd harmonic in mapped geometry with filaments in ideal multipole</td>
</tr>
<tr>
<td>0564thry</td>
<td>Multipole from I_1 in dipole and quadrupole</td>
</tr>
<tr>
<td>0565thry</td>
<td>Stored energy inside I carrying conductor</td>
</tr>
<tr>
<td>0566thry</td>
<td>\mathcal{L}' for correction conductor in dipole</td>
</tr>
<tr>
<td>0567thry</td>
<td>Minimizing stored energy in (2D) region around point with given field</td>
</tr>
<tr>
<td>0568thry</td>
<td>A theorem about fields produced by ± filaments on closed $\mu = \infty$ boundary</td>
</tr>
<tr>
<td>0569thry</td>
<td>Map of circular disk on unit circular disk with centers at $\omega = 0$ and $z = 0$, with $\omega(1) = 1$ and $\omega(0) = \omega_0$, $</td>
</tr>
<tr>
<td>0570thry</td>
<td>Re-formulation of “large gap suspension” problem in 2D</td>
</tr>
<tr>
<td>0571thry</td>
<td>Cyclotron correction coil use (Juelich Note)</td>
</tr>
<tr>
<td>0572thry</td>
<td>Transmission of light through a substance between two polaroid filters</td>
</tr>
<tr>
<td>0573thry</td>
<td>V_1, H_z, H'_z, H''_z for semi-infinite solenoid of finite radial thickness</td>
</tr>
<tr>
<td>0574thry</td>
<td>AC fields onto conducting 2D iron cylinder</td>
</tr>
<tr>
<td>0575thry</td>
<td>Penetration of mid-plane symmetric fields into ends of 2D dipole</td>
</tr>
<tr>
<td>0576thry</td>
<td>PM solenoid for SLAC Klystron</td>
</tr>
<tr>
<td>0577thry</td>
<td>Penetration of fields parallel mid-plane of 2D dipole into ends of dipole</td>
</tr>
<tr>
<td>0578thry</td>
<td>Design of coil system to measure quadrupole (re-creation)</td>
</tr>
<tr>
<td>0579thry</td>
<td>Sextupole measurement coil design</td>
</tr>
<tr>
<td>0580thry</td>
<td>Field from finite size Helmholtz coil</td>
</tr>
<tr>
<td>0581thry</td>
<td>Ratio of fields at points in scale and mapped geometry</td>
</tr>
<tr>
<td>0582thry</td>
<td>Power of Panofski quadrupole</td>
</tr>
<tr>
<td>0583thry</td>
<td>T-distribution in magnet when cooled/heated on outside surface</td>
</tr>
<tr>
<td>0584thry</td>
<td>Field in vicinity of $\mu = \infty$</td>
</tr>
<tr>
<td>0585thry</td>
<td>Magnet axes notation — Folder (no transcription)</td>
</tr>
<tr>
<td>0586thry</td>
<td>Ht windings — Folder (no transcription)</td>
</tr>
<tr>
<td>0587thry</td>
<td>Conductor dominated magnets — Folder (no transcription)</td>
</tr>
<tr>
<td>0588thry</td>
<td>Iron dominated magnets — Folder (no transcription)</td>
</tr>
<tr>
<td>0589thry</td>
<td>Over-relaxation — Folder (no transcription)</td>
</tr>
<tr>
<td>0590thry</td>
<td>Ripple (Eddy currents) — Folder (no transcription)</td>
</tr>
<tr>
<td>0591thry</td>
<td>Dipole with small gap bypass</td>
</tr>
<tr>
<td>0592thry</td>
<td>Displacement-caused change of force on coil in coil slot</td>
</tr>
<tr>
<td>0593thry</td>
<td>LEB-MEB symmetrical H dipole</td>
</tr>
</tbody>
</table>
0594thry Field lines, $\mu = \infty$ surface, from two filaments in vacuum, on boundary and inside or outside circular $\mu = \infty$ surface
0595thry Load line for circular cylinder/sphere in uniform field
0596thry 2D ellipse with arbitrary (isotropic) $B(H)$ curve in homogenous external field
0597thry Representation of magnetization data, for 3D sphere and 2D ellipse
0598thry Conduction 2D iron cylinder and 3D sphere in AC field
0599thry Geometry specific perturbation effects by mapping into infinitely wide dipole
0600thry Perturbation harmonics in circular disk
0601thry Mapping function POISSON geometry \rightarrow circular disk
0602thry Relations between expansion coefficients for perturbations in systems with mirror symmetry
0603thry SSC dipole: analysis with 2DPERT2 using GEN1.DAT
0604thry Determination of amplitude and phase of long coil
0605thry Meaning of C_n for one filament from 2DPERT in system that is symmetric with respect to x and y axes
0606thry H magnet with minimal yoke flux density
0607thry Stored energy in H magnet for $\mu = \infty$
0608thry Some thoughts on generation of a set of 2D fields that are locally perpendicular to each other
0609thry Comments about RAYTRACE
0610thry Fringe field model function for dipoles
0611thry Curvature of 2D Magnetic Field Lines and Scalar Potential Lines
0612thry Some Thoughts on an Eddy Current Septum Magnet
0613thry One Pulse Energy Deposition in Septum
0614thry Geometry Specific Effects in Iron Dominated 2D Magnets