Title
Multiple Objectives and Central Bank Tradeoffs Under Flexible Inflation Targeting

Permalink
https://escholarship.org/uc/item/3pq021t5

Journal
CESifo Working Paper Series

Author
Walsh, CE

Publication Date
2014-11-30

Peer reviewed
Multiple Objectives and Central Bank Tradeoffs under Flexible Inflation Targeting

Carl E. Walsh

CESifo Working Paper No. 5097
Category 7: Monetary Policy and International Finance
November 2014

An electronic version of the paper may be downloaded
- from the SSRN website: www.SSRN.com
- from the RePEc website: www.RePEc.org
- from the CESifo website: www.CESifo-group.org/wp
Multiple Objectives and Central Bank Tradeoffs under Flexible Inflation Targeting

Abstract

Many inflation targeting central banks are facing calls to expand their list of policy goals. I discuss how recent research provides new insights into the goals of policy and the tradeoffs presented by multiple goals. I focus particular attention on the role of unemployment and labor market frictions, but I also discuss the role of currency misalignment in affecting policy objectives in open economies. Current models often find that price stability is close to the optimal policy, even when, in theory, the central bank should care about multiple goals. I offer some ideas about why this might be the case.

Keywords: inflation targeting, monetary policy tradeoffs, central banks.
1 Introduction

This year marks the 15th anniversary of the adoption of inflation targeting by the Banco Central do Brazil. It also marks the 25th anniversary of the Reserve Bank of New Zealand Act of 1989, the very first formal inflation targeting regime. Since inflation targeting premiered in New Zealand, it has spread widely, with close to 30 countries now classified as inflation targets. As Andy Rose has emphasized, inflation targeting has proven to be a very stable policy regime (Rose (2013)). With the exceptions of Finland and Spain, who both dropped inflation targeting to join the euro, no inflation targeter has subsequently abandoned it.

Certainly the inflation experience of Brazil since adopting inflation targeting represents quite a contrast with its experience during the 15 years prior to its adoption. Table 1 compares mean annual average inflation rate and its standard deviation for 1990-1999 and 2000-2013 for Brazil, all of Latin America, the ASEAN-5 economics, and the advanced economies. Brazil was not alone in achieving a marked improvement. The twenty years following the introduction of IT in New Zealand witnessed successful disinflations in many countries, and these successes were broadly similar in both inflation targeters and non-inflation targeters. Not surprisingly, there is an active empirical literature that attempts to assess what role, if any, inflation targeting played in reducing inflation and, equally importantly, contributed to maintaining low and stable inflation and stability in real economic activity.¹

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>747.26</td>
<td>6.58</td>
<td>932.843</td>
<td>2.661</td>
</tr>
<tr>
<td>Latin America</td>
<td>146.60</td>
<td>6.89</td>
<td>133.964</td>
<td>1.421</td>
</tr>
<tr>
<td>ASEAN-5</td>
<td>11.37</td>
<td>5.23</td>
<td>5.358</td>
<td>1.825</td>
</tr>
<tr>
<td>Advanced</td>
<td>3.26</td>
<td>1.99</td>
<td>1.238</td>
<td>0.754</td>
</tr>
</tbody>
</table>

Source: IMF WEO

¹For example, for evidence generally supportive of IT, see Schmidt-Hebbel (2009), Walsh (2009a), Walsh (2009b), Gürkaynak, Levin and Swanson (2010), Brito and Bystedt (2010), Rose (2013) and the references they contain.
Inflation targeting certainly has its critics, and it faces serious challenges in the post-financial crisis environment. Criticism has come from both sides – some have argued that IT hasn’t really mattered, others argue it has mattered too much, that the macroeconomic experiences of inflation targeters and non-targeters have been similar and that IT adversely resulted in policy makers focusing too much on inflation while neglecting financial stability and other important macroeconomic objectives such as growth and employment. Calls for ITs abandonment, or at least for its reform, are common. Calls for reform have focused on three types of changes: 1) expanding the list of policy goals assigned to the central bank, 2) retaining IT but raising the target inflation rate, and 3) dropping inflation in favor of an alternative nominal targets such as the price level or nominal GDP.

In this paper, I focus on the first of these potential reforms. Specifically, I want to focus on what modern economic theory says about the goals of monetary policy and whether the gains from deviating from price stability to pursue other goals are worth the cost.

2 Distortions and deviations from strict inflation targeting

The key principles underlying flexible inflation targeting are credibility, predictability and transparency of decision-taking, and they will remain the cornerstone of successful monetary policy in the future. King (2012), p. 12.

Mervyn King’s list of key cornerstones of successful monetary policy are facilitated by inflation targeting, in part because the target provides a framework within which to communicate policy to the public. But emphasizing a single macroeconomic measure – the rate of inflation – does raise the possibility that the central bank will ignore other measures of economic health. Stan Fischer emphasizes that the best monetary policy is flexible inflation targeting, with the flexibility indicating that the inflation rate is not the only macroeconomic outcome of relevance. And while the evidence is clear that inflation targeters are flexible inflation targeters in practice, a communications strategy focused
solely on the inflation rate may lead the public to believe inflation is all the central bank really cares about.

But what else should monetary policy makers care about?

The modern theory of monetary policy says that central banks should care about many things. Economies are characterized by multiple frictions that prevent efficient adjustment in the face of economic disturbances. If monetary policy has the ability to affect the real economy, and if the monetary authority is able to offset economic distortions that hinder efficient adjustment, then policy should – at least in principle – sacrifice some price stability to improve overall macroeconomic outcomes.

It is useful to think of decomposing a measure of macroeconomic health – call it social welfare – into components due to different real and nominal frictions. Let W_t^* be the first best outcome under the social planner’s allocation, and let W_t^{opt} be welfare under an optimal monetary policy. If we let W_t^{sp} denote welfare achievable when prices are stable – what would be achieved by a strict inflation targeter – we can write

$$W_t^* - W_t^{opt} = (W_t^* - W_t^{ps}) + (W_t^{ps} - W_t^{opt}) \geq 0. \quad (1)$$

The gap $W_t^* - W_t^{opt}$ reflects the difference between the planner’s allocation and the best that can be achieved under an optimal monetary policy. This can be, in turn, expressed as the sum of two gaps. $W_t^* - W_t^{ps}$ is the gap between the first best and the equilibrium under price stability. This difference is normally positive due, for example, to imperfect competition in goods markets or other real frictions. The term $W_t^{sp} - W_t^{opt}$ measures the difference in welfare between the equilibrium with stable prices and the level of welfare achievable under an optimal policy that (potentially) deviates from price stability. This term is negative as the optimal monetary policy must do at least as well as a policy of price stability. Equation (1) implies

$$\sigma_{W^* - W^{opt}}^2 = \sigma_{W^* - W^{ps}}^2 + \sigma_{W^{ps} - W^{opt}}^2 + 2\sigma(W^* - W^{ps})(W^{ps} - W^{opt}).$$

In the world of Blanchard and Galí’s divine coincidence (Blanchard and Galí (2007)), welfare under price stability and under the social planners allocation differ by a constant, that is, $W_t^* - W_t^{ps}$ is a constant. In this case, $\sigma_{W^* - W^{ps}}^2 = 2\sigma(W^* - W^{ps})(W^{ps} - W^{opt}) = 0$ and $\sigma_{W^* - W^{opt}}^2$ is then minimized by minimizing $\sigma_{W^{ps} - W^{opt}}^2$, i.e., by ensuring price stability.\(^2\)

\(^2\)Since in this case, $W_t^{ps} = W_t^{opt}$ and $\sigma_{W^* - W^{opt}}^2 = 0$.

4
But this is a special case. If there are real frictions arising from, for example, markup shocks in product and/or labor markets, or nominal rigidities such as wage stickiness in addition to price stickiness, then $W_t^* - W_t^{ps}$ is a welfare cost that varies over time. In this case, the central bank can improve macro outcomes by deviating from price stability to create a negative correlation between $W_t^* - W_t^{ps}$ and $W_t^{sp} - W_t^{opt}$, i.e., so that $\sigma(W_t^* - W_t^{ps})(W_t^{ps} - W_t^{opt}) < 0$. Allowing inflation to rise somewhat in the face of an adverse supply shock, for instance, helps cushion the contraction in economic activity and improves overall welfare. Strict inflation targeting will not be optimal. This point is not new. The fact that price rigidities may improve welfare relative to the flexible price equilibrium arises because they mean monetary policy can offset partially other distortions.\(^3\)

Of course, the fact that $W_t^* - W_t^{ps}$ is volatile does not necessarily imply policy can generate welfare gains by deviating from price stability. The negative correlation must more than offset the volatility introduced into $W_t^{sp} - W_t^{opt}$ if welfare is to be improved. If it is necessary to generate large movements in $W_t^{sp} - W_t^{opt}$ to produce a negative correlation with $W_t^* - W_t^{ps}$, then sticking to a policy of price stability may be close to optimal. That is, the costs of the inflation volatility that is needed to reduce $W_t^* - W_t^{ps}$ may be too large to justify the required deviations from price stability.

3 Inefficient fluctuations and tradeoffs

The academic literature has investigated many potential reasons economies experience distortions that would call for deviating from price stability. First generation new Keynesian models assumed that price markup shocks in goods markets caused inefficient fluctuations in inflation and output. Optimal policy trades off some volatility in output in an attempt to prevent these shocks from creating excessive volatility in inflation. In such an environment, optimal policy (under discretion) follows the Qvigstad rule, named for Norges Bank Deputy Governor Jan Qvigstad who described it in Qvigstad (2006) – if inflation is above target, the output gap should be negative and vice versa. If inflation is above target and the output gap is also positive, then policy is too loose; if inflation is below target and the output gap is negative, policy is too tight. If inflation relative to

\(^3\)Staggered price setting may improve welfare relative to the flexible price equilibrium since it provides monetary policy the opportunity to offset partially other distortions. Adao, Correia, Teles (2003) discuss a model with multiple distortions and nominal price rigidity where this intuition applies.
Figure 1: A Qvigstad plot of the U.S. output gap and inflation gap inflation relative to 2%

target is plotted against the output gap, observations should fall into quadrants II and IV. Points in quadrant I indicate policy that is too loose; points in quadrant III indicate policy is too tight. Figure 1 shows such a plot for the U.S.

A Qvigstad plot provides a simple but rough assessment of monetary policy, similar to exercises that compare the policy interest rate to the predictions of a Taylor rule. It has the advantage of focusing on the things we care about – inflation and real activity – rather than on the setting of the policy instrument. It gives a general sense of the balancing act the central bank has had to make, but it doesn’t tell us whether the outcomes are consistent with an optimal policy. Show the points in quadrants II and IV display a steep slope with the output kept close to zero while inflation fluctuates? Or should it have a flat slope, with inflation kept close to target while the output gap fluctuates?

To get a sense of what theory implies about optimal policy, at least under discretion, we can use a simple graph to analyze the case of serially uncorrelated markup shocks. Equilibrium, shown in figure 2, is represented by the intersection of two curves – the Phillips curve, linking inflation and the output gap, and a policy curve showing the way the central bank balances fluctuations in these two variables.
The curves shown are not arbitrary – they reflect commonly used parameter values for linear approximations to the basic new Keynesian model. The key point is that the policy curve is very, very flat. Figure 3 illustrates what happens when there is a positive markup shock. Output rise and the output gap falls, but given the flat policy curve, the rise in inflation is very small. Under a policy of pure price stability, the policy line would be completely flat. It almost is, so optimal policy is close to price stability.

The basic new Keynesian model, therefore, implies that, while in theory central banks should care about stabilizing both inflation and the output gap, in practice, or at least if one takes the model seriously, optimal monetary policy is pretty much strict inflation targeting (price stability).

The policy curve is defined by $\kappa \pi + \lambda x = 0$, where κ is the elasticity of inflation with respect to the output gap and λ is the relative weight on output gap stabilization in the central bank’s objective function. In terms of structural parameters, $\lambda = \kappa (\sigma + \eta) / \left[(1 + \eta \theta) \theta \right]$ where is the elasticity of product demand faced by firms. The slope of the policy curve is $-\lambda/\kappa = (\sigma + \eta) / \left[(1 + \eta \theta) \theta \right]$. The figure assumes log utility ($\sigma = 1$), $\eta = 2$, and $\theta = 11$. The value of θ is consistent with an average markup of 10%. Assuming a smaller value of θ (a larger average markup) would increase the absolute value of the policy curve slope.
Figure 3: Effects on inflation and the output gap of an inflation shock.

3.1 Currency misalignments

The previous example came from a very basic model. Do the conclusions change if one begins to incorporate more sources of potentially inefficient fluctuations that might call for deviating from price stability? One case in which this might occurs arises from currency misalignment.

Early extension of the new Keynesian model to the environment of a small open economy such as Clarida, Gali and Gertler (2001) and Clarida, Gali and Gertler (2002) concluded the small open economy was essentially isomorphic to the closed economy. While the parameter values relevant for an open economy would differ from those for a closed economy, that was the only difference. And importantly, optimal policy called for stabilizing domestic goods prices, not a consumer price index. This was an important finding as all inflation targeting central banks actually define their target in terms of a consumer price index.

The key distortion in the Clarida et al. (2002) model was due, as in all new Keynesian models, to relative price distortions that arise when firms adjusted prices in a staggered, nonsynchronized fashion. Relative price dispersion causes a shift in demand.
away from firms with relative high relative prices and towards those with relative low relative prices. These shifts in demand and production across firms, shifts due solely to inflation variability combined with sticky prices, result in an inefficient allocation of labor across firms. Since it is the allocation of labor across domestic firms that is responsible for the inefficiency, stabilizing domestic prices is the answer.

These early open economy models, however, ignored many important frictions that characterize open economies. For example, they assumed uncovered interest parity held, pass-through was complete, and the law of one price held. They also assumed the domestic consumption bundle consisted entirely of tradeable goods. Empirical models of open economy have had to relax all these aspects to match the data.

Consider the following two additions to the basic model of Clarida et al. (2002): nontraded goods and local currency pricing by domestic firms engaged in exporting. The first extension (to incorporate nontraded goods) is developed in Wren-Lewis and Leith (2006). Demand and supply in the market for nontradeables must be equal, and the same must hold for the demand and supply of domestically produced tradeables. Equilibrium in the nontradeable goods sector requires

\[Y_N = V_N C_N \Rightarrow C_N \leq Y_N, \]

where \(V_N \) is a measure of relative price dispersion across firms in the nontradeables sector. Equilibrium in the domestic tradeables goods producing sector, which arises from both domestic consumers and foreign consumers, requires

\[Y_H = V_H \gamma S C^* [(1 - \alpha) \varepsilon + \alpha] \]

where \(C^* \) is world consumption, \(\varepsilon \) is a shock to the UIP condition, \(S \) is the terms of trade (the price of foreign produced tradeables relative to domestically produced tradeables), and \(V_H \) is a measure of relative price dispersion among domestic tradeable goods producing firms.

So now two measures of relative price dispersion, \(V_N \) and \(V_H \), will be relevant. And not surprisingly, with sticky prices in both sectors of the economy, output gaps in both sectors matter for social welfare, as does inflation in the price indexes of both sectors. Because output gaps in both sectors are relevant, one cannot replace them with a single output gap measure – the sectorial composition of output matters.
Of course, the two output gaps can be replaced by gaps in aggregate output and another gap that captures the sectorial composition effects. Wren-Lewis and Leith (2006) show that a central bank objective function defined in terms of an aggregate output gap would also need to incorporate a terms of trade or real exchange rate objective as well.

Similarly, policy needs to stabilize inflation is both sectors. Policy objectives can be defined in terms of an aggregate measure of domestic price inflation, but in this case, an exchange rate or terms of trade measure also should appear in the central bank’s objective function.

But how important are these additional objectives? Wren-Lewis and Leith (2006) show for a calibrated version of the model that the improvement of the optimal policy under commitment over a policy of strict output price inflation targeting is just 0.001% of steady-state consumption. There is almost no gain from optimally balancing the need to stabilize multiple output, terms of trade, and inflation gaps.

Let me mention briefly one further example from the open economy literature. Engel (2011) examines a variant of the Clarida et al. (2002) model which includes local currency pricing by domestic export firms. Now sticky prices that create dispersion among the relative prices of domestically produced tradeables in the domestic market also create a dispersion of relative prices for these exporting firms in foreign markets. This affects the demand facing these firms and leads to an inefficient allocation of labor among domestic firms.

How important are these distortions? What are the costs of deviating from price stability, defined either in terms of domestic tradeables output or nontradeables output prices?

Engel (2011) shows, in a model in which all goods are tradable and local currency pricing characterizes pricing of export goods from the domestic economy, an optimal policy attempts to stabilize measures of the output gaps, inflation in both domestic prices and prices charged abroad by domestic firms, and a measure of currency misalignment, all measured relative to their efficient levels. Currency misalignment is related to the average foreign price of domestic tradeables to their average price in the home market.

How big are the relative weights on these different policy objectives? Using standard values ($\sigma = \phi = 1, \xi = 11, v = 2/3$ where v is the weight on home goods in preferences), the weight on currency misalignment is only 1/8 the weight on the price dispersion terms that are linked to inflation volatility.

In a related paper, Kirsanova, Leith and Wren-Lewis (2006) derive the social welfare
function for a small open economy and find that, relative to inflation (at annual rates), the coefficient on terms of trade volatility, using Engel’s calibration, is zero. Assuming instead that \(\sigma = 0.5 \), the relative weight on terms of trade volatility relative to inflation volatility is just 0.007.

So while multiple distortions argue for multiple objectives in principle, standard open economy models imply that the central bank should focus overwhelmingly on stabilizing domestic price inflation. The costs of deviating from price stability are large relative to the gains to be had from trying to deal with other distortions.

3.2 Labor market distortions

Unemployment has been of major concern in the U.S. as a consequence of the slow recovery from the Grand Recession, so let me now turn to an example of policy tradeoffs that comes from the labor market.

Not only did the 2008-2009 Great Recession see the highest peak unemployment rate since the Volcker disinflation of the early 1980s, but unemployment remained stubbornly high during the recovery (see figure 4). Because of the large social costs of elevated levels of unemployment, especially when that unemployment persists for extended periods of time, the health of the labor market has loomed large in Federal Reserve policy discussions. This is entirely consistent with the Fed’s dual mandate of maintaining price stability and maximum sustainable employment.

Starting in Fall 2012, the Fed began to link future interest rate increases to developments in the labor market.\(^5\) The September 13, 2012 FOMC statement indicated that quantitative easing policies, in this case purchases of mortgage-backed securities, would continue “if the outlook for the labor market does not improve substantially.” In its December 12, 2012 statement, the FOMC adopted a more quantitative measure of labor market health, stating that

\[\text{In particular, the Committee decided to keep the target range for the federal funds rate at 0 to 1/4 percent and currently anticipates that this exceptionally low range for the federal funds rate will be appropriate at least as long as the unemployment rate remains above 6-1/2 percent, inflation between one and two years ahead is projected to be no more than a half percentage point}\]

\(^5\)See section 2.3, p. 46 of Woodford (2013) for relevant dates and quotations from FOMC statements.
above the Committee’s 2 percent longer-run goal, and longer-term inflation expectations continue to be well anchored. In determining how long to maintain a highly accommodative stance of monetary policy, the Committee will also consider other information, including additional measures of labor market conditions, indicators of inflation pressures and inflation expectations, and readings on financial developments.

On March 31, in her first formal speech as Chairwoman of the Federal Reserve, Janet Yellen focused on the continued weaknesses of the labor market, sending a signal that policy would remain accommodative for some time.\(^6\)

3.2.1 A model of the labor market

Standard new Keynesian models are not well suited to analyze the role unemployment should play in the design of monetary policy. There is a simple reason for this – most

\(^6\)The rapid fall in the U.K. unemployment rate in early 2014 lead the Bank of England to quickly reverse its use of a numerical value for unemployment in conveying forward guidance.
such models still do not have any unemployment. They incorporate fluctuations in labor hours, but they do not include fluctuations in the number of individuals who are seeking work but who do not currently have jobs. Fortunately, there is now a standard theory of unemployment based on the Nobel Prize winning work of Peter Diamond, Chris Pissarides, and the late Dale Mortensen that can be incorporated into monetary policy models.\footnote{This so-called DMP model was first incorporated into a new Keynesian model of nominal rigidities in \textit{Walsh} (2003), \textit{Walsh} (2005) and \textit{Trigari} (2009).} A large literature has developed over the past decade, both theoretical and empirical, including \textit{Trigari} (2009), \textit{Gertler and Trigari} (2009), \textit{Sala, Söderström and Trigari} (2008), and \textit{Sala and Trigari} (2012)) that imbeds versions of the DMP model into DSGE models that can be used to address issues of monetary policy.

There are two things to note about the NK-DMP model. First, frictions in the labor market give rise simultaneously to unemployment workers and unfilled jobs, so the unemployment rate alone is not sufficient to characterize conditions in the labor market. Instead, these conditions are captured by the ratio of job vacancies to unemployment, a measure of labor market tightness (see figure 5).

Second, interest rates have a direct effect on labor demand, that is, monetary policy, to the extent it affects real interest rates, has a supply side effect as well as a demand side...
effect. Because most employment matches last for several periods, the firm evaluates the present value of the returns to a successful hire when weighing whether to post a new job opening. An interest cut raises the present discounted value of a job match and, ceteris paribus, increases the number of new jobs firms recruit for. Monetary policy has supply side effects and not just standard demand side effects.

The current generation of these models has strong implications for monetary policy. Based on the results of Ravenna and Walsh (2011) and Ravenna and Walsh (2012a), Jim Bullard, President of the Federal Reserve Bank of St. Louis, described these papers in a presentation at the 22nd Annual Hyman P. Minsky Conference in 2013 titled “Some unpleasant implications for unemployment targeters.” Bullard (2013)

So what are these unpleasant implications?

Under the standard DMP assumption that workers and firms engage in Nash bargaining over wages, efficiency requires that the bargaining weights take on specific values given by what is known as the Hosios condition (Hosios 1980). In Ravenna and Walsh (2011), we show that when the Hosios conditions holds, optimal monetary policy should aim to minimize a function that depends on inflation volatility, volatility in a consumption-based output gap, and the volatility of the gap between labor market tightness and its efficient level. Thus, the addition of a new distortion calls for not a dual mandate but a triple mandate in which labor market fluctuations play an independent role.

Taking a second order approximation to the welfare of the representative household in the basic NK model yields

\[W_{NK}^{t} = W_{tip,t}^{NK} - (\pi_{t}^{2} + \lambda_{0}\tilde{c}_{t}^{2}), \]

where \(W_{tip,t}^{NK} \) captures terms that are independent of policy, while in the NK-DMP model, one obtains

\[W_{NKDMP}^{t} = W_{tip,t}^{NKDMP} - (\pi_{t}^{2} + \lambda_{0}\tilde{c}_{t}^{2} + \lambda_{1}\tilde{\delta}_{t}^{2}), \tag{2} \]

where \(W_{tip,t}^{NKDMP} \) represents the terms independent of policy. However, for a plausible calibration of the model, it turns out that \(\lambda_{1} \approx 0.0001 \). So for all intensive purposes,

8 For the role of this cost channel for optimal monetary policy, see Ravenna and Walsh (2006). For its role in the Great Recession, see Christiano, Eichenbaum and Trabandt (2014) and Hall (2014).

9 \(\lambda_{2} = (1 - \alpha) (\delta / \epsilon) \kappa V / \dot{C} \approx (1 - 0.5) (\delta / 6) 0.01. \) With the Calvo parameter \(\omega = 0.75, \)

\[\delta = \frac{(1 - 0.75)(1 - 0.75 \times 0.99)}{0.75} = 0.0858 \]
optimal policy ignores labor market fluctuations. But under this same calibration, \(\lambda_0 \approx 0.0143 \), so optimal policy is pretty close to a complete focus on inflation stabilization. We show that this welfare function can be expressed in terms of inflation, the consumption gap, and an unemployment rate gap variable, but again the theoretically implied weight on unemployment is small.

In Ravenna and Walsh (2011), we calibrate this model to assess the welfare costs of ignoring labor market variables. We consider the welfare costs of designing policies to minimize a standard objective function that either ignores labors market frictions or introduces them in an ad hoc fashion. Specifically, we consider two alternatives to the welfare-based loss function. The first alternative simply drops the \(\widetilde{\theta}_t^2 \) term, yielding a loss function that parallels a standard NK quadratic loss function:

\[
L_{nk}^t \equiv \pi_t^2 + \lambda_0 \tilde{c}_t^2.
\]

(3)

In this case, policy aims to stabilize inflation volatility and the volatility of the consumption gap. We employ the welfare-based value of \(\lambda_0 \) since this is equal to the same value that would occur in a standard NK model in which utility depends linearly on hours worked. This loss function ignores the inefficiencies arising from search costs in the labor market.

A second loss function we consider includes inflation and the unemployment gap:

\[
L_{u}^t(\lambda) \equiv \pi_t^2 + \lambda \tilde{u}_t^2.
\]

(4)

Such a loss function has been employed by Orphanides and Williams (2007) and is used by Sala et al. (2008) in a model with search and matching frictions in the labor market. Because (4) represents an ad hoc specification of policy objectives, theory offers no guidance as to the value to assign to \(\lambda \), the relative weight placed on unemployment objectives. For our baseline, we set \(\lambda_1 \) so that the standard deviation of the unemployment gap under commitment is the same when minimizing either (4) or the welfare-based loss function (2). In this case, \(\lambda = 0.0035 \). Sala, Söderström, and Trigari (2008) derive optimal policy for various values of \(\lambda \) and find that a value of 0.0521 matches the standard deviation of unemployment in their model.\(^{10}\) Therefore, we also report results for \(\lambda = 0.0521 \). Since this value of \(\lambda \) is nearly 15 times the one that would deliver the same unemployment

\[so \lambda_2 \approx 0.00007. And \lambda_1 = \sigma \delta / \varepsilon \approx \sigma \times 0.0143\] so unless risk aversion is very high, \(\lambda_1 \) is also small.

\(^{10}\)Because they express inflation at an annual rate, the actual value of \(\lambda \) they use is \(16 \times 0.0521 = 0.833 \).
gap volatility as the optimal policy, it will imply a very high volatility of inflation in our model. This experiment is useful in providing a measure of the sensitivity of the loss to the relative weight placed on competing objectives. Orphanides and Williams (2007), for example, employ an even larger weight of 0.25 on unemployment in their analysis.

Results when policy is based on minimizing (under commitment) the alternative loss functions (3) and (4) are reported in Table ??, taken from Ravenna and Walsh (2011). The first column of the table reports the percentage increase in the welfare-based loss function given by (2) when policy minimizes one of the alternative loss functions. Minimizing (3), for example, increases the loss by 4.59 percent (row 2). When policy minimizes inflation and unemployment volatility, the weight placed on the unemployment gap is crucial; minimizing (4) increases the loss by 0.34 percent (row 3) when $\lambda = 0.0035$ but by 275.93 percent (row 4) when the value $\lambda = 0.0521$ is used.

<table>
<thead>
<tr>
<th>Welfare-based loss</th>
<th>Loss relative to opt. policy (percent)</th>
<th>Welfare Cost*</th>
<th>σ_π</th>
<th>$\sigma_\tilde{u}$</th>
<th>$\sigma_{\tilde{h}}$</th>
<th>$\sigma_\pi/\sigma_\tilde{u}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss in π and $\tilde{c} - gap$, $\lambda = \lambda_0$</td>
<td>0</td>
<td>0</td>
<td>0.24</td>
<td>0.72</td>
<td>11.82</td>
<td>0.33</td>
</tr>
<tr>
<td>Loss in π and $\tilde{u} - gap$, $\lambda = 0.0035$</td>
<td>4.59</td>
<td>0.0011</td>
<td>0.02</td>
<td>0.75</td>
<td>12.36</td>
<td>0.03</td>
</tr>
<tr>
<td>Loss in π and $\tilde{u} - gap$, $\lambda = 0.0521$</td>
<td>0.34</td>
<td>0.0001</td>
<td>0.22</td>
<td>0.72</td>
<td>11.86</td>
<td>0.32</td>
</tr>
<tr>
<td>Loss in π and $\tilde{c} - gap$, $\lambda = 0.0521$</td>
<td>275.93</td>
<td>0.0683</td>
<td>1.96</td>
<td>0.51</td>
<td>8.27</td>
<td>3.83</td>
</tr>
</tbody>
</table>

* Relative to welfare-based optimal commitment, as percent of steady-state consumption

Consistent with the comparison based on the quadratic loss itself, the welfare costs of deviating from the optimal commitment policy are small in terms of steady-state consumption equivalents except when a large weight is placed on the volatility of the unemployment gap. In fact, when $\lambda = 0.0521$ in (4), performance deteriorates significantly (see row 4, Table 2). With this parameterization, policy is much more aggressive in stabilizing deviations of unemployment from the efficient level; the standard deviation of inflation increases by a factor of eight, while the standard deviation of the unemployment gap falls by about one third. The monetary authority would do much better by focusing on stabilizing inflation and ignoring altogether the impact of bargaining shocks.
on employment, as the second row of Table 2 shows.

Notice that the loss function in inflation and unemployment (row 3) yields a standard deviation for inflation that is essentially the same as that obtained under the fully optimal policy. And the use of the standard loss function (row 2) yields only a slight deterioration in labor market volatility while essentially achieving price stability. Expressed alternatively, there is a large gain in inflation stability at a relatively small cost in terms of greater real economic volatility, even though welfare ends up being somewhat lower.

Table 3—Alternative Policy Objectives: Discretion

<table>
<thead>
<tr>
<th>Loss relative to opt. policy (percent)</th>
<th>Welfare Cost*</th>
<th>σ_π</th>
<th>σ_u</th>
<th>σ_θ</th>
<th>σ_π/σ_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welfare-based loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>10.50</td>
<td>0.0026</td>
<td>0.39</td>
<td>0.72</td>
<td>11.93</td>
</tr>
<tr>
<td>Loss in π and c – gap, λ = λ_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>4.55</td>
<td>0.0011</td>
<td>0.02</td>
<td>0.75</td>
<td>12.36</td>
</tr>
<tr>
<td>Loss in π and u – gap, λ = 0.0035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>16.75</td>
<td>0.0041</td>
<td>0.45</td>
<td>0.72</td>
<td>12.04</td>
</tr>
<tr>
<td>Loss in π and u – gap, λ = 0.0521</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>1936.12</td>
<td>0.4815</td>
<td>4.83</td>
<td>0.43</td>
<td>7.35</td>
</tr>
</tbody>
</table>

* Relative to welfare-based optimal commitment, as percent of steady-state consumption

Of course, these findings are for commitment policies, and it may be more relevant to consider outcomes when the central bank can commit to its objectives but cannot commit to future policy actions. This case is considered in Table 3, also from Ravenna and Walsh (2011), which shows that optimal policy employing an incorrect—but standard—objective function is both close to strict inflation targeting and improves over policy that correctly incorporates labor market frictions.

The finding that strict inflation targeting performs well in new Keynesian models is not unique to models that incorporate labor market frictions. As Mervyn King has noted with respect to financial frictions,

“Although there is a, by now extensive, literature on financial frictions including attempts to incorporate them in New Keynesian models, it turns out
that such extensions make little difference to the propagation of shocks, to
optimal policy, or to the quantitative conclusions that overwhelmingly the
most important objective remains inflation stabilization.” King (2012), p. 5.

The same appears to be true for labor market fluctuations and motivates Jim Bullard
to conclude

The instinct that many might have— that including search-theoretic unemploy-
ment in the [new Keynesian] model explicitly would have to mean that the
policymaker would want to “put equal weight” on trying to keep prices sta-
able and trying to mitigate the unemployment friction— turns out to be wrong.
Optimal monetary policy is still all about price stability.11

4 Why is price stability close to optimal?

My labor market example and the example of currency misalignment illustrated how
theory implies multiple objectives for the central bank but also implies that at the end
of the day, price stability is close to optimal. Optimal monetary policy in these models
is pretty much the same as strict inflation targeting.

There are two possible explanations for this result. First, as indicated by the small
weight on non-inflation objectives in the welfare approximations, it might simply be the
case that volatility in real economic activity or unemployment or the real exchange rate
does not generate very large costs to the economy. Alternatively, fluctuations in the
economy may create large welfare costs, but monetary policy may just be an inefficient
means of addressing the problem. If it’s the latter, why might this be the case? This
question is investigated in Ravenna and Walsh (2012a).

When monetary policy is the only policy instrument available, the competitive equi-
librium generally results in an inefficient allocation. Assume policy authorities have a
full set of tax instruments that can be used to achieve the first best allocation. We show
in a NK-DMP model that three instruments are needed: one tax is used to correct any
distortions in job creation, one tax corrects any inefficiencies in hours worked per em-
ployee, and monetary policy is used to ensure price stability. By examining how these
tax instruments need to vary in response to shocks, we can infer something about how

11 http://www.economicdynamics.org/News281.htm#interview
volatile inflation would need to be if monetary policy were the only instrument available for dealing with the distortions in the labor market.

When wages are set by Nash bargaining and the Hosios condition holds (a value of 0.5 for our bargaining share parameter b), the flexible-price equilibrium delivers the planner’s level of welfare – employment and hours choices are efficient, and price stability is the optimal monetary policy. This is shown in row 1 of Table 4.12

When wages are determined by Nash bargaining but the Hosios condition is violated ($b = 0.7 > 0.5$), row 2 of Table 4 shows that the tax (τ_f) to correct for employment distortions must compensate for a large, but basically acyclical, wedge between the efficient and inefficient allocations. This low volatility of the optimal tax means monetary policy aimed at achieving the efficient employment outcome does not need to deviate much from price stability. That is, a monetary policy that aims to achieve efficient employment generates approximately the same level of welfare as price stability (see row 2 of Table 5). In other words, the monetary authority faces a welfare function which is close to flat with respect to the alternative objectives of labor market efficiency and price stability, and so the optimal, efficient employment monetary policy and price stability deliver similar welfare outcomes. The employment inefficiency is large, but most of it – both in terms of the size of the tax needed to correct for inefficiency in vacancy posting and in terms of how this inefficiency translates in welfare loss – depends primarily on the steady state inefficiency, and this steady-state inefficiency cannot be addressed by monetary policy.13 This explains why previous papers that assume Nash bargaining find that price stability is close to the optimal policy (i.e., Faia (2008), Faia, Lechthaler and Merkl (2009), Ravenna and Walsh (2011)).

12For the model in Ravenna and Walsh (2012a), τ_f is the tax on the revenues of intermediate firms, $\tau_r = \left[\left(1 - \tau_f/\mu_r\right)/\mu_r\right] - 1$ is the tax that ensures efficient hours, where μ_r is the retail price markup, and price stability ensures $\mu_r = \bar{\mu}$ is constant. The steady-state value of τ_f is set so that $\bar{\mu} = 1$. See Ravenna and Walsh (2012a) for details.

13The solution to the optimal policy problem yields a steady-state inflation rate of zero, similarly to the steady state result obtained in models with staggered price adjustment by Khan, King and Wolman (2003) and Adao, Correia and Teles (2003).
Table 4: Intermediate sector optimal tax τ_t^f

<table>
<thead>
<tr>
<th>Wage setting</th>
<th>Steady-state tax rate</th>
<th>Volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(subsidy if negative)</td>
<td>σ_τ</td>
</tr>
<tr>
<td>Nash Bargaining</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(1) b = 0.5$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(2) b = 0.7$</td>
<td>$-115%$</td>
<td>0.08%</td>
</tr>
<tr>
<td>Efficient wage norm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(3) \bar{w} = w_{ss}(0.5)$</td>
<td>0</td>
<td>1.69%</td>
</tr>
<tr>
<td>Inefficient wage norm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(4) \bar{w} = w_{ss}(0.7)$</td>
<td>$-1.64%$</td>
<td>1.69%</td>
</tr>
</tbody>
</table>

From Ravenna and Walsh (2012a)

Intuitively, the impact of a productivity shock with inefficient Nash bargaining is akin to its impact under the efficient allocation, coupled with a temporary deviation of the bargaining share from its efficient (Hosios) level. Since workers and firms are concerned with the present value of the match surplus, temporary deviations from efficient bargaining do not have large welfare costs. This argument is closely related to the one made by Goodfriend and King (2001) that the long-term nature of employment relationships reduces the welfare costs of temporary wedges between the marginal product of labor and the marginal rate of substitution between leisure and consumption.

Results change significantly under a wage norm, defined as a fixed wage level. Rows 3 and 4 of Table 4 show that when wages are fixed, the optimal tax needed to correct for labor market inefficiencies is very volatility. Even with a wage norm set at the efficient steady-state level (denoted $\bar{w} = w_{ss}(0.5)$ in the table), the efficient employment monetary policy performs poorly compared to price stability. A monetary policy focused on employment would generate an additional welfare loss equal to 2.33% of steady-state consumption and lead to highly volatile inflation (Row 3 of Table 5). When the wage norm is set at an inefficient steady state level (row 4 of Table 4 with $\bar{w} = w_{ss}(0.7)$), implying a larger share of the labor distortion is explained by inefficient cyclical fluctuations as opposed to the steady state loss, row 4 of Table 5 shows that the efficient employment monetary policy delivers a substantial loss, amounting to 1.65% of steady-state consumption, relative to a policy of price-stability.
Table 5: Welfare results for efficient employment monetary policy

<table>
<thead>
<tr>
<th>Wage setting</th>
<th>Loss relative to price stability</th>
<th>Relative inflation volatility</th>
<th>(\lambda)</th>
<th>(\sigma_\pi/\sigma_y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nash Bargaining</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) (b = 0.5)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>(2) (b = 0.7)</td>
<td>0.0003%</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wage norm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) (\bar{w} = w_{ss}(0.5))</td>
<td>2.33%</td>
<td>4.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) (\bar{w} = w_{ss}(0.7))</td>
<td>1.65%</td>
<td>3.28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Ravenna and Walsh (2012a)

Why then is there so little scope for countercyclical monetary policy to address employment inefficiencies? The answers turns out to depend critically on the wage setting process. When wages are Nash-bargained but set at a socially inefficient level, the optimal tax correcting for inefficient hiring is large in the steady state but displays little volatility over the business cycle. The low volatility of the optimal tax implies that there is little role for a cyclical policy to correct labor market inefficiencies. When wages are rigid, however, the optimal tax correcting for inefficient hiring is small in the steady state but very volatile over the business cycle. Monetary policy that attempts to reduce the inefficiency wedge in hiring – that is, attempts to correct for the employment distortion on the extensive margin – generates inefficient price dispersion and turns out to also distort the intensive hours margin of employment. Thus, the monetary authority faces a very unfavorable tradeoff, and price stability does nearly as well as the optimal policy.

As with many other issues in macro, the behavior of wages turns out to be critical.

4.1 Are these results the final word?

Was Jim Bullard right in characterizing these results as “unpleasant implications for unemployment targeters”? Before leaving you with the impression that central banks should ignore labor market distortions, let me point out two modifications of the basic model that point it in the direction of greater realism and also seem to suggest monetary policy may need to pay close attention to labor markets. Both these modifications involve heterogeneity and limited access to financial markets.

Adding heterogeneity is necessary for incorporating a role for financial markets into monetary policy models, and limitations on market access designed to generate segmented
financial markets are important for understanding the effects of such policies as quantitative easing. However, I want to stick to labor markets to argue that heterogeneity and limited access to financial markets are important along two other dimensions – for understanding the dynamics of employment adjustment and for understanding the welfare costs of cyclical unemployment.

In Ravenna and Walsh (2012b), we introduce a very simply form of heterogeneity in terms of worker productivity. Imagine there are two types of workers who differ in average productivity. Firms can observe these differences among their existing workers, but they can only observe them in unemployed workers by interviewing job applicants. We find that this modest addition of heterogeneity can have significant effects on macroeconomic dynamics. Specifically, we maintain the assuming of random matching as in the DMP model, but we think of these worker-firm meetings as job interviews. Suppose high-efficiency workers are very productive. They always receive a job offer when they are interviewed by a firm. After interviewing a low-efficiency worker, the firm assesses the worker’s productivity and then makes a job offer only if the worker’s productivity exceeds an endogenous threshold value. This mechanism implies the efficiency of the overall matching process depends on the composition of the unemployed between high and low efficiency workers.

Importantly, the hiring and firing threshold is endogenous to the model and varies over the business cycle. During a recession firms increase the threshold and screen out more job applicants. This reduces the share of unemployed low-efficiency workers who get job offers and increases the share of employed low-efficiency workers who get fired. Consequently, low-efficiency workers are more vulnerable to business cycle fluctuations, which implies that the share of low-efficiency workers among all unemployed workers is countercyclical. If the composition of the pool of unemployed workers shifts more heavily towards low-efficiency workers in a recession, firms have a reduced incentive to post job vacancies as they are more likely to screen out more job applicants and it will take longer for them to successfully fill a vacancy, slowing the subsequent recovery of employment. When a contractionary shock is combined with zero lower bound limits that limits the ability of monetary policy to respond to a severe shock, the recovery of employment can be significantly delayed. This is illustrated in figure 6, taken from Ravenna and Walsh (2013), which shows the response of the economy to a negative demand shock with worker heterogeneity generating time-varying effects on the composition of the pool of unemployed workers but ignoring the ZLB constraint (blue dotted line), with the
ZLB but without the time-varying composition effect (red line with triangles) and with a time-varying composition effect and the ZLB constraint (black solid line). Worker heterogeneity leading to changes in the composition of the unemployed produces a large rise in unemployment in the face of the negative demand shock, even in the absence of the ZLB limit on monetary policy (compare the blue and red lines). The addition of the ZLB constraint to the model with composition effects leads to an even larger rise in unemployment (compare the black and blue lines).

This composition effects results in an externality. This arises because individual firms ignore the effects their layoff decisions have on the composition of unemployed workers and therefore on the ability of other firms to successfully hire. Starting from an efficient allocation, firms lay off more workers when the economy is hit by a contractionary shock than is efficient, even if the Hosios condition is satisfied. This additional distortion in the competitive equilibrium may justify larger deviations from price stability to prevent job loss.

Let me briefly mention a second factor that may increase the importance of having monetary policy respond to fluctuations in unemployment. In standard models of labor market frictions, workers face the risk of experiencing unemployment, but they are assumed able to perfectly pool their consumption risk. In fact in some models, the unemployed are actually better off than the employed; they get the same consumption while enjoying more leisure. In fact, unemployed workers do suffer declines in consumption. In work in progress with Wolfgang Lechthaler and Federico Ravenna, we are exploring the role that limitations on the ability or individuals to insure against unemployment related consumption volatility, combined with worker heterogeneity that generates cyclical composition effects, may have for the cost of business cycles and the design of optimal monetary policy.

5 Conclusions

Let me conclude with five points:

1. Economies are subject to numerous distortions. This means that strict inflation targeting – policy focused only on inflation – will never be optimal in theory.

2. But strict inflation targeting is close to optimal in many theoretical models. The
Figure 6: The Great Recession downturn and recovery. Impulse response to a negative demand shock and a discount rate shock leading to the zero lower bound. Comparison shows the time-varying workers heterogeneity economy with and without the zero lower bound, and the constant worker heterogeneity economy with the zero lower bound. Monetary policy set by Taylor rule responding to CPI inflation. AR(1) coefficient of demand shock $\rho = 0.95$. Horizontal axis in years.
class of models commonly used for monetary policy analysis implies inflation volatility is very costly, so relatively little weight should be put on other objectives.

3. Price stability could be close to optimal because inflation volatility is very costly, because fluctuations in real economic activity are relatively costless, or because central banks face a bad tradeoff in that large increases in inflation variability would be needed to stabilize real activity. The current generation of monetary policy models imply the tradeoffs are bad and depend importantly on how wages are set.

4. But this isn’t the final word and it may be more revealing about new Keynesian models than about the tradeoffs central banks face in practice. Heterogeneity and limited ability to insure against consumption risk associated with unemployment are likely to be important in more fully understanding these tradeoffs.

5. And regardless, while my focus was on how flexible inflation targeting central banks should be, none of these factors are likely to call into question the basic structure of inflation targeting. Maintaining low and stable inflation, much like ensuring a stable financial structure, is among the necessary conditions for achieving a successful macroeconomic performance. Again quoting Stan Fischer, “flexible inflation targeting is the best way of conducting monetary policy.” Fischer (2013)

References

Bullard, J. 2013. Some unpleasant implications for unemployment targeters. 22nd Annual Hyman Minsky Conference.

Hall, R. E. 2014. High Discounts and High Unemployment.

King, M. 2012. Twenty years of inflation targeting. The Stamp Memorial Lecture, LSE.

