Title
MEASUREMENT OF THE VECTOR ANALYZING POWER NEAR THE VALUE $A_y=1.00$ IN d-He ELASTIC SCATTERING

Permalink
https://escholarship.org/uc/item/3pq1w56g

Author
Conzett, H.E.

Publication Date
1975-06-01
MEASUREMENT OF THE VECTOR ANALYZING POWER NEAR
THE VALUE $A_y \approx 1.0$ IN 6He ELASTIC SCATTERING

H. E. Conzett, F. Seiler, F. N. Rad,
R. Roy, and R. M. Larimer

June 1975

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference

Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
MEASUREMENT OF THE VECTOR ANALYZING POWER NEAR THE
VALUE $A_y = 1.0$ IN d^4He ELASTIC SCATTERING

H. E. Conzett, F. Seiler$^+$, F. N. Rad, R. Roy$^+$ and R. M. Larimer
Lawrence Berkeley Laboratory, University of California
Berkeley, California 94720

Points in energy and angle (E, θ) at which a component of the analyzing power for spin-polarization reaches its theoretical maximum are of particular interest and importance. Experimentally, they provide valuable absolute calibrations. Theoretically, there exist at such points important conditions on, or relations among, the M-matrix amplitudes. As a consequence, other polarization observables are determined, and in reactions with particularly simple spin structure it is possible that all such observables are determined.

The simplest case is that with the spin structure $1/2 \rightarrow 1/2$, for which it has been shown that points for which $A_y(E, \theta) = \pm 1$ do exist in $N-4$He and 3He-4He elastic scattering$^1)$. The resulting condition on the two M-matrix amplitudes f and g is that $g = \mp i f$, and the other polarization observable, the spin rotation angle, is determined. Similar investigations in $d-^4$He elastic scattering $(1 + 0 \rightarrow 1 + 0)$ have led to identification of points for which the tensor analyzing-power component $A_y = 1$ (ref. 2). The corresponding linear relations among the M-matrix elements at points $A_y = 1$ and $A_y = \pm 1$ have been given2,3, and it was shown2) that $A_y = 1$ is a necessary condition for the existence of a point of $A_y = \pm 1$. This latter result has now been proved to be valid more generally; that is, it is valid for all reactions with the spin structure $1 + a \rightarrow b + c$, where a, b, and c are arbitrary spins$^4)$. Relations among, and determinations of, the other polarization observables have also been given for several reactions5).

Since a point of $A_y = \pm 1$ for spin 1 is so unique and restrictive, and a priori perhaps so unlikely, the location and identification of such a point would be of considerable value. The best candidate for such a point was suggested in the measurements of $A_y(E, \theta)$ in d^4He elastic scattering between 15 and 45 MeV$^6)$. There, values of $A_y(E, \theta = 135^\circ) \approx 0.97$ were found near 25 and 30 MeV. Therefore, we have examined this energy region to determine the maximum value of $A_y(E, \theta)$. The experimental details and the calibration procedures are described elsewhere$^6)$. We find that A_y reaches its maximum value near 28.6 MeV, and we show in fig. 1 our preliminary results for $A_y(28.6$ MeV, $\theta_L)$. Although finite geometry corrections and polynomial fits to all our data in this energy and angular region must be made before the maximum value of A_y is determined, it is clear from fig. 1 that A_y does indeed reach a value very close to unity near $\theta_L = 135^\circ$ at 28.6 MeV7.

We have also measured $A_y(E, \theta)$ over the same regions, using the 4He$(d,d)^4$He A_y data of ref.7) at 17 MeV for the determination of the tensor polarization of our beam. Again, our preliminary result is that A_y reaches a maximum value approaching unity near 26.8 MeV and $\theta_L = 135^\circ$, as would be required to fulfill the necessary condition that $A_y = \pm 1$ at a point for which $A_y = 1$.

References

* Work performed under the auspices of the U.S. Energy Research and Development Administration.
† On leave of absence from the University of Basel, Switzerland.
‡ National Research Council of Canada Postdoctoral Fellow.

4) F. Seiler, F. N. Rad and H. E. Conzett, Fourth Polarization Symp.
6) H. E. Conzett et al., Fourth Polarization Symp.
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.