Title
VAPOR PRESSURES OF Zn and As DURING CLOSED-SYSTEM Zn DIFFUSION INTO GaAs FROM A ZnAs2 SOURCE

Permalink
https://escholarship.org/uc/item/3pt1021n

Author
Styer, Steven R.

Publication Date
1975-08-01
VAPOR PRESSURES OF Zn AND As DURING CLOSED-SYSTEM Zn DIFFUSION INTO GaAs FROM A ZnAs₂ SOURCE

Steven R. Styer and Lee F. Donaghey

August 1975

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Abstract

The vapor pressures of Zn and As during closed-system diffusion of Zn into GaAs from a ZnAs$_2$ diffusion source were measured by optical absorption spectroscopy over the temperature range from 800 to 1025°K. The preparation of arsenic-saturated ZnAs$_2$ is described. The fractional dissociative decomposition Δy_3 of ZnAs$_2(1+y)$ required to produce the three-phase GaAs-ZnAs$_2$-Zn$_3$As$_2$ equilibrium is measured to be 0.0024 at 910°K. The activities of arsenic and zinc in the three-phase mixture were found to be 0.28 ± 1 and ~ 0.04, respectively.
Introduction

The compound ZnAs$_2$ is industrially important as a zinc source for P-type impurity diffusion into III-V compounds. The design of diffusion processes requires that the vapor pressures of vapor phase species be accurately known. Lyons (1) studied the dissociation pressure of ZnAs$_2$, and Jordan (2) has utilized this data for theoretical analysis of zinc diffusion into GaAs. Arsenic vapor pressures in equilibrium with GaAs and a ZnAs$_2$ diffusion source has not been previously reported. Also, the more important data on the vapor pressure of zinc in diffusion processes utilizing ZnAs$_2$ has not been previously studied. In this paper, the preparation of arsenic-saturated ZnAs$_2$ is described, and the results of vapor pressure measurements on zinc and arsenic are given. In particular, the extent of and the effects of dissociative decomposition of ZnAs$_2$ on the component partial pressures within the diffusion system are explored in detail.

The Ga-As-Zn System

A schematic form of the Ga-As-Zn ternary isothermal diagram at 700°C is shown in Figure 1. The regions of solid solubility for GaAs, Zn$_3$As$_2$, ZnAs$_2$ and As are greatly exaggerated for clarity. Regions in the diagram where GaAs and phases containing zinc are designed by Roman numerals. These are regions of phase equilibrium where diffusion of zinc into GaAs is possible. Thus, regions II through VII represent regions of multi-phase equilibria with GaAs.
The 700°C isothermal section in the Ga-As-Zn system.
in the diagram designated by Arabic numbers represent phase regions in the Zn-As system. The GaAs-ZnAs$_2$ pseudo-binary region is denoted by VI, and the phase boundary lines are not necessarily parallel.

In a closed diffusion system containing GaAs and arsenic-rich ZnAs$_2$(1+y), the dissociative decomposition of zinc arsenide proceeds by the reaction,

$$\text{ZnAs}_2(1+y) = \text{ZnAs}_2(1-x) + \frac{x + y}{2} \text{As}_4 \quad (1)$$

At the limit of the solid solution range, corresponding to $x = x_1$, continued dissociative decomposition proceeds further by the reaction,

$$3\text{ZnAs}_2(1-x_1) = \text{Zn}_3\text{As}_2 + (1-x_1) \text{As}_4(v), \quad (2)$$

where the partial pressures of $\text{Zn}_3\text{As}_2(v)$ and $\text{As}_2(v)$ are negligible in the temperature range below 1025°K. Also, zinc vapor is formed by the decomposition reaction,

$$\text{Zn}_3\text{As}_2 = 3\text{Zn}(v) + \frac{1}{2} \text{As}_4(v). \quad (3)$$

If the closed system initially contains n_{GaAs} moles of GaAs and $n_{\text{ZnAs}_2(1+y)}$ moles of ZnAs$_2(1+y)$, then the total moles of Ga, As and Zn following partial vaporization are related to the initial molar quantities by
\[n_{\text{GaAs}} = n_{\text{GaAs}} \]

\[n_{\text{GaAs}} + n_{ZnAs_2(1+y)} = \begin{cases}
 n_{\text{GaAs}} + 2(1-x)n_{ZnAs_2(1-x)} + n_{\text{As}}, & x < x_1 \\
 n_{\text{GaAs}} + 2(1-x_1)n_{ZnAs_2(1-x_1)} + 2n_{Zn_3As_2} + n_{\text{As}}, & x = x_1 \\
 n_{ZnAs_2(1+x)} + n_{\text{As}}, & x < x_1 \\
 n_{ZnAs_2(1-x_1)} + 3n_{Zn_3As_2} + n_{\text{As}}, & x = x_1
\end{cases} \] (4)

\[n_{ZnAs_2(1+y)} = \]

where \(n_{\text{As}} \) and \(n_{Zn} \) represent the moles of arsenic and zinc, respectively, in the vapor phase.

The mass balance on Ga shows that there is no change in the number of moles of GaAs, if the diffusion of zinc is neglected. Solving the remaining equations simultaneously in the limit of small \(\frac{n_{Zn}}{n_{ZnAs_2}} \) one finds that the non-stoichiometry parameter \(x \) is related to measurable partial pressure by

\[x = \frac{n_{\text{As}} - 4n_{Zn}}{2n_{ZnAs_2(1+y)}}, \quad x \leq x_1 \] (5)

where the parameter is assumed to be known. After the initial dissociative decomposition parameter reaches \(x_1 \), \(Zn_3As_2 \) is formed, with the amount given by

\[n_{Zn_3As_2} = \frac{\frac{1}{2} n_{\text{As}} - (1-x_1)n_{Zn} - (x_1+y)n_{ZnAs_2(1+y)}}{2 - 3x_1} \] (6)
For sufficient volatilization of Zn and As from an initially condensed-phase mixture of GaAs and ZnAs$_2$, Zn$_3$As$_2$ will be caused to form at the phase boundary of the GaAs-ZnAs pseudo-binary region. This reaction will cause a discontinuity in the activities of arsenic and zinc in the condensed phases and a similar discontinuity in the vapor phase. Therefore, from measurements of the vapor phase concentrations, n$_{V}^{As}$ and n$_{V}^{Zn}$ and from a mass balance on volatile components, one can calculate the stoichiometry and molar amounts of condensed phases.

Preparation of ZnAs$_2$

ZnAs$_2$ was synthesized by a vapor transport process in an evacuated and sealed, quartz tube containing 99.9999% pure zinc metal (United Mineral and Chemical Corp.) and 99.999% pure arsenic metal (Ventron Corp.) in individual open quartz crucibles. The quartz tube was placed in a two-zone furnace so that the temperatures of the two crucibles could be independently controlled. The zinc crucible was raised to 1025°K and maintained while the temperature of the arsenic crucible was raised slowly to 980°K, where ZnAs$_2$ formed by arsenic vapor transport to the zinc crucible. The excess arsenic was sufficient to maintain an arsenic partial pressure of 8 atm. Approximately one day was allowed for the reaction forming ZnAs$_2$ to go to completion. Then the zinc crucible was slowly cooled in a temperature gradient to below 875°K while the excess arsenic pressure was maintained,
whereupon both temperature zones were lowered to room temperature.

Large grained polycrystals were produced by the synthesis process. Material interior from the crucible surfaces was removed for use in the study.

X-ray powder diffraction analysis with a Picker X-ray diffractometer was performed to determine whether additional phases were present. The results are shown in Table 1, and compared to the diffraction data of Senko et al., obtained with ZnAs$_2$ grown by the Czochralski growth process (3). The interplanar d spacings are in good agreement with the data of Senko, with the line intensities in fair agreement. The width of diffraction lines indicated minimal residual strain in the synthesized ZnAs$_2$.

Because of the high arsenic pressure during synthesis, it is anticipated that the ZnAs$_2$ would be arsenic-saturated at the synthesis temperature. The X-ray diffraction data showed minute diffraction lines for arsenic, indicating an arsenic concentration of $<< 0.1\%$. It is suspected that arsenic precipitated from solution during cooling of the ZnAs$_2$, since crystals with arsenic-free surfaces were used in the analysis.

Vapor Partial Pressure Measurements

Vapor partial pressures in high temperature diffusion cells containing GaAs and ZnAs$_2$ were measured by optical absorption spectroscopy (4). Quartz optical cells constructed from uv-transparent quartz were rinsed in dilute HF, rinsed
Table 1

X-ray Powder Diffraction Pattern of ZnAs$_2$

<table>
<thead>
<tr>
<th>hkl</th>
<th>d(Å)</th>
<th>I/I$_1$</th>
<th>d(Å)</th>
<th>I/I$_1$</th>
<th>hkl</th>
<th>d(Å)</th>
<th>I/I$_1$</th>
<th>d(Å)</th>
<th>I/I$_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>9.027</td>
<td>10</td>
<td>9.02</td>
<td>20</td>
<td>231</td>
<td>2.086</td>
<td>10</td>
<td>2.086</td>
<td>10</td>
</tr>
<tr>
<td>110</td>
<td>5.866</td>
<td>20</td>
<td>5.85</td>
<td>55</td>
<td>132,232</td>
<td>2.028</td>
<td>8</td>
<td>2.032</td>
<td>10</td>
</tr>
<tr>
<td>200</td>
<td>4.541</td>
<td>10</td>
<td>4.53</td>
<td>20</td>
<td>104</td>
<td>2.001</td>
<td>20</td>
<td>2.007</td>
<td>20</td>
</tr>
<tr>
<td>210</td>
<td>3.902</td>
<td>30</td>
<td>3.903</td>
<td>40</td>
<td>330,420</td>
<td>1.954</td>
<td>40</td>
<td>1.952</td>
<td>25</td>
</tr>
<tr>
<td>020</td>
<td>3.852</td>
<td>40</td>
<td>3.840</td>
<td>10</td>
<td>040</td>
<td>1.919</td>
<td>2</td>
<td>1.920</td>
<td>16</td>
</tr>
<tr>
<td>120</td>
<td>3.536</td>
<td>100</td>
<td>3.537</td>
<td>70</td>
<td>422</td>
<td>1.893</td>
<td>95</td>
<td>1.892</td>
<td>40</td>
</tr>
<tr>
<td>202</td>
<td>3.348</td>
<td>10</td>
<td>3.340</td>
<td>75</td>
<td>140</td>
<td>1.877</td>
<td>17</td>
<td>1.879</td>
<td>16</td>
</tr>
<tr>
<td>112,212</td>
<td>3.063</td>
<td>12</td>
<td>3.060</td>
<td>16</td>
<td>232,332</td>
<td>1.853</td>
<td>7</td>
<td>1.854</td>
<td>20</td>
</tr>
<tr>
<td>300</td>
<td>3.021</td>
<td>7</td>
<td>3.021</td>
<td>25</td>
<td>500</td>
<td>1.812</td>
<td>8</td>
<td>1.812</td>
<td>10</td>
</tr>
<tr>
<td>220</td>
<td>2.958</td>
<td>100</td>
<td>2.928</td>
<td>100</td>
<td>502</td>
<td>1.800</td>
<td>40</td>
<td>1.799</td>
<td>16</td>
</tr>
<tr>
<td>310</td>
<td>2.810</td>
<td>13</td>
<td>2.812</td>
<td>20</td>
<td>124</td>
<td>1.781</td>
<td>2</td>
<td>1.780</td>
<td>8</td>
</tr>
<tr>
<td>202,302</td>
<td>2.682</td>
<td>5</td>
<td>2.689</td>
<td>10</td>
<td>133</td>
<td>1.740</td>
<td>5</td>
<td>1.742</td>
<td>10</td>
</tr>
<tr>
<td>212,312</td>
<td>2.533</td>
<td>3</td>
<td>2.535</td>
<td>16</td>
<td>042,142</td>
<td>1.723</td>
<td>10</td>
<td>1.724</td>
<td>16</td>
</tr>
<tr>
<td>222</td>
<td>2.519</td>
<td>3</td>
<td>2.518</td>
<td>8</td>
<td>430,241</td>
<td>1.698</td>
<td>4</td>
<td>1.697</td>
<td>8</td>
</tr>
<tr>
<td>130</td>
<td>2.465</td>
<td>10</td>
<td>2.463</td>
<td>16</td>
<td>142,242</td>
<td>1.662</td>
<td>16</td>
<td>1.665</td>
<td>16</td>
</tr>
<tr>
<td>400</td>
<td>2.262</td>
<td>1</td>
<td>2.266</td>
<td>8</td>
<td>124</td>
<td>1.657</td>
<td>16</td>
<td>1.658</td>
<td>16</td>
</tr>
<tr>
<td>230</td>
<td>2.226</td>
<td>20</td>
<td>2.230</td>
<td>16</td>
<td>324</td>
<td>1.653</td>
<td>23</td>
<td>1.654</td>
<td>12</td>
</tr>
<tr>
<td>322</td>
<td>2.202</td>
<td>35</td>
<td>2.202</td>
<td>65</td>
<td>520</td>
<td>1.640</td>
<td>25</td>
<td>1.640</td>
<td>30</td>
</tr>
<tr>
<td>302,321</td>
<td>2.174</td>
<td>5</td>
<td>2.176</td>
<td>20</td>
<td>234,341</td>
<td>1.553</td>
<td>3</td>
<td>1.554</td>
<td>8</td>
</tr>
<tr>
<td>412</td>
<td>2.090</td>
<td>10</td>
<td>2.091</td>
<td>10</td>
<td>413,243</td>
<td>1.524</td>
<td>2</td>
<td>1.524</td>
<td>10</td>
</tr>
</tbody>
</table>
in de-ionized water, ultrasonically cleaned in methanol, rinsed in de-ionized water and vacuum dried at 875°C before use. Measured amounts of semiconductor grade GaAs (Monsanto Corp.) and ZnAs₂ whose synthesis is described above were placed in the cells which were evacuated to 10⁻⁵ torr at 200°C for several hours before the cells were sealed. The cells were placed in a two-zone furnace which maintained the optical path at a constant temperature of 940°C, while the condensed phases were held at a lower variable temperature.

Zinc diffusion processes were studied in which the GaAs to ZnAs₂ order ratio was approximately 2:1. In each experiment the 2 cm optical path of the cell was raised to 1210°C and the condensed phases to a selected diffusion temperature for a period of between 12 and 24 h. The length of the diffusion period was sufficient to assure phase equilibrium and to simulate actual semiconductor production conditions yet was insufficient to homogenize the zinc concentration in the GaAs. However, the total moles of zinc in the diffused GaAs was small compared to that in the cell.

The optical absorption data was analyzed by a linear analysis assuming independent optical absorption coefficients for the vapor species (4). Vapor pressure data for the pure elements was taken from Hultgren et al. (5).
FIG. 2

Partial pressure of arsenic in a diffusion cell containing 1.0509×10^{-3} g moles of GaAs and 5.4765×10^{-4} g moles of ZnAs₂.
Results

The results of the arsenic vapor pressure measurement in a cell containing a GaAs to ZnAs$_2$ molar ratio of 1.919 is shown in Figure 2. The arsenic partial pressure above 910°K is given by

$$\log P_{\text{As}_4} = 7.716 - 8.250T^{-1}$$ \hspace{1cm} (7)

The discontinuity at 910°K indicates the onset of the reaction forming Zn$_3$As$_2$ given in Eq. 3.

The zinc partial pressure could not be accurately determined at low temperature because of interference effects in the optical adsorption spectra. The zinc partial pressure was estimated to be 4×10^{-3} atm at 1000°K and 1×10^{-3} at 910°K.

The range of nonstoichiometry of ZnAs$_2$ was deduced at 910°K from the discontinuity observed in the temperature dependence of the arsenic partial pressure, and with the aid of Eq. 5:

$$x_1 + y = 0.0024.$$ \hspace{1cm} (8)
The nonstoichiometry parameter, y, could not be independently determined by the optical method. The high arsenic partial pressure compared to the zinc partial pressure suggests that the criterion for the appearance of Zn_3As_2 as a reaction product is

$$n_{\text{As}}^v > 0.005 n_{\text{ZnAs}_2}^0 (1+y) \quad (9)$$

Following simulated, closed-system diffusion at 1025°K for 15 h., the condensed solid phases were removed, ground and analyzed by X-ray powder diffraction. Examination of the diffusion source showed that the ZnAs_2 had partly decomposed into Zn_3As_2, by dissociative decomposition of ZnAs_2. The amount of Zn_3As_2 formed is in agreement with the arsenic partial pressure measured at the equilibration temperature. The fact that no additional diffraction lines appeared in the diffraction pattern indicates that there are no additional intermetallic phases in the GaAs-ZnAs_2-Zn_3As_2 tenary system.
Discussion

The measured arsenic pressure in the diffusion cell, (Fig. 2), is in agreement with the ZnAs$_2$ dissociation pressure measured by Lyons (1) over the temperature range from 635 to 680°C. Above 680°C, the ZnAs$_2$ dissociation pressures measured by Lyons are higher than those over the GaAs + AnAs$_2$ + Zn$_2$As$_3$ mixture. Lyons found a noticeable increase in Zn$_3$As$_2$(v) above 750°C which raises the decomposition pressure of ZnAs$_2$ in this range, whereas in this study the arsenic pressure was selectively measured. The present results show that the arsenic activity in the GaAs + ZnAs$_2$ + Zn$_3$As$_2$ mixture is lower than in the ZnAs$_2$ + Zn$_3$As$_2$ mixture at temperatures above 910°C.

The arsenic activity in the three-phase equilibrium GaAs - ZnAs$_2$ - Zn$_3$As$_2$ was found to be 0.28 ± 0.01 for the temperature range from 910 to 1000°C. At 910°C this value is in excellent agreement with the value calculated by Jordan (2) for the ZnAs$_2$ - Zn$_3$As$_2$ equilibrium, using an estimated dissociation constant for Zn$_3$As$_2$ and the experimental
data of Lyons (1). At higher temperatures, the measured arsenic activity lies below that predicted by Jordan, indicating that the solid solubility of Ga in Zn$_3$As$_2$ and ZnAs$_2$, or of Zn in GaAs are not negligible.

The zinc activity in the three-phase equilibrium could not be determined with high accuracy because of interference effects in the optical absorption spectra. These data give an approximate zinc activity of 0.04 in the temperature range from 910 to 1000°K. Above 1023°K the zinc activity increases consistent with the formation of ZnAs$_2$(v) in the vapor phase.

The importance of the GaAs - ZnAs$_2$ - Zn$_3$As$_2$ three-phase equilibrium for maintaining invariant zinc and arsenic activities during the diffusion has already been recognized by Jordan (2) in theoretical work and by Casey and Parrish (6) in experimental studies. In the present study it is shown that the three-phase equilibrium can be produced with the ZnAs$_2$ diffusion source only if the fractional dissociative decomposition of ZnAs$_2$ exceeds a critical value. The critical system volume required to produce the three-phase equilibrium from the ZnAs$_2$ source whose synthesis is described above, can be estimated from Eqs. 7 and 9. The critical system volume is then

$$V_{\text{crit}} = 81.0 \, \text{cm}^3 \, w^0_{\text{ZnAs}_2} T^{10-7.716 + 8.250 T^{-1}}$$

where $w^0_{\text{ZnAs}_2}$ is the initial weight of the ZnAs$_2$ source.
For 10 mg of source compound, the system volume required to produce the three-phase equilibrium must exceed 2,520 cm3 at 1000°K. Owing to the narrowness of the GaAs + ZnAs$_2$ two-phase region, this critical system volume should be relatively independent of the ratio of ZnAs$_2$ to GaAs. The calculated critical system-volume should be useful in the design of closed-system diffusion processes utilizing ZnAs$_2$ as a zinc diffusion source for the P-type doping of III-V compounds.

Conclusions

The vapor pressures of arsenic and zinc in closed diffusion system containing GaAs and ZnAs$_2$ are dependent upon the extent of dissociative decomposition of the ZnAs$_2$ source. The fractional dissociation required to produce the GaAs - ZnAs$_2$ - Zn$_2$As$_3$ three-phase equilibrium is 0.0024 at 910°K. In the temperature range above 910°K the arsenic activity was found to be 0.28 ± 0.01 and the zinc activity was approximately 0.04 for the GaAs - ZnAs$_2$ - Zn$_3$As$_2$ three-phase region. The absence of other intermetallic compounds produced during zinc diffusion in GaAs from ZnAs$_2$ was confirmed by X-ray powder diffraction. For closed-system diffusion processes using ZnAs$_2$ as the zinc source, a minimum system volume is required to produce the three-phase equilibrium.

ACKNOWLEDGMENT

This work was supported by the Energy Research and Development Administration.
References

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.