Title
Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry

Permalink
https://escholarship.org/uc/item/3q22f2zm

Journal
Journal of Radioanalytical and Nuclear Chemistry, 312(1)

ISSN
0236-5731

Authors
Mao, X
Chan, GCY
Choi, I
et al.

Publication Date
2017-04-01

DOI
10.1007/s10967-017-5197-y

Peer reviewed
Combination of atomic lines and molecular bands
for uranium optical isotopic analysis
in laser induced plasma spectrometry

Names of the authors: Xianglei Mao, George C.-Y. Chan*, Inhee Choi†, Vassilia Zorba,
Richard E. Russo

Title: Combination of atomic lines and molecular bands for uranium optical isotopic
analysis in laser induced plasma spectrometry

Affiliation(s) and address(es) of the author(s): Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA

(†present address of Inhee Choi: Korea Institute of Nuclear Safety, 62 Gwahakro,
Yuseong-gu, Daejeon, South Korea)

E-mail address of the corresponding author: gcchan@lbl.gov
Combination of atomic lines and molecular bands
for uranium optical isotopic analysis
in laser induced plasma spectrometry

Xianglei Mao, George C.-Y. Chan*, Inhee Choi†, Vassilia Zorba, Richard E. Russo

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

†present address: Korea Institute of Nuclear Safety, 62 Gwahakro, Yuseong-gu, Daejeon,
South Korea

Abstract

Through computer simulation on experimentally acquired optical spectra, uranium isotopic analysis by laser ablation molecular isotopic spectrometry (LAMIS) and laser induced breakdown spectroscopy (LIBS) were studied. The use of only one spectral feature, either the strong UO band at 593.55 nm or the nearby U I 593.382 nm line, are similar in precisions (~1.5% in absolute 235U abundances). Precision improves to 0.72% with the use of a group of U atomic lines from 591.6 to 596.5 nm. The use of both molecular bands and atomic lines further advances the precision to 0.42% and compares well with the U II 424.437 nm single-line benchmark (0.48% precision).

Keywords

Optical isotopic analysis; Uranium; Laser ablation molecular isotopic spectrometry; Laser induced breakdown spectroscopy; Isotope shift.
Introduction

The capability to perform direct chemical analysis on any solid sample is one of the distinguishing characteristics of laser-ablation based analysis. Chemical information (both elemental and isotopic) of the sample is contained in the light emitted by the laser-induced plasma and can be readily probed with an optical spectrometer. The technique termed laser induced breakdown spectroscopy (LIBS) involves the measurement of photon emission typically from atoms (i.e., atomic emission spectrometry); in this particular context, the atom can be either charged (i.e., ionized) or as neutral. In contrast, laser ablation molecular isotopic spectrometry (LAMIS) measures the spectra from molecular radicals that are present when the plasma cools. These two spectrometric techniques are very similar in implementation; in fact, they are produced by and can be measured from the same laser pulse.

The choice of utilizing atomic (i.e., LIBS) or molecular (i.e., LAMIS) spectra for a measurement depends on the application. In general, LIBS is used to determine the content of a particular element of interest in the sample (i.e., elemental analysis) whereas LAMIS is employed to evaluate isotopic ratio of a particular element (i.e., isotopic analysis). This simple classification is based on the fact that an atom (or an atomic ion) possesses only electronic energy levels. Isotopic shifts in electronic energy levels (except the very light and heavy elements) are generally too small to be measured inside atmospheric-pressure plasma, in which several line broadening mechanisms are operating. In contrast, because the vibrational and rotational motions of a molecule heavily depend on its reduced mass, the additional vibrational and rotational energy levels in a molecule greatly amplify the isotopic effects on optical spectra. Consequently, isotopic shifts exhibited in molecular spectra may exceed those in atomic spectra by two to three orders of magnitude [1-3], and become readily measurable in an atmospheric-pressure plasma. Isotopic LAMIS signatures from a number of elements, including H, B, C, N, O, Sr and Zr [1-6], have already been reported.
For the very light or heavy elements, LIBS (atomic spectra) can also be used for their isotopic measurements. For light elements, the different masses of isotopes cause a relatively large fractional change in the mass of the atom, which in turn alters the electron motion with respect to the center of gravity of the atoms and hence the associated electronic energy levels. This mass effect is the largest for hydrogen. For instance, the Hα and Hβ lines at 656.464 nm and 486.270 nm are shifted by –174 pm and –130 pm, respectively, for deuterium [7]. For heavy atoms, the large nucleus modifies the electronic energy level of the atom through interactions between the shape and the size of the nuclear charge distribution with the field of the electrons [8, 9]. This field effect is strongest for those electrons that have a finite probability at the origin of the nucleus (i.e., s-electrons) [9]. Accordingly, atomic lines of heavy elements (e.g., U) also exhibit appreciable isotope shifts, which can reach tens of picometers [10-12].

Several researchers have reported hydrogen-deuterium analysis by means of LIBS operated under atmospheric pressure [4, 13-16]. Cremers et al. [13] also performed isotopic analysis on ⁶Li and ⁷Li with LIBS under atmospheric pressure. For heavy elements, uranium has been mostly studied [13, 14, 17, 18]. Doucet et al. [14] reported the first study of uranium isotopic analysis with atmospheric pressure LIBS. Although the atomic lines from the two uranium isotopic components were only partially resolved, they demonstrated that isotope ratios can be accurately extracted from the spectra through the use of chemometrics. Cremers et al. [13] utilized a spectrometer with a resolution of 75,000, and reported baseline separated isotopic components for the U II 424.437 nm line in atmospheric pressure LIBS. Recently, Morgan et al. [17] developed and applied a hybrid interferometric/dispersive spectrometer to measure laser-induced plasma from a metallic uranium foil, and reported that the \(^{235}\text{U} - ^{238}\text{U}\) isotope shift at U II 424.437 nm was resolved in ambient air. We previously performed uranium isotopic analysis in soil matrix with atmospheric-pressure LIBS, and compared the effectiveness of several fitting algorithms to extract isotopic information from the LIBS atomic spectra [18]. LIBS also has been applied to the determination of \(^{239}\text{Pu}/^{240}\text{Pu}\) isotopic ratios [19], albeit at a reduced pressure of 13.3 kPa.
As LAMIS is a relatively new technique, many of its analytical characteristics have not yet been established. There are three objectives in the present study. Currently, the heaviest element measured with LAMIS for isotopic analysis is Zr (Z = 40) [5, 20]. Therefore, the first objective of the present study is to investigate the isotopic spectral features and signal characteristics when LAMIS is applied to a very heavy element like uranium (Z = 92). Second, for those elements whose isotopic ratios can be determined with either LIBS or LAMIS, the advantage of one technique over another is largely unknown. So far, there is only one study [4] that compared LIBS and LAMIS side-by-side for isotopic analysis. Sarkar et al. [4] assessed both techniques for deuterium/protium (²D/¹H) isotopic ratio determination. The Hα and Dα atomic lines were used for LIBS whereas the OH and OD A ²Σ⁺ – X ²Σ molecular bands were utilized for LAMIS [4]. It was concluded that the analytical performances of LAMIS was superior to LIBS for isotopic analysis of hydrogen [4]. Specifically, LAMIS provided an accuracy of 0.5-1.5% compared to 2-5% for LIBS [4]. Although almost all atomic emission lines are broadened by Stark effects inside laser induced plasmas, Stark broadening is particularly pronounced for hydrogen as it is a first-order effect for hydrogen but only second order for other non-hydrogenic atoms [21]. For instance, in the aforementioned LIBS work, the reported line width (full width at half maximum, FWHM) of the Hα atomic line at a gate delay of 10 µs was still 350 pm and was nearly double that of the isotopic shift [4]. However, spectral characteristics for uranium are dramatically different, and it is currently unknown how LAMIS compares with LIBS for isotopic analysis of uranium. Therefore, the second objective of the present work is to assess and compare LAMIS and LIBS for isotopic analysis of uranium. Further, as will be discussed below, emission from U atomic lines and UO molecular bands strongly overlap in time, and spectra acquired at appropriate delay times contain both LIBS and LAMIS signals for U. Understanding the potential of including molecular bands with atomic lines (i.e., a combined LAMIS–LIBS approach) for U isotopic analysis is the third objective of the present study.

Similar to our previous studies [10, 22], experimentally determined measurement characteristics, including noise amplitude and distribution, signal strength, and signal-to-
background ratio were incorporated into the simulation model. The ^{235}U and ^{238}U LAMIS–LIBS spectral profiles used in the simulation were also determined experimentally. It should be stressed that, as the simulation does not include all sources of uncertainties and factors that are present in a real analysis, the analytical figure of merit from simulation represents only the theoretical limit under an idealized situation, and does not reflect what can be typically achieved in routine analyses. Nevertheless, computer simulation is adequate to satisfactorily provide a relative comparison of the effectiveness of different spectral features (single atomic line, multiple atomic lines, single molecular band, all measured spectral lines and bands) for isotopic analysis of uranium, which is one of the main themes of the present paper.

Experimental

Sample and experimental setup

Two sample pellets made from certified U_3O_8 powder (New Brunswick Laboratory, US Department of Energy) with enriched (63.35% ^{235}U, CRM U630) and depleted (0.02% ^{235}U, CRM U0002) uranium isotopes were prepared by pressing about 15 mg of the powder with a 3-mm diameter pellet-pressing die. The U_3O_8 pellets, which were about 300 μm thick, were loaded into a shielded chamber, which contained air at atmospheric pressure, with optical ports for laser ablation and photon collection. Ignoring trace amount of other uranium minor isotopes (i.e., assuming ^{235}U and ^{238}U sum to 100% of all uranium atoms in the CRM), the ratio of ^{235}U:^{238}U in the enriched sample is 64.4:35.6.

The experimental setup consisted of a nanosecond Nd:YAG laser operated at its fundamental wavelength at 1064 nm, a 1.25 m-focal length Czerny-Turner spectrometer (Horiba JY 1250M), and an intensified charge-coupled device (ICCD) gated detector [23]. A pulsed laser, with energy of 40 mJ, was focused onto the sample surface with a fused-silica lens to a spot diameter of approximately 400 μm. Laser-induced plasma emission was collected through another fused-silica lens onto an optical fiber bundle coupled to the spectrometer. Unless otherwise specified, a grating with a groove density
of 2400 lines per mm was used (measured spectral resolution was ~ 18 pm FWHM); the delay time and gate width of the ICCD detector were set at 5 µs and 20 µs, respectively.

Simulation of LIBS and LAMIS spectra

Because databases for spectroscopic constants and isotopic shifts are adequately comprehensive for U atomic lines (U I and U II [11, 12, 24]) but those for molecular UO [25-27] are far from complete, the methods for generating simulated spectra were accordingly different for atomic lines and molecular bands. For simulations involving only atomic emission lines, the simulated spectra were all based on theoretical computation. Published wavelengths from the 238U line list [24] were directly taken for the simulation of the 238U profile, and line positions for the 235U isotope were calculated from the published isotopic shifts [11, 12]. Lorentzian line profiles, with a measured width of 18 pm for emission lines in the 590 nm proximity, were used for the computation of atomic spectra. For the U II 424.437 nm line, a spectral width of 15 pm was used in the simulation because this line can be measured with a 3600 groves/mm grating, in which the cutoff wavelength is 500 nm.

For molecular bands, as will be explained in detail in Section 3.1, the persistence time for UO molecular bands and U atomic lines overlap. In other words, LAMIS spectra for UO bands unavoidably contain some U atomic lines. Since these U lines contain isotopic information of the sample and are inherently present in the LAMIS spectra, a combined LAMIS–LIBS approach was used for isotopic analysis. For the simulation, a set of 235U and 238U base LAMIS–LIBS spectra were obtained from experiments. Because more than 99.98% of uranium in the depleted U$_3$O$_8$ sample (CRM U0002) is in the form of 238U, the 238U LAMIS–LIBS base spectrum is taken directly from this depleted U$_3$O$_8$ sample. As will be discussed in detail in Section 3.2, the 235U LAMIS–LIBS base spectrum is deduced from the difference between the depleted and enriched (CRM U630) U$_3$O$_8$ samples. Once the 235U and 238U base LAMIS–LIBS spectra are determined, simulation of uranium emission spectra at any desired 235U and 238U abundance
percentages becomes straightforward through summation of the two U isotopic components.

In all cases, emission intensities, signal-to-background ratios, and measurement noise (detector-read, photon-shot and source-flicker) were all experimentally determined and incorporated into the simulation model [10, 22]. For the two U$_3$O$_8$ pelletized samples, the measured pulse-to-pulse flicker noise was 14.8% RSD. As the same spectrometric and detector system was used as in our earlier work [10], the previously determined distributions of detector-noise and photon-shot noise were applied in the present study. The detector-read, photon-shot and source-flicker noise levels were independently added to all simulated spectra.

Partial least square regression

Extraction of isotopic abundance information from the LIBS or LAMIS spectra was achieved with partial least square (PLS) multivariate regression [10, 22]. As PLS regression is a purely empirical approach by matching the emission pattern of the sample with unknown 235U/238U ratio to a set of standard reference spectra; it is particularly useful in uranium LAMIS analysis because spectroscopic constants of many rovibronic bands for UO are not documented. In addition, even when the two U isotopic components in the measured spectra are overlapped and resolved only partially, PLS multivariate calibration can be correctly performed [28, 29].

In this work, with the exception of the two base spectra from experimental measurements (Section 3.2), all other standards and samples spectra were simulated from these two base profiles. However, the signal and noise behaviors in these simulated spectra should resemble those obtained from experiments, as several noise sources were individually characterized in detail. For ease of discussion and to match typical terminology as in an analysis, from this point onwards, the fact that all spectra of the samples and the standards were simulated will no-longer be repeatedly stressed.
The calibration set consisted of eleven standards with equally spaced 235U abundances from 0% to 100%, whereas the test set contained ten reference samples with 235U abundances evenly distributed between 5% and 95%. The spectra from both the calibration standards and the test samples were each accumulated from 10 laser shots. For each standard, ten replicated spectra were fed into the PLS calibration model. For each test sample, 1000 repeated measurements were made. Assessment of standard deviation requires a large number of samples to be measured, and we have previously [10] shown that 1000 to 3000 measurements is a good compromise between being able to confidently estimate the measurement precision and computation time.

Prior to feeding the spectra into the PLS algorithm, all individual emission spectra were normalized to its norm [29, 30] as a data pre-processing routine to reduce systematic variation and minimize the spectrum uncertainty [29, 31-33]. All spectra simulation and PLS analyses were performed with in-house written LabVIEW programs (LabVIEW 2015, National Instruments). The PLS algorithm used in this study was a PLS1 type and three principal components were utilized in all PLS calibration models [22].

Results and discussion

Identification of U atomic and molecular spectral features

Laser induced plasma emission from uranium is complex in structure as uranium gives rich, and in many cases overlapping, atomic and molecular spectra. For instance, 92,000 U I and U II lines have been observed and were compiled between the wavelength range of 310 to 900 nm [11], which translates to an average of one atomic line in each 6.4-pm spectral window. The UO molecular spectra are even more complex with an average of one molecular band in a 1-nm spectral window in the UV-visible range. Kaledin et al. [34] reported that approximately 500 UO molecular bands were observed in the emission spectrum in the 400 to 900 nm range with a thermal furnace excitation source operated at 2400 to 2600 K. Although a large number of UO molecular bands have been detected, only a small fraction of those were characterized. The most extensive list on UO
rovibronic levels currently available was published by Kaledin and Heaven [26]; yet, only about fifty UO levels were listed.

A spectral window that contains a strong UO molecular band is selected for this work. Several studies, both experimental [35, 36] and theoretical [27], reported that the most intense UO band is the one that emits at 593.4 nm. Furthermore, it was commented that overlapping of UO bands are particularly marked in the range of 580 to 610 nm [34]. Because PLS regression extracts isotopic information through matching the emission pattern of the sample and the calibration standard, and requires the molecular bands to be resolved only to an extent that there are differences in the spectral features from the two isotopologues, heavily overlapping spectral features could be beneficial as they contain a high density of information. Therefore, the spectral window from 591.6 to 596.5 nm was chosen for the present study. As will be presented below, thirty-two U I lines and three UO bands were positively identified in this comparatively narrow spectral window that spans slightly less than 5 nm.

Emission features from atomic lines or molecular bands can be readily classified through temporally resolved spectra. Figure 1 shows a small section of the measured emission spectra, normalized to the gate width of the ICCD detector, at different delay times, from laser ablation of a depleted U$_3$O$_8$ pellet sample. Ionic emission lines (e.g., U II 593.244 and U II 595.205) are strong at early times of the plasma (e.g., 1 μs) but then rapidly decrease to almost baseline level at 5 μs. Neutral-atomic lines (e.g., U I 592.933, U I 593.382, and U I 594.277) resemble ionic lines and show strong emission at early delay times (<1 μs). The major difference is that neutral-atomic lines persist significantly longer, and is one of the two major emitting species at 5 μs delay. Molecular bands (e.g., the UO bands at 593.55, 594.57 and 595.22 nm), in contrast, are relatively weak at early times (<1 μs), but progressively grow and become comparatively strong at longer delay. For example, emission from the UO band at 593.55 nm is only a small fraction to that of the nearby U I 593.382 nm line at 1 μs; the UO band/U I line ratios gradually increase with delay time, and the UO band becomes stronger than the U I line at 5 μs. Temporally
resolved study, as demonstrated in Fig. 1, allows the classification of emission features even for spectra as complex as uranium.

Figure 1 also illustrates two spectral characteristics that would potentially pose impacts on isotopic analysis of uranium by LIBS/LAMIS. First, emission from UO molecular bands and U atomic lines temporally overlap, and it is not practically feasible to select a delay time and detection gate that can measure strong emission from UO bands without U I lines (and vice versa). Therefore, there will be no clear boundary on LIBS (atomic line only) and LAMIS (molecular band only) for U isotopic analysis in laser induced plasmas. Indeed, it is one objective of the present study to understand the potential benefit of including molecular bands to atomic lines for U isotopic analysis. Second, the temporal response of the plasma background appears atypical. Rather than following a monotonically decreasing trend [37], the plasma background initially dropped when the delay time was increased from 1 μs to 2 μs, but then rose at 3 μs and further grew at 5 μs. This rising trend for plasma background at 3 and 5 μs is a result of a pseudo-continuum from the strongly overlapping UO molecular bands. Previous studies [38, 39] also noted intense plasma continuum from a superposition of a multitude of uranium emitting species during laser ablation of metallic uranium samples. An intense pseudo-continuum degrades signal-to-background ratio, and analytical performance could suffer.

Determination of LAMIS–LIBS base spectra for 235U and 238U

For the simulation, a set of 235U and 238U base LAMIS–LIBS spectra were obtained from experiments. Because the two (depleted and enriched) U$_3$O$_8$ samples are in the form of pressed pellet housed in separate air-tight chambers, the measured total emission from the two samples was slightly different, probably due to the small variations in the sample properties (e.g., particle size distribution, density and thickness of the pressed pellet) and the reproducibility in positioning the two chambers. Further, our enriched sample contains only ~64% 235U. Therefore, a simple model was developed to deduce the base spectrum for 100% 235U from the depleted and enriched U$_3$O$_8$ samples, as well as to correct for the slight mismatch in the measured intensities.
The measured spectrum from an U$_3$O$_8$ sample (denoted as $I_{\text{measured}}^{}(\lambda)$) contains two components – emission from both atomic and molecular species of uranium with the associated pseudo-continuum ($\varepsilon_{U}(\lambda)$), and true plasma continuum background solely due to ion-electron (either free-free or free-bound) recombination ($\varepsilon_{\text{bkg-continuum}}(\lambda)$).

$$I_{\text{measured}}^{}(\lambda) = \varepsilon_{U}(\lambda) + \varepsilon_{\text{bkg-continuum}}(\lambda)$$ \hspace{1cm} (1)

It is clear that the U-emission component ($\varepsilon_{U}(\lambda)$) in the measured spectrum is related to the amount of uranium ablated and present in the plasma (N_{U}); a U-density normalized emission-signal coefficient ($S_{U}(\lambda)$), is defined via the relation:

$$\varepsilon_{U}(\lambda) = N_{U}S_{U}(\lambda)$$ \hspace{1cm} (2)

It is difficult to model the true plasma continuum background component ($\varepsilon_{\text{bkg-continuum}}(\lambda)$) as it involves number densities of ions, electrons and their kinetic temperatures. For the present measurements, the delay time was 5 μs after the laser pulse and the densities of electrons and ions are expected to be low. Hence, the plasma continuum due to ion-electron recombination should be significantly decayed [2, 37]. For example, using a similar setup with an uraninite ore sample but at other wavelengths, we previously reported that the intense plasma continuum emission undergoes rapid decay at 1 μs delay [23]. Although it is expected that the contribution of $\varepsilon_{\text{bkg-continuum}}$ to the total emission is minor, it is included in the derivation of the base profile. Justified by the fact that plasma continuum has been successfully employed as an internal standard for LIBS [40, 41], it can be assumed that $\varepsilon_{\text{bkg-continuum}}$ is directly proportional to N_{u} (the amount of uranium ablated and present in the plasma) through the U-density normalized background coefficient ($B_{U}(\lambda)$). Furthermore, we assume that this normalized background coefficient ($B_{U}(\lambda)$) is identical for 235U and 238U in the laser plasma.

$$\varepsilon_{\text{bkg-continuum}}(\lambda) = N_{U}B_{U}(\lambda)$$ \hspace{1cm} (3)

The experimentally measured emission spectrum (Equation 1) can be re-written as
The term \((S_U(\lambda) + B_U(\lambda))\) represents the base spectrum, which is the spectrum normalized to the amount of ablated material in the plasma. The base spectrum can be conveniently obtained through normalization of the measured spectrum with its total intensity (i.e., area under the spectrum). The normalization effectively compensates the slight mismatch in ablation efficiencies of the two samples. Because more than 99.98% of the uranium is in the form of \(^{238}\text{U}\) in the depleted \(\text{U}_3\text{O}_8\) sample, the base spectrum for \(^{238}\text{U}\), \((S_U-^{238}\text{U}) + B_U(\lambda)\), is simply the measured spectrum from the depleted sample after normalization with its total intensity.

\[
(S_U-^{238}\text{U}(\lambda) + B_U(\lambda)) = \frac{I_{\text{measured, depleted-U}}(\lambda)}{\sum I_{\text{measured, depleted-U}}(\lambda)}
\]

(5)

The procedure to obtain the base spectrum for \(^{235}\text{U}\), \((S_U-^{235}\text{U} + B_U(\lambda))\), is slightly more complicated because the \(^{235}\text{U}:^{238}\text{U}\) ratio in the enriched \(\text{U}_3\text{O}_8\) sample is only 64.4:35.6. Measured emission for the enriched sample, therefore, is

\[
I_{\text{measured, enriched-U}}(\lambda) = N_{\text{enriched-U}}(S_{\text{enriched-U}}(\lambda) + B_U(\lambda))
= N_{\text{enriched-U}}[0.64(S_{U-^{235}\text{U}}(\lambda) + B_U(\lambda))
+ 0.36(S_{U-^{238}\text{U}}(\lambda) + B_U(\lambda))]
\]

(6)

After rearrangement and with Equation 5, the base spectrum for \(^{235}\text{U}\), \((S_U-^{235}\text{U} + B_U(\lambda))\), can be obtained from the total intensity-normalized spectrum of the enriched and depleted sample through

\[
(S_{U-^{235}\text{U}}(\lambda) + B_U(\lambda)) = \frac{1}{0.64} \left[\frac{I_{\text{measured, enriched-U}}(\lambda)}{\sum I_{\text{measured, enriched-U}}(\lambda)} - 0.36(S_{U-^{238}\text{U}}(\lambda) + B_U(\lambda)) \right]
\]

(7)

With Equations 5 and 7, base profiles for both \(^{235}\text{U}\) and \(^{238}\text{U}\) were obtained from the measured spectra of the enriched and depleted U samples. Several atomic lines and
molecular bands were found to exhibit distinct isotope shifts, and some of these spectral features are presented in Figs. 2a and 2b.

The strongest UO band at 593.55 nm with its neighboring U I line at 593.382 nm are shown in Fig. 2a. In this manuscript, all wavelengths are referenced to the 238U isotope. The 235U isotope shift for the U I line is +8.5 pm (i.e., towards the red) whereas the shift for the peak of the UO band is ~ −35 pm (i.e., a blue shift). The isotopic shift for the UO band is only a few times larger than that of the U I line, partly due to the exceptionally large isotopic shift for U atomic lines as mentioned in the introduction, and partly because the reduced mass of UO molecule is dominated by the much lighter O atom and hence is only slightly altered when the U atom is changed from 238U to 235U. Based solely on the magnitude of its isotope shift, the UO band might not look particularly attractive for isotopic analysis. However, the substantial perturbations in the UO molecular energy levels [36, 42] provide some additional unique spectral features that can be exploited for isotopic analysis. To elaborate, because of the large number of electronic states available and the high degree of configuration mixing present in uranium, perturbations in U-bearing molecular energy levels are heavy and frequent [42-44]. Heaven et al. [42] and Kaledin et al. [25, 26] found that many UO bands are perturbed to a degree that prevented rotational analysis. Because the extent of perturbations depends on the specific interactions and mixing of the energy levels, which is isotope dependent, it has been reported that perturbations in UO are different for its isotopologues [43] and the effect of isotopic substitution on the spectrum is so profound that the correlation between bands for the two species cannot be made with any confidence [42]. These isotope-specific perturbations in UO bring not only abnormally large isotopic shifts than those predicted from a classical reduced-mass formula in molecular spectroscopy, but also change the spectral intensity and pattern [42]. For example, Heaven et al. [42] reported that 16O has only one intense feature in the 17450–17700 cm$^{-1}$ spectral region but 18O shows two strong features in this region with intensities differing by a factor of six. The dramatic change in spectral pattern by isotopic substitution in UO provides a beneficial feature for isotopic analysis.
Figure 2b shows a small section of the LIBS and LAMIS spectra from 594.25 to 595.25 nm for 235U and 238U. In this 1-nm spectral window, six U I lines and two UO bands were identified. The wavelengths of the two identified UO bands match those listed by Kaledin and Heaven [26]. Both UO bands exhibit dissimilar spectral patterns for the two isotopologues, and their differences are more than merely simple wavelength shifts. These differences can be readily extracted by the PLS regression calibration and utilized for isotopic analysis.

Simulation of U isotopic analysis by LAMIS with only one UO band at 593.55 nm

To simulate the analytical performance of LAMIS with a single UO molecular band, the most intense band at 593.55 nm was chosen. The simulation was comprised of isotopic determination of ten simulated reference samples with 235U abundances evenly distributed between 5% and 95%. Spectral features from 593.424 to 593.849 nm in the experimentally determined spectra (cf. the marked region in Fig. 2a) were used as base profiles for this single-band LAMIS simulation. Figure 3 shows the difference between predicted and true values (left axis) and predicted 235U isotopic abundances (right axis) against the 235U isotopic abundances in the sample. Because the calibration standards and the samples in the simulation model were obtained through linear combinations of the two 235U and 238U base profiles, the addition of noise affects only precision and no bias is expected from the PLS model (cf. Fig. 3). The absolute precisions were about 1.5% for all studied 235U abundances. Furthermore, in simulations with other spectral features (e.g., single atomic line, pool of multiple atomic lines, combined LAMIS–LIBS) to be discussed below, it was found that all precisions were independent of the 235U abundances. Therefore, it is a more straightforward approach to evaluate and compare the performance through averaged precision of all the test samples, which is defined as

$$\sqrt{\frac{1}{N} \sum (C_{pred} - C_{true})^2}.$$

Because there is no expected bias, the differences between the predicted (denoted by C_{pred}) and the standard (C_{true}) isotopic abundances reflect only precision. The averaged precision of all the ten test samples presented in Fig. 3 is 1.49% in absolute 235U abundances.
Simulation of U isotopic analysis by LIBS with U lines in-between 591.6 and 596.5 nm

The analytical performances of pure U atomic lines (i.e., without contributions from molecular bands) in the spectral window from 591.6 to 596.5 nm also were simulated. The results were compared to those with the contributions from molecular bands in the same spectral window to be presented in the next section. Unlike the case with molecular band, in which base spectra for 235U and 238U were obtained experimentally (cf. Figs. 2a and 2b), simulated emission spectra for pure atomic lines were theoretically computed from a published line list [24] and isotopic shifts [11] to ensure that the simulation results represent the case when only atomic-line spectral features are used in the isotopic analysis.

If the analysis is limited to a single atomic line, the strongest emission line should be used providing that its isotopic shift is adequate. Our previous results [10] showed that the quality of isotopic analyses of U by LIBS generally are dependent on the signal-to-background ratio (SBR) and net intensity of the emission line, rather than the magnitude of isotopic shifts. Accordingly, the strongest U I line at 593.382 nm was selected for single-line analysis (cf. Fig. 2a). The experimentally measured SBR for this U I line was 0.43. The averaged simulated precision from the ten test samples is 1.62% in absolute 235U abundances, which is only slightly degraded from the case of a single UO band. The SBRs of the U I 593.382 nm line and the UO 593.55 nm band are very similar (cf. Fig. 2a) whereas their isotopic shifts are 8.5 pm and 35 pm, respectively; yet, their simulated precisions are very comparable, which is in agreement with our previous findings [10].

The simulation was further extended to multiple atomic-line analysis. All U I lines between 591.6 and 596.5 nm documented in the extensive line list by Palmer et al. [24] were included. This spectral window matches that captured by a single ICCD exposure with our spectrometer-detector system. Emission intensities reported by Palmer et al. [24] were from a hollow cathode discharge with an electronic excitation temperature...
around 4400 K, and can be readily transformed to other temperatures (e.g., the temperature of our LIBS plasma). Table 1 lists the spectroscopic constants [45] of the three U I lines used to determine the excitation temperature of our LIBS plasma. Linear regression (with $R^2 > 0.98$) of the Boltzmann plot gave an excitation temperature of 5300 K. The uncertainty in the slope of the Boltzmann plot was 10%. Table 2 lists the wavelengths, 235U–238U isotope shifts, upper energy levels, and rescaled relative intensities to a temperature of 5300 K of the thirty-two U I lines used in the multiple-line simulation. Figure 4 shows the experimentally measured 238U LAMIS–LIBS (molecular bands together with atomic lines) spectrum and the simulated U I lines (before addition of plasma continuum background and simulated measurement noise). Overall, the pattern of the simulated U I lines matches well with those from measurement. Those spectral features in the LAMIS–LIBS experimental spectrum that are not covered by the simulated U I profile likely originate from UO molecular bands.

In this multiple atomic-line simulation, the SBR of the U I 593.382 nm line was kept 0.43 (i.e., identical to the single line case) and emission of other U I lines were then varied according to the predefined relative intensities listed in Table 2. The use of multiple emission lines brings a significant improvement in the analytical performance compared to the use of single atomic line or UO band. The averaged precision from the ten test samples lowers to 0.72%.

Simulation of U isotopic analysis by LAMIS–LIBS combined approach

As mentioned earlier, there are temporal overlaps in the UO molecular bands and U atomic lines. These spectral features (LAMIS and LIBS) can be used together for the isotopic analysis. Experimentally measured LAMIS–LIBS base profiles for 235U and 238U (cf. Figs. 2a and 2b), were used in the simulation. The spectral window was the same as in the case of multiple atomic lines simulation (i.e., between 591.6 and 596.5 nm). Figure 5 summarizes the averaged precision of 235U isotopic abundance for different combinations of spectral features incorporated into the analysis. Compared to the use of only atomic lines (LIBS with a collection of multiple lines), the inclusion of
multiple UO molecular bands in the analysis further improve the precision from 0.72% to 0.42%. These results clearly show that although many of the molecular features are faint and appear noisy (many of them are with SBR ≤ 0.1, cf. Fig. 4), useful isotopic information about the sample can be extracted when sufficient large amount of weak spectral features are present.

Simulation of U isotopic analysis by LIBS with U II 424.437 nm

The last simulation performed in this study is to compare the analytical performance of LAMIS–LIBS combined approach in the 595 nm proximity to single emission-line analysis with the U II 424.437 nm benchmark. This U II line was commonly used for uranium isotopic analysis particularly with atomic emission [14, 46-50]. Simulation shows that its averaged precision is 0.48% in absolute 235U abundances, a notable value for single-line analysis. The measured SBR for the strongest spectral features in the LAMIS–LIBS spectrum (cf. Fig. 4) was only ~ 0.4, whereas the SBR for the U II 424.437 nm line was substantially larger and was 1.38. As the flat component of plasma background contains no extractable information but brings photon-shot noise, the analytical performance of the LAMIS–LIBS combined analysis from a collection of molecular bands and atomic lines is only similar to single-line analysis with the benchmark U II line (cf. Fig. 5). Nevertheless, the LAMIS–LIBS combined approach shows its potential as a viable supplement and valuable alternative for U isotopic analysis in situation that the single U II 424.437 nm line suffers interference and cannot be utilized. Because analyte signals (LIBS or LAMIS) are highly correlated, the use of multiple spectral features as in the LAMIS–LIBS approach provides the necessary resource for the PLS algorithm to differentiate the spectral patterns from the analyte against those from spectral interferences [22] – an attribute that would be difficult to implement if only a single spectral component (e.g., one atomic emission line) is used.

Conclusions
Isotopic analysis through the use of molecular spectrometry for the heaviest naturally occurring element – uranium – was presented in this work. Spectral features and characteristics of isotopic shifts for UO were identified. Through computer simulation, the theoretical precisions attainable by LAMIS, LIBS and LAMIS–LIBS combined approach for uranium isotopic analysis were studied. The analytical performance of LAMIS with the most intense UO band at 593.4 nm (averaged simulated precision 1.5%) was found to be slightly better than the use of a nearby single U I line (precision 1.6%) with similar intensity but significantly smaller isotopic shift. The use of multiple (a total of thirty-two) atomic emission lines improves the precision to 0.72%. Despite the fact that many UO spectral characteristics appear weak (many with SBR ≤0.1 due to intense pseudo-continuum background), further inclusion of the molecular spectral features to the multiple atomic lines (i.e., the LAMIS–LIBS combined approach) advances the precision to 0.42%. Analytical performances of the LAMIS–LIBS combined approach compares well with the U II 424.437 nm benchmark (precision 0.48%), and thus shows its potential as a viable and valuable alternative for U isotopic analysis in situations that the benchmark U II line cannot be used. The present study offers a better understanding on the analytical performance of isotopic analysis with LAMIS and LIBS for uranium, in which its spectral features (in particular its molecular spectroscopy) are complex, generally unresolved and largely uncharacterized.

Acknowledgements

This work was supported by the Defense Nuclear Nonproliferation Research and Development Office and the Office of Basic Energy Sciences of the U.S. Department of Energy under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory.

References

square regression – a computer simulation study. Spectrochim Acta Part B 122:75-84

Table 1 Spectroscopic constants of the three U I lines used in the determination of electronic excitation temperature of the LIBS plasma [45]

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>E_{lower} (cm$^{-1}$)</th>
<th>E_{upper} (cm$^{-1}$)</th>
<th>gA (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>593.382</td>
<td>620</td>
<td>17468</td>
<td>2.8×10^6</td>
</tr>
<tr>
<td>594.277</td>
<td>5762</td>
<td>22584</td>
<td>5.8×10^6</td>
</tr>
<tr>
<td>594.857</td>
<td>7646</td>
<td>24452</td>
<td>1.2×10^7</td>
</tr>
</tbody>
</table>
Table 2 List of U I emission lines between 591.6 and 596.5 nm. Emission wavelengths for ^{238}U and their upper energy levels are taken from Palmer et al. [24]. Isotopic shift (IS) data are calculated from the list published by Blaise and Radziemski [11]; a negative sign indicates that the ^{235}U wavelength is lower (i.e., blue shifted) than that of ^{238}U. Relative intensity is calculated based on the emission intensity given by Palmer et al. [24] for a hollow cathode discharge at 4400 K and rescaled to 5300 K through Boltzmann distribution.

<table>
<thead>
<tr>
<th>^{238}U Wavelength (nm)</th>
<th>^{235}U–^{238}U IS (pm)</th>
<th>E_{upper} (cm$^{-1}$)</th>
<th>Relative intensity at 5300 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>591.9252</td>
<td>-9.63</td>
<td>28566</td>
<td>0.1118</td>
</tr>
<tr>
<td>591.9667</td>
<td>-10.16</td>
<td>23908</td>
<td>0.2338</td>
</tr>
<tr>
<td>592.2899</td>
<td>-10.52</td>
<td>27133</td>
<td>0.0585</td>
</tr>
<tr>
<td>592.3654</td>
<td>-23.86</td>
<td>28184</td>
<td>0.1960</td>
</tr>
<tr>
<td>592.3732</td>
<td>1.05</td>
<td>21329</td>
<td>0.1844</td>
</tr>
<tr>
<td>592.5316</td>
<td>-7.20</td>
<td>22634</td>
<td>0.1679</td>
</tr>
<tr>
<td>592.5455</td>
<td>7.20</td>
<td>24517</td>
<td>0.8746</td>
</tr>
<tr>
<td>592.9318</td>
<td>-17.93</td>
<td>20661</td>
<td>0.5754</td>
</tr>
<tr>
<td>592.9667</td>
<td>-12.48</td>
<td>24185</td>
<td>0.1245</td>
</tr>
<tr>
<td>592.9753</td>
<td>-12.48</td>
<td>27148</td>
<td>0.1225</td>
</tr>
<tr>
<td>593.3818</td>
<td>8.45</td>
<td>17468</td>
<td>1.0000</td>
</tr>
<tr>
<td>593.4844</td>
<td>Unknown*</td>
<td>29488</td>
<td>0.1162</td>
</tr>
<tr>
<td>593.5508</td>
<td>-10.57</td>
<td>23848</td>
<td>0.1408</td>
</tr>
<tr>
<td>593.7373</td>
<td>-8.11</td>
<td>27394</td>
<td>0.1462</td>
</tr>
<tr>
<td>593.9991</td>
<td>-9.17</td>
<td>24022</td>
<td>0.2414</td>
</tr>
<tr>
<td>594.0664</td>
<td>10.06</td>
<td>28285</td>
<td>0.1083</td>
</tr>
<tr>
<td>594.2769</td>
<td>-3.71</td>
<td>22584</td>
<td>0.5745</td>
</tr>
<tr>
<td>594.3412</td>
<td>25.08</td>
<td>23069</td>
<td>0.1760</td>
</tr>
<tr>
<td>594.7672</td>
<td>17.16</td>
<td>23057</td>
<td>0.3408</td>
</tr>
<tr>
<td>594.8170</td>
<td>-7.78</td>
<td>24940</td>
<td>0.0892</td>
</tr>
<tr>
<td>594.8566</td>
<td>-0.89</td>
<td>24451</td>
<td>0.7934</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>594.9662</td>
<td>-5.13</td>
<td>21078</td>
<td>0.3830</td>
</tr>
<tr>
<td>595.3650</td>
<td>-4.96</td>
<td>27477</td>
<td>0.0654</td>
</tr>
<tr>
<td>595.4372</td>
<td>-1.77</td>
<td>27475</td>
<td>0.1230</td>
</tr>
<tr>
<td>595.4673</td>
<td>4.96</td>
<td>26997</td>
<td>0.0597</td>
</tr>
<tr>
<td>595.4899</td>
<td>6.56</td>
<td>24906</td>
<td>0.2396</td>
</tr>
<tr>
<td>595.5620</td>
<td>-12.95</td>
<td>24650</td>
<td>0.0493</td>
</tr>
<tr>
<td>595.6812</td>
<td>-5.14</td>
<td>28341</td>
<td>0.0627</td>
</tr>
<tr>
<td>595.6859</td>
<td>-12.07</td>
<td>20651</td>
<td>0.8370</td>
</tr>
<tr>
<td>595.9944</td>
<td>-11.90</td>
<td>28451</td>
<td>0.1663</td>
</tr>
<tr>
<td>596.1901</td>
<td>-27.37</td>
<td>31270</td>
<td>0.0967</td>
</tr>
<tr>
<td>596.3940</td>
<td>-15.47</td>
<td>28053</td>
<td>0.1121</td>
</tr>
</tbody>
</table>

*isotopic shift for this line is unknown and is assumed to be zero (i.e., same wavelengths for ^{235}U and ^{238}U) in the simulation.
Fig. 1 Temporally resolved emission spectra at different ICCD delays from a depleted U$_3$O$_8$ pelletized sample. The ICCD gate widths were 1, 1, 2 and 4 μs, respectively, for delays 1, 2, 3 and 5 μs. All emission is normalized to the gate width of the ICCD detector. A lower-resolution grating (1200 grooves/mm) was used for this spectral survey. The nominal wavelengths for atomic lines are referenced to 238U.
Fig. 2 235U and 238U base spectral profiles of some selected atomic lines and molecular bands exhibiting distinct isotopic shifts. (a, top) The intense UO band at 593.55 nm and its neighboring U I line at 593.382 nm (with their isotopic shifts). The marked region shows the base profiles used in the single UO-band LAMIS simulation. (b, bottom) A 1-nm window from 594.25 to 595.25 nm showing different emission patterns, in addition to isotopic shifts, of two UO bands. All spectra were recorded with a 2400 grooves/mm grating. The nominal wavelengths for atomic lines are referenced to 238U.
Fig. 3 Analytical bias and precision (left axis) and determined isotopic abundances of ^{235}U (right axis) against known ^{235}U abundances in the simulation. The calibration set contained eleven standards with equally spaced ^{235}U abundances from 0% to 100%. All simulated spectra (both the samples and the calibration standards) were accumulated from 10 laser shots.
Fig. 4 Experimentally measured ^{238}U LAMIS–LIBS (molecular bands together with atomic lines) spectrum, and the simulated U I lines with an electronic excitation temperature of 5300 K. The three labelled U I lines are those employed in the Boltzmann plot for the evaluation of excitation temperature. The experimental spectrum was recorded with a depleted U_3O_8 sample and a 2400 grooves/mm grating.
Fig. 5 Averaged simulated precision (in percentage 235U abundance) when different atomic and molecular spectral features are incorporated into the PLS calibration model.