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The imaging genetics approach to studying the genetic basis of disease leverages the individual strengths of both
neuroimaging and genetic studies by visualizing and quantifying the brain activation patterns in the context of
genetic background. Brain imagingas an intermediate phenotype canhelp clarify the functional linkamonggenes,
themolecularnetworks inwhich theyparticipate, andbrain circuitry and function. Integratinggeneticdata froma
genome-wide association study (GWAS) with brain imaging as a quantitative trait (QT) phenotype can increase
the statistical power to identify risk genes. A QT analysis using brain imaging (DLPFC activation during a working
memory task) as a quantitative trait has identified unanticipated risk genes for schizophrenia. Several of these
genes (RSRC1, ARHGAP18, ROBO1-ROBO2, GPC1, TNIK, and CTXN3-SLC12A2) have functions related to
progenitor cell proliferation, migration, and differentiation, cytoskeleton reorganization, axonal connectivity,
and development of forebrain structures. These genes, however, do not function in isolation but rather through
gene regulatorynetworks. Toobtain a deeperunderstandinghow theGWAS-identifiedgenes participate in larger
gene regulatory networks, we measured correlations among transcript levels in the mouse and human
postmortem tissue and performed a gene set enrichment analysis (GSEA) that identified several microRNA
associated with schizophrenia (448, 218, 137). The results of such computational approaches can be further
validated in animal experiments in which the networks are experimentally studied and perturbed with specific
compounds. Glypican 1 and FGF17 mouse models for example, can be used to study such gene regulatory
networks. The model demonstrates epistatic interactions between FGF and glypican on brain development and
may be a useful model of negative symptom schizophrenia.
d Human Behavior, 5251 California Ave., Suite 240, Irvin
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Fig. 1. Systems biology addresses links between human phenotype and SNPs originally
identified by GWAS.
Introduction

Genome-wide association studies (GWAS) to date have not
provided a genetic “smoking gun” for schizophrenia (Harrison and
Weinberger, 2005). Given the known genetic components in the
disorder, we hypothesize that it, and indeed most, complex
psychiatric disorders arise through small contributions from many
polymorphic loci, rather than through disruption of single genes or
pathways. Certainly, GWAS results from schizophrenia, bipolar
disorder, and major depression studies – in which many loci are
found, each with small effect (e.g., Committee, 2009; Moskvina et al.,
2008) – support such a view. In this sense, we see psychiatric
disorders as system-level disruptions of what are large, complex, non-
linear networks of gene, protein, and cell interactions. While GWAS
results may tell us which genes in this network happen to have
disease-associated polymorphisms of reasonably high frequency in
the human population, it only gives us tiny glimpses of the underlying
functional network itself.

Moreover, GWAS techniques create statistical challenges produc-
ing anywhere from 100,000 to more than 5,000,000 genotypes per
subject (Potkin et al., 2009d). Classical statistical analytical techniques
are not designed for situations where the number of variables so
grossly outnumbers the number of subjects. In addition to the
problem of multiple testing/multiple hypotheses, there are several
other important issues that are the current focus of interest in
statistical genetics. Examples of active statistical research are as
follows: (1) how to analyze “genes” (or chromosomal regions) rather
than SNPs, given our primary interest in mapping putative functional
elements of the genome rather than simple point variations; (2) how
to address gene×gene epistatic interactions (Brzustowicz, 2008;
Chapman and Clayton, 2007; Evans et al., 2006; Jiang et al., 2009;
Moore, 2008), or gene×environment epigenetic (Clayton and
McKeigue, 2001; Glazier et al., 2002; Hoffmann et al., 2009; Lander
and Kruglyak, 1995) interactions; or (3) even how to validate a
causative or regulatory network (Barabasi, 2007; Hidalgo et al., 2009).
Identification and application of the networks is the focus of this
paper, using schizophrenia as an example.

Using brain imaging as a quantitative trait greatly increases the
statistical power of GWAS (as in Potkin et al., 2009d). Neuroimaging as a
quantitative trait may identify dimensions of brain function that are
more closely related to susceptibility genes than are more subjective
assessments of clinical symptoms or features (e.g. Gottesman and
Gould, 2003).While imaging studies by themselves revealmanyaspects
of function and dysfunction in neuropsychiatric disorders, their
explanatory power may be limited by not considering the genetic
basis of brain structure and function, as both are clearly heritable
(Kennedy et al., 2003). Integrating genotypic information with brain
imaging results can help identify the function of candidate genes at the
level of brain function (e.g. Meyer-Lindenberg and Weinberger, 2006).

However, the availability of high-throughput genotyping technolo-
gies and genomic resources such as HapMap (www.hapmap.org) has
made it possible to survey SNP markers throughout the entire genome
and increase the probability of discovering important unanticipated
genetic influences. This allows imaging genetics to perform gene
discovery—identification of new “candidate” genes related to brain
function that would not be discovered by traditional candidate gene
approaches (e.g. Papassotiropoulos et al., 2006; Potkin et al., 2009b, c, d,
e; Shen et al., 2009).

Our imaging genetics GWAS approach uses brain imaging as a
quantitative trait (QT) and determines which genes affect the QT,
employing a reverse strategy compared to a candidate gene approach.
We do not test a priori hypotheses regarding genetic effects on brain
function based on current physiological or pathophysiological knowl-
edge since amajor limitation of the candidate geneapproach is precisely
that we know our current understanding of physiology or pathophys-
iology is woefully incomplete (Meyer-Lindenberg and Weinberger,
2006; Roffman et al., 2006). Imaging Genetics can visualize brain
activation patterns in the context of a whole genome background,
thereby synergizing the strengthsof each individual approach (Potkin et
al., 2009b, c, e) and ultimately representing a strategy for risk gene
discovery.

Fig. 1 depicts our approach: In the pathway from SNP to disease,
the human GWAS results can reveal a link between the SNP or gene
and the phenotype but do not illuminate the causative networks of
interacting mechanisms. Small but significant differences in allelic
frequency in cases and controls are best not interpreted as a particular
gene being the causative factor but instead should be considered to
implicate a larger network of genes. A systems biology approach can
improve our understanding of the implications of these GWAS
findings of relatively small effects within these interacting
mechanisms.

As an illustration of this approach, we have used activation in the
dorsolateral prefrontal cortex (DLPFC) of the middle frontal gyrus,
measured using fMRI during aworkingmemory task, as a QTphenotype
to identify genes related to schizophrenia that were not anticipated a
priori to this study (Potkin et al., 2009b; Potkin et al., 2009c). Employing
this approach, we have identified several genes related to brain
development and stress that had never before been associated with
schizophrenia. This is in line with the well-known common variants–
common disease (CVCD) hypothesis that schizophrenia arises through
small contributions from many polymorphic loci rather than through
disruption of single genes. Building on these results, we present several
computational biology approaches that provide initial steps in identi-
fying putative gene regulatory networks.

Gene regulatory networks can potentially be inferred from
expression profiles, the locations of regulatory motifs, and interac-
tions between regulatory targets and MicroRNA (miRNA). A number
of methods have been proposed to infer gene regulatory networks
from large-scale gene expression data (Eisen et al., 1998). A basic
assumption underlying all these methods is that genes interacting
together are correlated in their gene expression (positive or negative).
Therefore, correlation in gene expression can be used as a measure for
inferring gene interactions, using methods such as Boolean network

http://www.hapmap.org
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analysis, informatics-based approaches, linear regression, or Bayesian
networks (Bansal et al., 2007).

An additional approach for constructing gene interaction networks
takes advantage of sequence analysis by searching for the locations of
regulatory motifs in the human genome. Previously, we have demon-
strated the power of comparative genomics for discovering novel
regulatory motifs and for identifying individual regulatory motif sites
in the human genome (Xie et al., 2005; Xie et al., 2007). Recent
availability of over 25 placental mammalian genomes significantly
boosts our power for detectingmotif sites in the human genome.While
these genomes are closely related to each other and likely share basic
regulatory motifs, they are carefully chosen to represent distinct
branches of the mammalian evolutionary tree. As such, they are ideal
for separating regulatory sequences from neutral sequences (Margulies
et al., 2005).

The indirect interaction between regulators and targets of miRNAs
can also be determined. MicroRNAs (miRNAs), another important class
of regulators of gene expression, are endogenous ∼22-nucleotide RNAs
that repress gene expression post-transcriptionally (Carthew, 2006).
miRNAs are believed to regulate thousands of genes by virtue of base
pairing to 3′ untranslated regions (3′UTRs). IndividualmiRNAs can each
affect hundreds of genes. Many of the characterized miRNAs are
involved in developmental regulation, including the timing and
neuronal asymmetry in worm; brain morphogenesis in zebrafish; and
dendritic spine development inmammals (Giraldez et al., 2005; Schratt
et al., 2006). Based on a recent survey (Griffiths-Jones et al., 2008), we
note that the human genome contains over 500 miRNA genes, many of
which are highly or specifically expressed in neural tissues. The function
of the brain-related miRNAs and the mechanisms underlying their
transcriptional control are beginning to emerge and miRNA expression
differences have been found in the frontal and temporal gyri of
schizophrenia patients (Beveridge et al., 2008).

These statistical approaches, however, require validation by exper-
imental models. For example, the function of RSRC1 and AHRGAP18 in
schizophrenia thatwe identified through imaging genetics (Potkin et al.,
2009b) is largely unidentified and consequently the modification of
function thatmay be therapeutic is unknown. However, perturbation of
these candidate geneswith compounds that affect genetic expression in
animal neurodevelopmental models can help us understand the gene
regulatory networks. These in vivo models improve our understanding
of the biological significance of the networks identified by the
bioinformatic approaches.

We demonstrate the use of existing and novel algorithms to infer
gene regulatory networks from heterogeneous data sets (e.g. literature,
gene expression and genomic sequences) by employing a gene set-
based approach for GWAS data instead of individual SNPs or genes
(Subramanian et al., 2005). We focus on the specific problem of placing
loci identified through GWAS into the context of meaningful networks,
the network of genes that directly or indirectly control, or are controlled
by, schizophrenia risk genes, and the implication of selected genes
identified from these analyses in a mouse model. Improving our
understanding of the dynamic networks that underlie these disorders is
key to developing interventions that restore the network to its normal
regulatory state.

Materials and methods

Quantitative trait

The full details of the neuroimaging data collection and analysis are
available in Potkin et al. (2009b,c). We used measures of blood
oxygenation level-dependent (BOLD) fMRI signal in the dorsal lateral
prefrontal cortex (DLPFC) during the Sternberg Item Recognition
Paradigm (SIRP), a heritable (Karlsgodt et al., 2007) working memory
task, as a QT in a group of schizophrenia (n=24+64) and healthy
control subjects (n=74)(Potkin et al., 2009b; Potkin et al., 2009c) in the
context of GWAS to identify genes related to schizophrenia using a
GWAS approach. The brain imaging phenotypewas chosen based on its
relevance to the neuropsychiatric disorder, e.g. DPLFC activation in the
case of schizophrenia. The BOLD signal obtained during the probe
condition while holding 3 items in memory contrasted with a one item
memorandum was used as a quantitative phenotype in a GWAS.

GWAS analysis

Subjects were genotyped using the Illumina HumanHap370-Duo,
providing 370,404 SNPs suitable for later analysis with the fMRI QT
(Potkin et al., 2009b). All SNPs that passed quality control checks (Teo,
2008) were included in the GWAS analysis. The simplest model we
applied was a general linear model (GLM) identifying the effects of SNP
alleles or genotypes on the QT, thus determining how genetic variation
can be related tophenotypes characterized bybrain activation.With our
model, we can determine the genes (SNPs) that effect brain activation
(or structure) and then determine if these genetic effects differ by
diagnosis, simply adding a term to the GLM as follows:

Image QT=SNP+diagnosis+SNP×diagnosis+error.

This model can include other variables, for example, nuisance
covariates such as the site from which the subject was recruited, their
age or gender, etc. To guard against false positives, loci for further
consideration were identified by at least 2 independent SNPs with a
Pb10−6 because the conjunction of these results is less likely than a
single result alone. See (Potkin et al., 2009d) for discussion of GWAS
statistical significance thresholds. This is in keeping with the WTCCC
and O'Donovan et al. (2009), considering genome-wide thresholds of
Pb10−5 and 10−7 as “moderately strong” and “strong” evidence for an
association.

The newly identified risk-producing genes may be involved in
pathophysiological neuronal networks; their putative role within their
larger genetic networks was initially determined by bioinformatics and
computational biology methods.

Gene network identification

In order to obtain deeper understanding of how these genes
participated into larger gene regulatory networks, we applied two
bioinformatics approaches: (1) correlations among transcript levels
and (2) gene set enrichment analysis.

Correlation mapping

Gene interaction networks are inferred from correlations among
gene expression (mRNA) data sets. We added prefrontal cortex gene
expression data derived from 42 different inbred mouse strains of the
BXD recombinant inbred panel (derived from progenitor B6 and D2
strains; Wang et al., 2003). Genes were clustered into expression
networks based on the correlated variation among strains. Expression
“neighbors” may represent genes that regulate one or another's
expression or are controlled by a common regulator. Such clustering is
possible because there is sufficient variation in gene expression
among the tested strains. The human microarray gene expression
methods are fully described in Shao and Vawter (2008). Briefly the
gene expression values from DLPFC for the Stanley Microarray Cohort
were obtained using a Codelink platform in the UCI Functional
Genomics laboratory. The DLPFC was Trizol extracted for RNA at the
Stanley Institute. At UCI, 105 subjects were received for analysis.
High-quality arrays were obtained on 27 bipolar subjects, 30
schizophrenia subjects, and 29 controls. The raw expression values
were background adjusted, regressed for pH and age, and used for
downstream correlation analysis and over-representation analysis.
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by diagnostic group (Potkin et al., 2009a). The same accuracy performance is associated
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controls beginning at a memory load of three.
The full microarray data set is available from the Stanley Medical
Research Institute upon request (www.stanleyresearch.org).

Gene set enrichment analysis (GSEA)

We adapted gene set enrichment analysis, originally developed for
gene expression analysis (Subramanian et al., 2005), to discover
candidate genes sets or pathways that likely contribute to schizophre-
nia. GSEA determines whether a group of genes is over-enriched with
SNPs associated with a disease trait compared to the entire genome. It
first ranks all genes in the genome according to the associationwith the
quantitative trait or disease (in this case, the P-value of the SNP's effect
on the QT in the 24 SCZ data (Potkin et al., 2009b) or the interaction of
diagnosis and SNP on the QT in the SIRP imaging genetics analysis
(Potkin et al., 2009c)); it then testswhether a query gene set is enriched
with low rank genes (most significant P-values) using aMann–Whitney
U or a Kolmogorov–Smirnov test (KS test). Gene sets are defined based
in prior biological knowledge (e.g., canonical pathways, chemical and
genetic perturbations) primarily from theMSIGdata set, plusmicroRNA
targets, and transcriptional factors targets curated by us (referred to as
C3 motif gene sets; Xie et al., 2005) and several clusters that were
generated by the correlational analysis of the BxD data set and from the
Novartis gene expression atlas (Su et al., 2004). Altogether we tested
9709 gene sets.

Animal models

Animal models can be used to both explore and validate the
computational biological approaches. For example, glypican-1 (GPC1)
was one of the genes identified in the gene regulatory network based
on the GWAS imaging genetics analyses and the BxD data (see Results
section). A useful glypican mouse model exists (Aikawa et al., 2008;
Ivins et al., 1997; Lander et al., 1996; Litwack et al., 1994). GPC1
encodes a cell surface heparan sulfate proteoglycan (HSPG), a
molecule that can act as a co-receptor for growth factors and other
signaling molecules, including FGFs, neuregulins, Wnts, BMPs, slits,
and netrins (Lander et al., 1996; Selleck, 2006; Song and Filmus,
2002). In this analysis, we assessed the effects of knocking out the
GPC1 gene on brain development and the epistatic interactions with
FGF17. For full methods, see Jen et al. (2009).

Results

fMRI

In our data, schizophrenics show more (BOLD) activation in the
DLPFC than do healthy controls when matched for accuracy
performance on the Sternberg Item Recognition Paradigm (SIRP), a
working memory task, consistent with cortical inefficiency (Potkin
et al., 2009a). The BOLD activation was used as the quantitative
phenotype in the GWAS analyses (Fig. 2).

Two genes, RSRC1 andARHGAP18,were identified that had not been
previously associated with cognition or schizophrenia (Potkin et al.,
2009b). These two genes, based on available annotation software
(Ingenuity Pathways Analysis, SWISSPROT and dbSNP), have functions
related to prenatal brain development and cell migration to forebrain
structures. Their role in cortical development supports the neurodeve-
lopmental hypothesis of schizophrenia. RSRC1 is a unique marker of
progenitor cells that are found in the subventricular zone (SVZ) in the
developing and postnatal forebrain. These SVZ progenitor cells give rise
to EGFr-responsive progenitorswhich in the presence of TGF-alpha bind
to ERB B EGF receptors (Fallon et al., 2000; Rakic and Zecevic, 2003).
ARHGAP18 is part of the family of RhoGAP proteins that participate in
cell proliferation, migration, intercellular adhesion, cytokinesis, prolif-
eration, differentiation, and apoptosis (Symons, 1996). ARHGAP18 gene
products have been linked to RAS and EGFr-mediated proliferation of
cells in general (Wells, 1999). Interestingly, both genes have function in
prenatal brain development including neural stem cell proliferation in
the SVZ and migration to forebrain structures including limbic, striatal,
and amygdaloid circuitry.

In a second study using similar methodology with DLPFC
activation as a quantitative trait in schizophrenia subjects and
matched controls, six additional genes (or chromosomal regions)
related to forebrain development and stress response, and affecting
prefrontal efficiency, were also identified (ROBO1-ROBO2, TNIK,
CTXN3-SLC12A2, POU3F2, TRAF, and GPC1) (Potkin et al., 2009c).
Several of these genes are involved in cortical development, especially
in the forebrain in midline connections. GPC1 (glypican, slit receptor)
and ROBO1-ROBO2 are involved in dorsal forebrain development,
specifically neural precursor migration and axonal connectivity (e.g.
midline crossing and guidance of neuron axons to prefrontal cortices
including DLPFC). TNIK is highly expressed in the brain (Nonaka et al.,
2008) and TNIK mRNA was shown to be upregulated in the
dorsolateral prefrontal cortex (DLPFC) of schizophrenia patients
(Glatt et al., 2005). A SNP in TNIK was in the top 12 hits associated
with schizophrenia in the African-American sample case–control
analysis from the Molecular Genetics of Schizophrenia (MGS)
consortium (Shi et al., 2009). SLC12A2 is involved in regulation of
GABA neurotransmission and is differentially expressed in schizo-
phrenia (Dean et al., 2007). CTXN3 (cortexin) is highly enriched in the
cortex and increases postnatally. CTXN3-SLC12A2was found linked to
schizophrenia in Lewis et al. (2003) meta-analysis and lies within the
chromosome 5 region implicated in cognitive dysfunction found in
schizophrenia (Almasy et al., 2008). These findings are consistent
with the previously described abnormal callosal morphometry and
cortico-subcortical connectivity (Barch et al., 2001; Brett et al., 2002;
D'Esposito et al., 1998; Johnson et al., 2006; McNab and Klingberg,
2008; Tura et al., 2008). The discovery of novel associations between
genes and risk for neuropsychiatric disorder offers a powerful impetus
to postulate new biological mechanisms as well as support previous
neurodevelopmental hypotheses.

Identification of gene networks

Correlation mapping
Fig. 3 shows the network inferred through this approach. Variation

of gene expression in this data set can be viewed as a dynamic
response to the perturbation of gene expression in a subset of genes in
the network, induced by genetic variations in the coding or regulatory
sequences of these genes. Thus, links in this network are likely to
reflect functional interactions. Fig. 3 shows a large number of
connections between schizophrenia candidate genes as well as
some unexpected connections: DACT3, with 3 direct and 8 indirect

http://www.stanleyresearch.org
image of Fig.�2


Fig. 3. Gene interaction network inferred from prefrontal cortex gene expression in 42 different inbred mouse strains. Schizophrenia candidate genes from our GWAS and human
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expression data are highlighted in yellow.
(one-stop) connections to our candidate genes, encodes the ortholo-
gue of an amphibian regulator of Wnt signaling, a fact that may be
significant given literature linking Wnt signaling to schizophrenia
(Cotter et al., 1998; Miyaoka et al., 1999; Proitsi et al., 2008).

NDFIP (Nedd4 family interacting protein 1) has 4 direct and
8 indirect connections. It is a Golgi protein that is ubiquitinated by the
Nedd4 family of proteins (Harvey et al., 2002); the product of another
gene on the list, PMEPA1, also interacts with Nedd4. DNER (delta/
notch-like EGF repeat containing) with 4 direct and 8 indirect
connections regulates differentiation of glia through Notch signaling
(Eiraku et al., 2005); loss of function mouse Dner gives rise to
impaired cerebellar function. MCPH1 (microcephalin 1) has 2 direct
and 3 indirect connections; it is expressed in fetal brain, in migrating
neurons of the developing forebrain, and on the ependymal and
subventricular walls of the lateral ventricles. It is related to brain size
in human (mutations in it cause a form of primary microcephaly) and
is positively selected for (Evans et al., 2005). GPC1 has a direct
connection with Wnt and encodes a cell surface heparan sulfate
proteoglycan, which acts as a co-receptor for growth factors and other
signaling molecules (Lander et al., 1996; Selleck, 2006; Song and
Filmus, 2002). TNIK and TRAF3 have been shown to interact with
DISC1 in yeast-two hybrid experiments (Camargo et al., 2007) but did
not arise in this mouse data set. DISC1 (disrupted in schizophrenia)
has been strongly implicated in schizophrenia and plays a role in brain
development. Therefore, we conducted human gene expression data.

Human post-mortem expression data

Gene expression data was obtained by microarray in the DLPFC of
30 patients with schizophrenia, 27 with bipolar disorder, and 29
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healthy controls. An interesting pattern of gene co-expression is
observed in the table and differs by diagnosis. The gene expression
values within subjects for TNIK were negatively correlated with DISC1
(r=−0.25) in schizophrenia but weakly positively correlated in
bipolar disorder or healthy controls. Further support of the interaction
between TNIK and DISC1 is provided by a direct binding between
TNIK and DISC1 which regulates AMPA receptor activity (Wang,
2010). In rat primary hippocampal neurons, knockdown of DISC1
leads to increase in the TNIK protein level, suggesting that DISC1
negatively regulates the expression of TNIK (Wang, 2010) which is
consistent with the negative gene expression correlation between
DISC1 and TNIK. GPC1 was significantly correlated with FGF2
(r=0.42) and showed a trend with FGF17 (r=0.31) in schizophrenia
but to a lesser degree and in the opposite direction in bipolar disorder
at r=−0.26 and−.013, respectively, and−0.24 and 0.08 in controls.
The correlations for FGF2 with GPC1 in schizophrenic patients and
controls are in opposite directions.
Gene set enrichment analysis

GSEA was applied to the previously described imaging genetics
GWAS data sets based on differences between SZ and controls
(Potkin et al., 2009c) and to an independent, smaller data set of
schizophrenic subjects only (Potkin et al., 2009b). Table 2 below
shows the top 25 gene sets with Mann–Whitney test Z-scoreN4.0
(Pb3×10−5) in both data sets, at which threshold the random
permuted gene sets returned no hits. There is significant overlap
between the GSEA results from the two data sets, although individual
genes identified from each data set are different, supporting the
merit of using systems and a network-based approach for testing the
disease association. A number of interesting gene sets emerge from
this analysis. For instance, several miRNA target gene sets (.mir 448,
218, 137) are highly enriched in both data sets, suggesting a
potential role of miRNA perturbation in schizophrenia and meriting
further investigation. There are nine total miRNA gene sets in the
table that were over-enriched in the two imaging genetics GWAS
data sets.
Fig. 4. Epistasis: GPC1 phenotypes require FGF17. The effects of compound GPC1/FGF17
genotypes demonstrate an epistatic effect on brain weight. Bars indicate fresh brain
weights of the compound mutants. The genotypes are indicated by + for wild type, −
for knockout, −/+ for heterozygote). Corresponding Nissl-stained mid-sagittal
sections the cerebella morphometry is shown. The red arrowheads mark the
anterior-most lobe (lobe 1) and the fusion of lobes III and IV, a phenotype observed
in FGF17−/− mice that disappears in GPC1−/− and FGF17−/− animals. GPC1
appears to be acting in a pathway upstream of FGF17 (Jen et al., 2009).
The traditional gene ontology categories were significant only
once in the table (Biological Process, Nervous System Development),
emphasizing the value of using GWAS with GSEA together with
miRNA and gene expression data sets (Table 2).

Glypican-1 and FGF17 combined mutant mouse models

Homozygous mutant GPC1 animals are anatomically grossly
normal, but possess brains that are ∼15% smaller (and containing
18% fewer cells) than wild type, and display subtle cerebellar
mispatterning (Jen et al., 2009). GPC1 heterozygotes have intermedi-
ate brain size. The GPC1-related decrease in brain size is significantly
affected by FGF17 status; strongest effects are observed with
homozygote mutant FGF17 animals while heterozygotes have an
intermediate effect, in total indicating an epistatic interaction
(Pb0.005, t-test; see Fig. 4). The data show that he presence of either
one or two copies of mutant alleles for either GPC1 or FGF17
progressively reduces brain size (Pb0.005, t-test). When animals are
null for FGF17, the presence of mutant GPC1 alleles has no significant
effect. Jen et al. (2009) assessed signaling pathways by Q-RT-PCR at
embryonic day 5, the time in which brain size reduction in GPC1
mutantmice emerges. Levels of transcripts formarkers of FGF signaling
(Sprouty 1 and Sprouty 2) are reduced whereas markers of Hedgehog,
Wnt, and BMP signaling are not. Additional support for the conclusion
that GPC1 regulates FGF signaling is the lower levels of endogenous
MAP kinase (Erk) activity found in homozygous GPC1 mutants.

Discussion

Our approach to identifying gene regulatory networks that contrib-
ute to a risk of schizophrenia begins with the identification of new
candidate risk genes using brain imaging as a QT in the context of a
GWAS.We then applied computational biologymethods to theseGWAS
candidates and to expression data sets in both humans and animals to
more fully understand these candidates. This builds on the previous
imaging genetics results to integrate across levels of inquiry in
understanding genetic influences on system-level phenotypes, as
denoted in Fig. 1. The GSEA method identified multiple miRNAs in
both imaging genetics GWAS data sets. AsmiRNAs affect the expression
of many genes, this provides support for the idea of widespread genetic
networks underlying schizophrenia. Finally, it highlights thepotential of
the GPC1/FGF mouse as an animal model of some characteristics of
schizophrenia, in part based on the human GWAS data. Initially, we
asked whether commercial software (Ingenuity Pathways Analysis v7,
Santa Clara CA) developed to search certain published networks (e.g.
protein–protein interaction data (Stelzl et al., 2005) for functional
connections among sets of genes) might reveal any new relationships
among the genes identified by imaging genetics GWAS (ARHGAP18,
RSRC1, GPC1, ROBO2, ROBO1, CTXN3, SLC12A2, TRAF3, TNIK, POU3F2;
Potkin et al., 2009b, c). The ingenuity annotation output called attention
to a few connections—for example, that the ligands for the ROBO1 and
ROBO2 receptors, the SLITS (Killeen and Sybingco, 2008; Lopez-Bendito
et al., 2007; Nguyen-Ba-Charvet and Chedotal, 2002), bindGPC1 (Ronca
et al., 2001)—that are well established in the literature. The full
implication of these results, however, required more innovative
computational and physiological approaches. The correlational connec-
tions shown in Fig. 3 and Tables 1 and 2 were not available in any
currently existing software, and themiRNAfindingswere not identified.
Our expression data provided support for an interaction between GPC1
and FGF17 and FGF2 as well as between TNIK and DISC1. A recent set of
studies found the kinase domain of TNIK binds to a small region on
DISC1, a key gene consistently linked to schizophrenia risk (Wang,
2010). The potential importance of TNIK itself in schizophrenia has been
highlighted by several independent studies, supporting its role as an
emerging risk factor (Glatt et al., 2005; Shi et al., 2009). DISC1 has been
shown to modulate TNIK kinase activity and together they function at



Table 1
Gene co-expression data in human post-mortem DLPFC in patient and control groups.
Bold indicates Pb0.05.

GPC1 FGF2 FGF17 TNIK DISC1

Group SZ (n=30)
GPC1 NM_002081.1_PROBE1 1.000
FGF2 NM_002006.2_PROBE1 0.421 1.000
FGF17 334553.7_PROBE1 0.313 0.093 1.000
TNIK AB011123_PROBE1 0.020 0.205 0.264 1.000
DISC1 NM_018662.1_PROBE1 −0.028 0.047 0.223 −0.246 1.000

Group Bipolar (n=27)
GPC1 NM_002081.1_PROBE1 1.000
FGF2 NM_002006.2_PROBE1 −0.259 1.000
FGF17 334553.7_PROBE1 −0.127 0.345 1.000
TNIK AB011123_PROBE1 −0.139 0.674 0.439 1.000
DISC1 NM_018662.1_PROBE1 −0.147 0.152 0.635 0.107 1.000

Group Control (n=29)
GPC1 NM_002081.1_PROBE1 1.000
FGF2 NM_002006.2_PROBE1 −0.243 1.000
FGF17 334553.7_PROBE1 0.075 −0.233 1.000
TNIK AB011123_PROBE1 0.093 0.205 0.063 1.000
DISC1 NM_018662.1_PROBE1 −0.125 −0.207 0.542 0.024 1.000
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the synapse to regulate synaptic composition and GLUR1 and AMPA
activity (Wang 2010), both hypothetically related to schizophrenia
(Harrison and Weinberger, 2005).

Whether the GPC1 brain size phenotype noted in themousemodel
has any relationship to a role for GPC1 in schizophrenia is unknown. It
is interesting, however, that clinical studies support a small but
significant decrease in brain size in schizophrenia (on the order of 3%;
Steen et al., 2006; Ward et al., 1996). In addition, although FGF17-
deficient mice are behaviorally relatively normal, they show striking
deficits in social recognition and affiliative interactions (Scearce-Levie
et al., 2008), which is particularly intriguing given the social
dysfunction characteristic of schizophrenia patients (Cholfin and
Table 2
Top 25 gene sets enriched with most significant P-value genes in two independent imaging
n=138 (Potkin et al., 2009c). Gene set codes: c2 refers to curated gene sets from canonical pa
c4, to computational gene sets, and c5 to GO gene sets. MicroRNA data sets are indicated by

Gene set
category

Gene set name SIRP dataset

Mann–Whitney Z-score

c3.mir ATATGCA,MIR-448 8.8657
c2.cgp UVC_TTD_ALL_DN 8.6874
c2.cgp UVC_XPCS_ALL_DN 8.1193
c2.cgp UVC_XPCS_8HR_DN 7.6156
c2.cgp UVC_TTD_8HR_DN 7.3774
c2.cgp. UVC_TTD_4HR_DN 7.3072
c3.tft V$OCT1_03 6.783
c2.cgp UVC_XPCS_4HR_DN 6.6389
c2.cgp BAF57_BT549_UP 6.6375
c3.mir AAGCACA,MIR-218 6.5172
c3.tft YNGTTNNNATT_UNKNOWN 5.9645
c3.mir AAGCAAT,MIR-137 5.8681
c3.tft V$NKX25_02 5.8142
GNF cluster_all_GNF_105 5.784
c3.tft V$CART1_01 5.7749
c3.tft V$OCT1_07 5.6725
c3.mir TTGCCAA,MIR-182 5.6675
c3.mir TCCAGAG,MIR-518C 5.5932
c3.mir CAGTATT,MIR-200B,MIR-200C,MIR-429 5.5887
c3.tft V$FOXJ2_02 5.5746
c3.mir TATTATA,MIR-374 5.5734
c5.bp NERVOUS_SYSTEM_DEVELOPMENT 5.5395
c3.mir GTATTAT,MIR-369-3P 5.537
c2.cgp BOQUEST_CD31PLUS_VS_CD31MINUS_DN 5.5227
c3.mir ACTGTGA,MIR-27A,MIR-27B 5.4877
Rubenstein, 2008; Scearce-Levie et al., 2008). Thus, even though
FGF17 has never itself emerged by GWAS as an SZ candidate gene, its
functional association with GPC1, and its mouse behavioral pheno-
type, strongly point to it being a potentially important component of a
schizophrenia-related gene network. In support of this idea, we note
that recent GWAS studies have identified FGFR2, a major FGF brain
receptor, as strongly associated with schizophrenia (O'Donovan et al.,
2009; Potkin et al., 2009c).

This work suggests that FGF17 and/or GPC1 mutant mice may
develop into useful and valid models for the negative symptoms of
schizophrenia (which are especially difficult to treat) and additionally
provide a proof-of-concept model for therapeutic intervention. It is
also of interest that the brain weights of heterozygous GPC1 mutants
fall midway between wild-type and homozygous mutants, as it
suggests a strong quantitative dependency of FGF signaling on GPC1
expression levels. We have observed alterations in FGF2 gene
expression in the DLPFC of SZ patients (Shao and Vawter, 2008).
Because most non-coding genetic polymorphisms probably exert
their effects by altering levels of gene expression, such a strong
dependency may explain why GPC1 is more prone to detection by
GWAS than other genes in the networks in which it acts.

The miRNA findings based on the imaging genetics GWAS data are
intriguing, as they suggest a mechanism for regulation of a network of
genes. Our third top miRNA, 137, was one of the five major findings
from a 52,156 subject GWAS study reported by P. Gejman (Gejman,
2010). This is in accord with the underlying multiple genes models of
schizophrenia in general, and specifically the potential importance of
gene regulatory networks as contrasted with single-gene effects for
complex illnesses. Understanding these networks in animal models
offers potentially new opportunities for therapeutic modulation.

In summary, the integration of imaging genetics GWAS analyses in
schizophrenia with computational biology methods and animal
models identified several key findings that extended our initial
imaging GWAS studies in schizophrenia to improved understanding
of the system-level phenotype. Finally, the GPC1/FGF mouse based in
genetics GWAS data sets; SCZ data set n=24 (Potkin et al., 2009b) and SIRP data set
thways and chemical and genetic perturbations. C3 refers to motif gene sets in MSigDB;
.mir. For more information see MSigDB (www.broad.mit.edu/gsea/msigdb/index.jsp).

SIRP dataset Number of
genes

KS −log10
(P value)

Mann–Whitney Z-score KS −log10
(P value)

17.1214 6.9348 9.7789 177
12.9778 7.4691 9.9803 318
12.5773 7.9788 12.225 419
10.3729 7.5681 10.7036 358
8.0467 6.4858 6.8742 144

10.244 6.1085 7.1162 262
8.168 2.6201 1.6422 147
9.8161 5.7022 7.1296 208
9.8099 5.2192 4.502 203
7.8408 6.9509 11.0283 332
6.611 7.3309 12.7903 235
7.2371 6.5203 7.6126 168
7.1266 4.7564 3.9708 181
6.5692 6.3786 7.582 187
6.3817 5.4727 7.8015 157
9.2947 3.8748 3.503 107
5.2286 5.7457 8.175 263
7.203 3.1213 2.5984 124
6.1427 6.0432 6.227 363
5.385 5.9776 6.5761 160
5.1674 5.6163 6.0237 233
6.0857 5.1778 6.3565 331
9.2865 3.6326 4.2507 170
5.4404 5.6424 4.5051 217
5.789 5.9505 6.8975 381

http://www.broad.mit.edu/gsea/msigdb/index.jsp
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part on our imaging genetics human GWAS data and computational
gene expression analyses may provide a useful animal model of key
characteristics of schizophrenia.
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