Title
A high current, low emittance Li+ alumino-silicate ion source and injector

Permalink
https://escholarship.org/uc/item/3r43s2s8

Authors
Roy, P.K.
Kwan, J.W.
Seidl, P.A.
et al.

Publication Date
2010-12-30
A high current, low emittance Li$^+$ alumino-silicate ion source and injector

P. K. Roy1, J. W. Kwan1, P. A. Seidl1, W. Greenway1, D. P. Grote2, J. Kehl1, M. Leitner1, W. Sharp2, J. Takakuwa1, J. Vay1, W. Waldron1, and J. K. Wu1

Lawrence Berkeley National Laboratory (LBNL)

We will present the design of a Li$^+$ ion source and injector for the Neutralized Drift Compression Experiment-II (NDCX-II) for warm dense matter experiments. The injector has been designed to use a large diameter (≈ 11 cm) Li$^+$-doped alumino-silicate source with an injected ion kinetic energy of 100 keV, pulse duration of 0.5μs, and beam current of 100mA. Using small prototype emitters, at a temperature of approximately 1275° C, the space charge limited Li$^+$ beam current density of $J \approx 1$ mA/cm2 was obtained for a 0.64 cm diameter emitting area. The lifetime of the ion source is ≥ 50 hours while pulsing the extraction voltage at 2 to 3 times per minute (a rate expected in NDCX-II). We are designing and fabricating a larger diameter source, in parallel with continuing R & D effort to increase the life time of the ion source.

*This work was performed under the auspices of the U.S Department of Energy by LLNL under contract DE-AC52-07NA27344, and by LBNL under contract DE-AC02-05CH11231.