Title
Photoelectrochemical Evidence for Saturated Optical Absorption in Electrolytic Cuprous Oxide

Permalink
https://escholarship.org/uc/item/3sd722cx

Journal
Journal of applied physics, 58(16)

Authors
Schwartz, D.T.
Muller, R.H.

Publication Date
1990-10-01
Submitted to Applied Physics Letters

Photoelectrochemical Evidence for Saturated Optical Absorption in Electrolytic Cuprous Oxide

D.T. Schwartz and R.H. Muller

October 1990

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
PHOTOELECTROCHEMICAL EVIDENCE FOR SATURATED OPTICAL ABSORPTION IN ELECTROLYTIC CUPROUS OXIDE

Daniel T. Schwartz† and Rolf H. Muller‡‡

Department of Chemical Engineering†
University of California
and
Materials and Chemical Sciences Division‡
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Deputy Assistant Secretary for Utility Technologies, Office of Energy Management, Advanced Utility Concepts Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
PHOTOELECTROCHEMICAL EVIDENCE FOR SATURATED OPTICAL ABOSRPTION IN ELECTROLYTIC CUPROUS OXIDE

Daniel T. Schwartz and Rolf H. Muller

Materials and Chemical Sciences Division
Lawrence Berkeley Laboratory
University of California
and
Department of Chemical Engineering
University of California
Berkeley, CA 94720

Abstract

An illuminated cuprous oxide-covered electrode immersed in alkaline media exhibits a nonlinear dependence of photocurrent on the intensity of 488 nm laser illumination. Results from intensity modulation experiments show that the differential efficiency for converting photons to photocurrent in the p-type cuprous oxide thin film is inversely proportional to the square root of illumination intensity. A charge transfer model that includes intensity-dependent optical absorption in the cuprous oxide layer is found to be consistent with the observed photocurrent response. Analysis of the experimental results using the charge transfer model shows that the saturation intensity for cuprous oxide is approximately 100 mW/cm². Photoelectrochemical charge transfer is found to be efficient in the potential region where the nonlinear photocurrent response is observed, with nearly all photo-injected minority carriers being consumed by the interfacial charge transfer reaction rather than by recombination.
Photoelectrochemical (PE) techniques measure changes in the current (photocurrent) or potential (photopotential) when an electrode is illuminated. These techniques are often used in conjunction with models to derive solid-state properties (e.g., band gaps, optical absorption coefficients, surface state energies, etc.) for semiconductor/electrolyte interfaces and to identify the composition of semiconducting surface films. Metal-oxides often form PE junctions when contacted with electrolyte; cuprous oxide (Cu₂O) is one such material. The monovalent surface film on copper electrochemically oxidized in alkaline media is a thin (~10 nm) semiconducting cuprous oxide layer with p-type conductivity. Recently, we showed in a laser Raman spectroscopy and PE study of film formation on copper electrodes that the cathodic photocurrent from a cuprous oxide-covered surface exhibits a nonlinear dependence on illumination intensity when subject to a 488 nm laser probe beam. In this Letter, the intensity-dependent photocurrent from an electrolytic cuprous oxide thin film is found to agree with a charge transfer model where optical absorption is saturated by the laser beam.

Cuprous oxide thin films are prepared by oxidizing a small area (~5x10⁻⁴ cm²), high purity (99.999%) copper electrode in 1M KOH electrolyte at room temperature. The potential (E) of the copper electrode relative to a Hg/HgO reference is slowly increased (1 mV/s) up to the oxygen evolution potential (near 600 mV), where the surface is covered by a divalent film. The potential scan direction is then reversed and the surface film is reduced. Shown in Fig. 1 is the current as a function of potential when the copper electrode is illuminated by a mechanically chopped (5 seconds on, 55 seconds off) 488 nm laser beam (intensity=250 W/cm²). Positive current denotes oxidation reactions and negative current denotes reduction reactions. Figure 1 shows that the surface films on copper are photoelectrochemically active during certain portions of the potential scan. The largest photocurrent "spikes" are observed from -0.3 V to -0.7 V as the potential scans to more negative values; this is the potential region where the photocurrent dependence on illumination intensity is nonlinear. In this potential region, charge transfer is mediated by a thin cuprous oxide film covering the copper substrate. The large cathodic photocurrent spikes observed in Fig. 1 confirm that the cuprous oxide film is a p-type semiconductor.
In order to measure the effect of illumination intensity on photocurrent, intensity modulation experiments have been performed. The oxidation films used in the intensity modulation experiments are prepared as described above. The electrode is illuminated with an intensity-modulated 488 nm laser probe beam, \(I(t) = \bar{I}[1 + \varepsilon \cos(\sigma t)] \), where \(I(t) \) is the intensity incident on the sample, \(\bar{I} \) is the mean intensity, \(\varepsilon = 0.1 \) is the modulation amplitude, and \(\sigma = 50 \) Hz is the modulation frequency. The intensity modulation induces an a.c. photocurrent signal when the interface is photoelectrochemically active. The amplitude of the a.c. photocurrent density (\(|j_{ac}| \)) is

\[
|j_{ac}| = \varepsilon \bar{I} \frac{\partial j_{ph}}{\partial I}(\bar{I}, U)
\]

when \(\varepsilon \ll 1 \) and \(1/\sigma \gg \tau \), where \(\tau \) is the characteristic relaxation time for the interface, \(j_{ph} \) is the d.c. photocurrent density, and \(U \) is the potential drop across the space charge layer. The amplitude of the a.c. photocurrent is measured with a lock-in amplifier synchronized to the modulated laser intensity and the photocurrent density is calculated by dividing the measured photocurrent with the area illuminated (8x10^{-5} cm^2, estimated on the basis of beam profile measurements).

Plotted in Fig. 2 is the a.c. photocurrent density signal, \(|j_{ac}| \), over the potential range -0.25 V to -0.8 V for different values of the mean illumination intensity, \(\bar{I} \). The reported illumination intensities are based on measurements of the beam power, and estimates for illuminated area and reflection losses at the electrochemical cell window. A maximum in the a.c. photocurrent density is found near -0.5 V for each curve in Fig. 2; the location of the maximum is consistent with the results in Fig. 1. Figure 2 shows that attenuating the intensity of the 488 nm probe beam from ~250 W/cm^2 in curve (a) to ~0.31 W/cm^2 in curve (d) only reduces the a.c. photocurrent peak height by an order of magnitude. This result shows that the differential efficiency for converting photons to photocurrent (\(\partial j_{ph}/\partial I \)) increases as the illumination intensity decreases. The intensity-dependent a.c. photocurrent density observed in Fig. 2 is not characteristic of a charge carrier-limited PE reaction, where the a.c. signal is expected to be linear with \(\bar{I} \), nor is the a.c. signal negligible as expected for a redox species-limited reaction.

A model for charge transfer must be developed for the potential region near -0.5 V in order to compare Eq. (1) with the measured a.c. photocurrent density. Since the thickness of the
cuprous oxide layer (L≤10 nm) is smaller than any other pertinent length-scale for the interface (i.e., optical absorption, space charge layer, charge carrier diffusion), it has been proposed that the d.c. photocurrent density for a reverse biased cuprous oxide/alkaline media junction is given by

\[j_{\text{ph}} = (1+R)q_{\text{o}}L\alpha \eta I / \hbar \omega, \]

(2)

where R is the reflection coefficient for the copper/cuprous oxide interface, \(q_{\text{o}} = 1.6 \times 10^{-19} \) (C) is the electron charge, \(\alpha \) (cm\(^{-1}\)) is the optical absorption coefficient of cuprous oxide, \(\eta = \eta (U) \) is the bias-dependent charge transfer efficiency (fraction of photo-injected minority carriers that escape recombination and are consumed by charge transfer), and \(\hbar \omega (J) \) is the photon energy. Equation (2) is a charge carrier-limited model for the interface, therefore substituting (2) into (1) provides an equation for the a.c. photocurrent density that is linear with \(\dot{I} \). This is not the intensity dependence observed in Fig. 2. In substituting Eq. (2) into (1), \(\alpha \) was assumed to be independent of illumination intensity; this assumption may not be valid for the energy and intensities of the laser beam employed here.

The 488 nm illumination used in this study is close in energy to that needed for an interband transition in cuprous oxide, leading to exciton absorption and resonance enhanced Raman scattering in the material. Optical absorption of photons with resonant energies often depends on the illumination intensity. A common form for the intensity-dependent absorption coefficient is \(\alpha (I) = \alpha_{\text{o}}/[1+I/I_{5}]^{n} \), where \(\alpha_{\text{o}} = \alpha_{\text{o}}(\omega) \) is the low intensity optical absorption coefficient, \(I_{5} = I_{5}(\omega) \) is the saturation intensity, and n (equal to 1/2 or 1) is a constant that depends on the saturation model employed. A value of \(n = 1/2 \) is used for the saturation of direct transitions between broadened energy levels. Inserting \(\alpha (I) \) into Eq. (2) and differentiating with respect to intensity provides an expression for the differential photon-to-photocurrent efficiency,

\[\frac{\partial j_{\text{ph}}}{\partial I}(\overline{I},U) = \left\{ 2q_{\text{o}}L\alpha_{\text{o}}\eta (U)/\hbar \omega \right\} \left([1+\overline{I}/I_{5}]^{-1/2} - 0.5(\overline{I}/I_{5})[1+\overline{I}/I_{5}]^{-3/2} \right), \]

(3)

where \(n = 1/2, R=1, \) and \(\partial \eta / \partial I = 0 \) have been assumed. Equation (3) shows that \(\partial j_{\text{ph}}/\partial I \) is independent of illumination intensity for \(\overline{I}/I_{5} \ll 1 \) and is inversely proportional to the square root of intensity for \(\overline{I}/I_{5} \gg 1 \).
Plotted in Fig. 3 is a quantitative comparison of experimental and theoretical values for $\partial j_{ph}/\partial I$ as a function of laser intensity. The filled circles denote experimental values for $\partial j_{ph}/\partial I$ obtained by dividing the $I_{ph,l}$ peak height for each curve in Fig. 2 by εI, see Eq. (1). The error bars on the data points are estimates based on the range of peak heights found for repeat runs at the highest intensity. The solid line in Fig. 3 is the high intensity limit ($I/I_s > 1$) of Eq. (3):

$$\frac{\partial j_{ph}}{\partial I}(I,U) = \{q_o \alpha_o \eta/\hbar \omega \} \{I/I_s\}^{-1/2}.$$ \hspace{1cm} (4)

The agreement between Eq. (4) and the experimental points (●) suggests that saturated optical absorption is responsible for the nonlinear intensity dependence of the a.c. photocurrent. The slope of the theoretical line in Fig. 3 is -1/2 (this is dictated by the value of n); the only adjustable parameter is a single lumped constant. The best-fit of Eq. (4) to the experimental points in Fig. 3 is found when $\{q_o \alpha_o \eta/\hbar \omega \} I_s^{1/2} = 100 \mu A/(W^{1/2} \text{cm})$. Using physically reasonable values for L and α_o (10^{-6} cm and 10^3 cm$^{-1}$, respectively)6,9 in the best-fit constant gives $\eta I_s^{1/2} = 0.3 W^{1/2}/\text{cm}$. It is evident from Fig. 3 that all of the experimental points were acquired in the high intensity regime ($I/I_s > 1$), therefore $I_s < 1 \text{ W/cm}^2$. Moreover, the charge transfer efficiency must satisfy the constraint $\eta \leq 1$. An order of magnitude estimate for η and I_s that satisfies all experimental and physical requirements of this system is $\eta = 1$ and $I_s = 0.1 \text{ W/cm}^2$. No other set of physically reasonable values for η an I_s will meet all of the above criteria. Past photocurrent studies of bulk cuprous oxide showed that $\partial j_{ph}/\partial I$ was constant for low illumination intensities ($\lambda = 470$ nm)5, as predicted by Eq. (3), and a charge transfer efficiency of $\eta = 1$ has been used by others to determine the energy-dispersion of optical absorption in cuprous oxide9. The room temperature saturation intensity found in this work, $I_s = 0.1 \text{ W/cm}^2$, is low even compared to typical values for quantum well structures14 direct measurements of optical absorption in cuprous oxide thin films are warranted to verify this saturation intensity. Nevertheless, the agreement between the experimental results and the intensity-dependent optical absorption model for charge transfer provides the first evidence for low-intensity saturated optical absorption in cuprous oxide thin films.

In conclusion, it was shown that the photoelectrochemical activity near -0.5 V (vs. Hg/HgO) depended nonlinearly on the illumination intensity of a 488 nm laser beam. The
photocurrent nonlinearity was interpreted using a charge transfer model that included intensity-dependent optical absorption in the cuprous oxide surface layer. The a.c. photocurrent density amplitude from a reverse biased cuprous oxide-covered surface was found to be proportional to the square root of intensity when illuminated with a 488 nm laser probe beam having intensities greater than 100 mW/cm². Fitting the experimental data to theory showed that the charge transfer efficiency for the cuprous oxide/alkaline media junction was near unity.

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Deputy Assistant Secretary for Utility Technologies, Office of Energy Management, Advanced Utility Concepts Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
REFERENCES

FIGURE CAPTIONS

FIG. 1. Current versus potential for a copper electrode in 1 M KOH electrolyte. Current spikes result from illumination with 5 second pulses of a 488 nm laser beam (~250 W/cm²).

FIG. 2. Dependence of the a.c. photocurrent density on potential near -0.5 V for different illumination intensities. The mean illumination intensities are I (W/cm²) = (a) 250, (b) 31, (c) 2.5, and (d) 0.31. The three pairs of horizontal lines denote shifted zeros for curves (b)-(d). The ordinate scales for curves (a)-(d) are different; peak heights (μA/cm²) are given for each curve.

FIG. 3. Decrease of photon-to-photocurrent conversion efficiency with increasing laser illumination intensity. Experimental points are obtained from the peak heights in Fig. 2, see Eq. (1), and the solid line is calculated using Eq. (4) with $L=10^{-6}$ cm, $\alpha_{o}=10^{3}$ cm⁻¹, $\eta=1$, and $I_s=0.1$ W/cm².
FIG. 1. Current versus potential for a copper electrode in 1M KOH electrolyte. Current spikes result from illumination with 5 second pulses of a 488 nm laser beam (~250 W/cm²).
FIG. 2. Dependence of the a.c. photocurrent density on potential near -0.5V for different illumination intensities. The mean illumination intensities are I (W/cm2) = (a) 250, (b) 31, (c) 2.5, and (d) 0.31. The three pairs of horizontal lines denote shifted zeros for curves (b)-(d). The ordinate scales for curves (a)-(d) are different; peak heights (μA/cm2) are given for each curve.
FIG. 3. Decrease of photon-to-photocurrent conversion efficiency with increasing laser illumination intensity. Experimental points are obtained from the peak heights in Fig. 2, see Eq. (1), and the solid line is calculated using Eq. (4) with $L=10^{-6}$ cm, $\alpha_0=10^3$ cm$^{-1}$, $\eta=1$, and $I_0=0.1$ W/cm2.

XBL 909-3159