Title
Higher-order differencing schemes for modeling intense laser-plasma interactions

Permalink
https://escholarship.org/uc/item/3sj0v063

Authors
Tarkenton, G.M.
Shadwick, B.A.
Schroeder, C.B.

Publication Date
2003-10-01
Higher-Order Differencing Schemes for Modeling Intense Laser-Plasma Interactions

G. M. TARKENTON, Institute for Advanced Physics, B. A. SHADWICK, Center for Beam Physics, LBNL and Institute for Advanced Physics, C. B. SCHROEDER, Center for Beam Physics, LBNL

Traditionally numerical solutions of PDEs use methods that are second-order in both space and time. This is both for historic reasons and because conservative differencing schemes have important properties especially for hydrodynamic modeling. With the aid of modern symbolic algebraic methods, designing higher-order, stable methods is practical. Higher-order methods are attractive as they offer the promise of increased accuracy compared to second-order methods for a given set of grid parameters. We discuss the stability, dispersion, and computation performance of various higher-order methods. We find that the use of higher-order methods for solving both the full-fluid and envelope models yield and significant performance gains (from reduced grid sizes and a larger stability basin) over the corresponding second-order solvers.

B. A. Shadwick
shadwick@mailaps.org
LBNL/IAP

Date submitted: 18 Jul 2003

Electronic form version 1.4