Title
DISSOCIATION CROSS SECTIONS FOR 0.5 - TO 1-MeV HeH IONS III Ho, He, Ng, AND Ne GASES

Permalink
https://escholarship.org/uc/item/3tv5j9sf

Authors
Stearns, J. Warren
Berkner, Klaus H.
Pyle, Robert V.
et al.

Publication Date
1971-05-01
Dissociation Cross Sections for 0.5- to 1-MeV HeH⁺ Ions in H₂, He, N₂, and Ne Gases

J. Warren Stearns, Klaus H. Berkner, Robert V. Pyle, Bruce P. Briegleb, and M. Laird Warren

May 25, 1971

AEC Contract No. W-7405-eng-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Dissociation Cross Sections for 0.5- to 1-MeV HeH⁺ Ions in H₂, He, N₂, and Ne Gases

J. Warren Stearns, Klaus H. Berkner, and Robert V. Fyle
University of California, Lawrence Radiation Laboratory
Berkeley, Calif. 94720

and

Bruce P. Briggles and M. Laird Warren
California State College at Hayward, Hayward, Calif. 94542

25 May 1971

Abstract

The cross sections for the dissociation modes

HeH⁺ → He0 + H⁺, He0 + H⁺, He⁺ + H⁺, He⁺ + H⁺, He⁺ + H⁺,

or He⁺⁺ + H⁺ are reported for the HeH⁺ energy range of 0.5 to 1 MeV in the target gases H₂, He, N₂, and Ne. Comparisons are made with available previous measurements.

I. Introduction

The HeH⁺ ion has been the subject of numerous investigations. Calculations of potential energy curves for electronic states and energy levels of vibrational states have been reported, as well as measurements of cross sections for the formation of the ion, electric-field dissociation of the high vibrational states, and the angular distribution of dissociation fragments. However, only a few results have been reported for the collisional dissociation cross sections for the HeH⁺ ion. From radial attenuation of the internal beam of a cyclotron Fremlin and Spiers deduced a destruction cross section in air in the MeV energy range. Wilson has reported destruction cross sections in H₂, He, and N₂ at 50, 100, and 560 keV and cross sections for the formation of He⁺, He0, and He⁺ + H at 560 kev. The only other work on collisional dissociation of which we are aware was by Barnett et al. who did not report cross sections but noted that at 100 keV the principal reaction was electron capture to form the unstable HeH molecule.

We have measured the cross sections for the various dissociation modes of 0.5- to 1 MeV HeH⁺ colliding with H₂, He, N₂, and Ne:

HeH⁺ → He0 + H⁺, He0 + H⁺, He⁺ + H⁺, He⁺ + H⁺, He⁺⁺ + H⁺, or

He⁺⁺ + H⁺. The lower energy limit was determined by the performance of our detector system and the upper limit by our accelerator, a 1 MeV van de Graaff.

II. Experimental Arrangement and Procedure

The HeH⁺ ions were formed in an rf ion source which was operated on a mixture of equal amounts (by pressure) of He and H₂ gas. The ions were accelerated electrostatically and momentum-analyzed magnetically before reaching the experimental assembly shown in Fig. 1. Collimators A and B defined the beam before it entered the differentially pumped, 10-cm-long gas cell. The emerging beam and its collision products passed through apertures C and D into the analysis chamber, where a magnet (11.5-cm diam with 2.5-cm gap) separated the products and directed them to an array of Si surface barrier detectors. The diameter of the H⁺ detector was 2.5 cm; the other detectors were 1-cm diam. The separation between the He⁺ and HeH⁺ components was so small (approximately 1 mm) that they were both recorded on one detector.

Apertures C and D, which were required to accomplish the differential pumping, were of sufficient diameters to assure that the limiting aperture of the detection system was determined by the detectors.
To make sure that all reaction products were detected, the detector size was varied for the more highly scattered hydrogen products. This was done by using the large detector in the H⁺ and H⁰ positions, and by partially masking the large detector. The 1-cm diam detector was found to be large enough to detect all neutral products, but the 2.5 cm diam detector was required in the H⁺ position. The position of the detectors was checked by simultaneously sweeping all beams across their detectors with the analysis magnet. As a check for negatively charged reaction products, the analysis magnet was reversed; no negatively charged particles were observed.

The pulses from each detector were amplified, shaped, and sorted by pulse height with single-channel analyzers (Fig. 2). The products from each of the dissociation modes were identified by comparing the corresponding single-channel analyzer outputs in coincidence. Pulses from the single-channel analyzers and the coincidence circuits were recorded with scalers.

The target gas was bled into the target cell through a remotely controlled needle valve and the pressure was monitored with a Data-metrics Barocel capacitance manometer. From calibration checks against a McLeod gauge and an oil manometer over a period of several years we judge the uncertainty in the absolute pressure measurements to be ±5%. The length of the gas cell was taken to be the distance between collimator B and the midpoint of the tubular exit collimator C.

The background pressure in the approximately 400-cm-long region ahead of collimator A was between 1 x 10⁻⁷ and 1 x 10⁻⁶ torr, depending upon the recent history of a Ti sublimation pump located just ahead of the gas cell. The pressure in the analysis region was steady at about 4 x 10⁻⁶ torr and in the differential region it was maintained at less than 1% of the target pressure. All of these pressures were measured with VGLA ion gauges.

The ion energy was determined from the accelerator voltage, which was measured with a generating voltmeter. This was calibrated by observing the γ rays from the nuclear resonance reactions F(p,γ)³⁵Cl and P(γ,γ)³⁵Cl at 340.5 and 872.5 keV when a Teflon target covered with a grounded tungsten mesh was bombarded with protons. The uncertainty in the ion energy is estimated to be ±3%.

At each energy the analyzer magnet was set to center the beams on the detectors, and the upper- and lower level discriminators on the single-channel analyzers were set with the aid of a pulse-height analyzer. Data was accumulated by counting the pulses from the beam and all its components while the gas cell was maintained at a constant pressure. Measurements were made at 10 to 20 different pressures, from background (approximately 5 x 10⁻⁶ torr) to that which was sufficient to attenuate the incident HeH⁺ beam by 10 to 15% (~ 1 mtorr in N₂ and Ne, and ~ 3 mtorr in H₂ and He).

III. ANALYSIS

The first step in the data analysis was to determine the total number of incident HeH⁺ ions for each set of data accumulated at a constant pressure. Since we had established that we were detecting all reaction products, the total number of incident HeH⁺ ions could be determined by summing the reaction product pairs and adding this sum to the HeH⁺ counts, which represented the part of the beam that had suffered no collisions. The sum of the reaction products could be determined in three independent ways: by summing He⁰ + H⁰ counts...
With the coincidence counts, the H^0 and H^+ counts, or the He^0, He^+ and He^{++} counts. A discrepancy in these three quantities alerted us to a loss of either hydrogen or helium particles or a failure in the coincidence circuits. Once the number of incident ions was determined, the scaler readings could be expressed as fractions of the incident beam.

From the attenuation of the HeH^+ fraction as a function of target thickness τ (the number density of the target gas multiplied by the target length) we obtained the total attenuation cross section σ_T. This was accomplished by a least-squares fit to the expression

$$F_{HeH^+}(\tau) = F_{HeH^+}(\tau = 0) \exp(\tau \sigma_n),$$

where $F_{HeH^+}(\tau = 0)$ is the fraction of the HeH^+ beam that survives collisions with slits and/or background gas. This fraction was approximately 0.995.

The change in the fraction of the beam registered in coincidence channel i is

$$\frac{dF_i}{d\tau} = F_{HeH^+}(\tau) \sigma_i + \sum_{j \neq i} F_j(\tau) \sigma_{ij} - F_i(\tau) \sum_{j \neq i} \sigma_{ij},$$

where σ_i is the cross section for the collision that leads to the pair of reaction products i and σ_{ij} is the cross section for the collision that changes pair j to pair i. The partial cross sections σ_i were obtained from a least-squares fit of the data to the second-order solution of Eq. (2). The cross sections σ_{ij}, which were required to correct for secondary collisions, were obtained from Refs. 11 to 17; in some cases it was necessary to extrapolate to the energies used in this experiment. Precise values for these cross sections were not required, since in the pressure range used in this experiment the inclusion of the second and third terms on the right side of Eq. (2) changes σ_i by less than 10% for most of the cross sections. For the $He^{++} - H^+$ cross section the correction was 15 to 20%.

IV. RESULTS AND DISCUSSION

Most of the measurements were made with $^4He^+H^+$ ions. These results are shown in Table I and in Figs. 3 through 6 for H_2, He, N_2, and Ne gases. In the table the partial cross sections are labeled by the reaction products of the dissociation mode; e.g., the column headed $He^0 + H^0$ lists the cross section for the dissociation mode $HeH^+ \rightarrow He^0 + H^0$. The column labeled σ_T lists the total cross section derived from the measured attenuation of the HeH^+ beam; Σ is the total-loss cross section obtained by summing the partial cross sections. The two should, of course, be equal, and the close agreement of these two numbers gives an internal consistency check of our results.

From the reproducibility of the results and the standard deviation of the least-squares fit we estimate the relative standard error in the cross sections to be ±5% except as indicated in Table I. In addition there is a possible systematic error, which we estimate as ±7%, due to uncertainties in the absolute pressure measurements and the effective length of the target. Hence for most of the entries in Table I the absolute uncertainty is about ±10%.

Also shown in Figs. 3 through 5 are the total-loss cross sections reported by Wilson. Wilson's partial cross sections for the production of He^+, $He^0 + H^+$, and $He^0 + H^0$ at 560 keV are compared with our
results in Table II. With the exception of the $\text{He}^0 + \text{H}^0$ cross section, the agreement is good.

The only other HeH^+ cross section measurement of which we are aware is the total-loss cross section reported by Fremlin and Spiers in the MeV range in air. Their value of $\sigma = 1 \times 10^{-14}$ cm2-MeV/atom is much larger than our measurement in N_2.

To see whether the isotopic composition affected the cross sections, we also measured the dissociation of $^3\text{HeD}^+$ in D_2 and N_2 at 795 keV. For this measurement five detectors were placed at positions appropriate for ^3He and D fragments. This measurement was complicated by the presence of D_2H^+ impurity in the beam which could not be entirely eliminated. A D_2 target was used because an H_2 target made the impurity component increase, apparently by migration of minute quantities of H_2 to the source. The D_2H^+ component was approximately 20% of the primary beam; we used the H_2^+ dissociation results of Ref. 19 to correct for the contribution of this component to our scaler counts. Because of these corrections the uncertainties assigned to the calculated cross sections are about twice those of the $^4\text{HeH}^+$ values in Table I. Within these uncertainties the cross sections for breakup of $^4\text{HeH}^+$ and $^3\text{HeH}^+$ ions are the same.

The cross sections reported here represent averages over an unknown population distribution of the vibrational states of the HeH^+ ion.

ACKNOWLEDGMENTS

The research on the HeH^+ ion was suggested by Dr. John R. Hiskes in connection with the problem of fuel injection into controlled thermonuclear fusion mirror devices. Vincent J. Honey was of great help in the set-up and maintenance of the experiment. Two of us (BPH and MLW) would like to thank Associated Western Universities, Inc. for financial support which permitted participation in this experiment.
FOOTNOTES AND REFERENCES

*Work performed under the auspices of the U. S. Atomic Energy Commission.

1. See, for example, the discussion and references in H. H. Michels, J. Chem. Phys. 44, 3834 (1966).
3. See, for example the discussion and references in the appendix of Ref. 4.
9. When the large detector was covered with a mask which reduced its area by 25%, the only observable effect was a 10% reduction in the H+ counts that were in coincidence with He++ . Since the counts did not quite reach a plateau at our largest available detector area equivalent to an acceptance angle of ±25 mrad measured from the entrance of the gas cell, there is the possibility that we may have missed some of the H+ from this reaction. Detailed measurements were made with N2 gas targets; H2 targets produced less scattering. We have somewhat arbitrarily increased the estimated uncertainty in the He++ + H+ cross section to +15% in all gases at our lowest energy. We demonstrated that no corrections were necessary at higher energies.
FIGURE LEGENDS

Fig. 1. Experimental arrangement. The beam-defining apertures A and B were 0.127 mm diam; aperture C was a tube 3.05 mm diam and 19 mm long; aperture D was 6 mm diam.

Fig. 2. Counting logic: Gates from the single-channel analyzers drove the scalers and the "and" circuits. Each "and" required simultaneous gates from two sources in order to drive its scaler.

Fig. 3. Dissociation cross sections for HeH+ in He. The cross sections shown are for interactions giving the products indicated at the right of each curve. The lines are shown only to connect the corresponding data points. The data of Wilson for σ_T are indicated by x and are connected with dashed lines.

Fig. 4. Dissociation cross sections for HeH+ in Ne. See legend for Fig. 3.

Fig. 5. Dissociation cross sections for HeH+ in N2. See legend for Fig. 3.

Fig. 6. Dissociation cross sections for HeH+ in Ne. See legend for Fig. 3.

Table I. Cross sections (10^{-17} cm\(^2\)/molecule) for dissociation of HeH+. Relative uncertainties ±\% except as indicated.

<table>
<thead>
<tr>
<th>Target Gas</th>
<th>Energy (keV)</th>
<th>σ_R (He + H)</th>
<th>σ_R (He + H(^+))</th>
<th>σ_R (He + H)</th>
<th>σ_R (He + H(^+))</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>920</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>He</td>
<td>1045</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>H(_2)</td>
<td>920</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>H(_2)</td>
<td>1045</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>He</td>
<td>920</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>He</td>
<td>1045</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>H(_2)</td>
<td>920</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>H(_2)</td>
<td>1045</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>He</td>
<td>920</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>He</td>
<td>1045</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>H(_2)</td>
<td>920</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>H(_2)</td>
<td>1045</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>He</td>
<td>920</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>He</td>
<td>1045</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>H(_2)</td>
<td>920</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>H(_2)</td>
<td>1045</td>
<td>2.10</td>
<td>5.1</td>
<td>6.9</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Systematic uncertainties of ±\% not included.

-12-
Table II. A comparison of the results of Wilson2 at 560 keV with the appropriate sum of cross sections from the present work. The values shown, in units of 10^{-17} cm2, are from a graphical interpolation of our data. The Wilson results have an uncertainty of ±20%.

<table>
<thead>
<tr>
<th>Target</th>
<th>H_2</th>
<th>He</th>
<th>N_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>He+</td>
<td>He0 + H+</td>
<td>He0 + H0</td>
</tr>
<tr>
<td>Wilson</td>
<td>9.1</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Present work</td>
<td>9.7</td>
<td>1.8</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Fig. 1
Fig. 2

Detectors Pre-amplifiers Linear amplifiers Single channel analyzers "Ands" Scalers

H^o He^o He^o+H^o
He^+ HeH^+
He^++
H^+

Gate

Fig. 3

Wilson σ_T HeH^+ in H_2

σ_T He^o+H^+ He^++H^+ He^o+H^o He^+H^+ He^o+H^+ He^++H^+

Wilson σ_T

10^{15} 10^{14} 10^{13} 10^{12} 10^{11} 10^{10} 10^9

HeH^+ energy (keV) 0 400 800 1200

Fig. 3
Fig. 4

HeH$^+$ in He

Fig. 5

HeH$^+$ in N$_2$
Fig. 6
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.