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Abstract Understanding the population structure and

evolutionary history of the eastern Pacific seahorse Hip-

pocampus ingens is critical for the effective management

of this threatened species. Life history characteristics of

H. ingens (site fidelity and brooding of young) may limit

gene flow and lead to population differentiation. A recent

study analyzing conserved fragments of the mitochondrial

cyt b and control region found no population structure. We

re-assess this conclusion with a phylogeographic analysis

of relationships among 115 individuals of H. ingens over a

broader geographic range (San Diego Bay in California,

Gulf of California, Central America, Ecuador, and Peru)

based on a more variable 428 base pair fragment of

the control region. This expanded analysis affirms low

overall nucleotide diversity relative to other seahorses

(hp = 0.004), and shows evidence of a recent bottleneck

and population expansion since the middle Pleistocene.

AMOVA analysis shows moderate overall population

structure (UST = 0.10, P val = 0.00), and pairwise UST

estimates indicate structure between the Gulf of California

and all Pacific coast localities. Knowledge of population

structure in H. ingens may improve conservation efforts by

identifying evolutionarily important management units,

and could determine source regions in the continuing trade

of seahorses for traditional Chinese medicine. The level of

genetic divergence observed between the Gulf of Califor-

nia and all other localities sampled may distinguish the

Gulf as a separate management unit. Additional phyloge-

ographic research with more quickly evolving genetic

markers and targeted sampling at the mouth of the Gulf of

California is warranted to inform strategies for conserva-

tion of this threatened seahorse.

Keywords Control region � Hippocampus ingens �
FST � UST � Phylogeography � Eastern Pacific �
Gulf of California

Introduction

Understanding the process by which marine populations

diverge or remain homogenous presents a major challenge

in evolutionary biology. The resulting patterns of genetic

variation can have conservation implications by informing

us about the past and present evolutionary dynamics of a

species. Population genetic statistics are useful in testing

hypotheses about the distribution of alleles within and

between populations, and can therefore be used to interpret

movement of individuals (Bohonak 1999). An under-

standing of dispersal patterns can identify evolutionary

source populations of high conservation priority, while

maintenance of overall intraspecific genetic variation is

important for supporting adaptive response to global

change (Moritz 1994). Measures of population structure
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can uncover these patterns and identify demographically

independent populations that should be managed as sepa-

rate units (Moritz 1994; Palsbøll et al. 2007). Population

structure develops when genetic drift and local adaptation

are strong enough forces to counteract gene flow. In

the marine environment, the development of population

structure is influenced by barriers to dispersal such as

ocean currents, historical vicariance, geographic distance

coupled with differences in dispersal ability, and habitat

discontinuity (Dawson et al. 2002; Doherty et al. 1995;

Hellberg 1996; Johnson and Black 1995).

The focal taxon of this study, Hippocampus ingens, lives

exclusively in sub-tidal habitat of the eastern Pacific. The

common ancestor of both H. ingens and its central Pacific

sister species, H. fisheri, diverged from Atlantic H. reidi at

the rise of the Isthmus of Panama during the early Pliocene

(4–5 mya) (Teske et al. 2007; Jacobs et al. 2004). The later

divergence of H. ingens and H. fisheri 2.5–3 mya (Teske

et al. 2007) left H. ingens the only seahorse found in the

eastern Pacific. H. ingens’ contemporary distribution

includes a putatively transient population in San Diego,

California (Hubbs and Hilton 1963; Jones et al. 1988), and

otherwise extends from a northern limit of lower Pacific

Baja to a southern limit of Peru (Lourie et al. 2004). The

only known oceanic island population is found in the

Galapagos Islands (Lourie et al. 2004). H. ingens’ lives in a

diversity of tropical and subtropical coastal habitats found

within the Eastern Pacific; mangrove forests, seagrass beds,

rocky reefs, and coral reefs (Lourie et al. 2004). Analysis

of the overall taxonomic configuration of this region yields

five major biogeographic provinces; California (coastline

north of the Gulf of California), the Gulf of California

(GOC), the Panamic province, the oceanic islands prov-

ince, and the Peruvian province (Muss et al. 2001; Rob-

ertson and Cramer 2009; Spalding et al. 2007). There has

been disagreement in the way in which the Pacific coastline

south of the GOC should be divided. Some have argued

that there are significant differences north and south of the

Central American Gap, a 1,200 km long span of sandy and

muddy coastal habitat, such that the Panamic province

which we use in this study should be divided into the

Mexican Province north of the gap, and the Panamic

province south of the gap (Robertson and Cramer 2009;

Hastings 2000). Thus, the regional definitions used for this

study are not always agreed upon, but are strongly sup-

ported by recent studies (Robertson and Cramer 2009).

The majority of breaks in species boundaries which

define these provinces reflect differences in physical and

ecological conditions rather than hard barriers to dispersal

(Jacobs et al. 2004; Robertson and Cramer 2009). This is

because dynamic oceanographic processes facilitate

sporadic dispersal (Jacobs et al. 2004). This pattern is

evidenced by the lack of genetic differentiation in wide-

ranging reef fish species across thousands of kilometers of

the mainland coast (Muss et al. 2001; Craig et al. 2006). In

contrast to this pattern of genetic connectivity in wide

ranging species along the mainland coast, genetic differ-

entiation has been found between the mainland coast and

oceanic islands east of Central America (Muss et al. 2001).

H. ingens is not found on these oceanic islands, so is

unaffected by this barrier. The Gulf represents a putative

dispersal barrier which remains unresolved. H. ingens is

found frequently within the GOC (Thomson et al. 2000),

making the investigation of this barrier an important aspect

in characterizing demographic and phylogeographic pat-

terns in H. ingens.

The GOC displays high levels of endemism (17% of

continental shelf fish) and genetic differentiation in some

species (Bernardi et al. 2003; Thomson et al. 2000; Walker

1960). Genetic studies assessing dispersal barriers sepa-

rating the GOC have been limited. Most studies of in-shore

fishes have focused on endemics and species with a range

extending north of the GOC. These studies have revealed

population structure in only some of the species investi-

gated. Furthermore, only the minority of studies have sited

barriers with potential to influence H. ingens, while most

have attributed population structure to past vicariance only

influential to species with more temperate distributions

than H. ingens (Bernardi et al. 2003; Riginos 2005;

Sandoval-Castillo et al. 2004), or to ecological barriers

(Pfeiler et al. 2008) only influential to species with more

specialized habitat needs than H. ingens. Thus, the only

published barriers with potential to influence H. ingens

include geographic distance coupled with low dispersal

ability (Craig et al. 2006; Riginos and Nachman 2001), and

contemporary oceanographic barriers (Bernardi et al. 2003;

Selkoe et al. 2007; Terry et al. 2000). These potential

oceanographic barriers are caused by the formation of two

gyres in the upper and central GOC regions (Alvarez-

Borrego 2002; Beier 1997; Lavin et al. 1997), a persistent

oceanic front in the cape of Baja region, formed by the

convergence of the California Current Water, Tropical

Surface Water, and the GOC Water (Castro et al. 2006),

and inflow of surface waters during summer months (Lavin

and Marinone 2003). Despite the existence of these

potential barriers, a study of gastropod distribution data

shows that the majority of gastropods found in the region

are unaffected by a barrier at the mouth of the GOC

(Simison 2006). This leaves the question of a contemporary

barrier to dispersal at the mouth of the GOC unresolved.

Here we present the phylogeography of a fish with a

distribution extending both north and south from the GOC.

Only a few phylogeographic studies that present molecular

data have been conducted in fishes with a similar range,

even though 73% of GOC fishes have this distribution.

Furthermore, studies of wide ranging species have been
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conducted exclusively in taxa with high dispersal potential.

They have revealed structure only between offshore islands

and the mainland coastline (Craig et al. 2006; Muss et al.

2001). H. ingens is unique in that it presumably has much

lower dispersal potential than species previously examined,

which predicts a higher degree of population structure. Site

fidelity and brooding of young suggest relatively restricted

dispersal capabilities (Foster and Vincent 2004). Previous

studies within Hippocampus spp. (Lourie et al. 2005;

Teske et al. 2003) are largely consistent with this predic-

tion of population structure. However, results from a pre-

vious study in H. ingens (Sanders et al. 2008) detected no

population structure among 4 localities along the Pacific

coast based on two mitochondrial gene fragments com-

pared among 19 and 13 specimens separately (Sanders

et al. 2008). The limited scale of the previous study merits

reassessment of population structure with a more compre-

hensive sample. Here, we present mitochondrial phyloge-

ographic analyses in H. ingens from a larger set of

specimens more densely sampled across H. ingens’ geo-

graphic range.

H. ingens is not only a representative of a geographic

distribution understudied within the framework of eastern

Pacific phylogeographic patterns, but it is also a threatened

fish of ecological, economic and cultural value. More than

20 million seahorses are sold each year for use in tradi-

tional Chinese medicine (TCM), for aquarium exhibits, and

as curiosities (Foster and Vincent 2005). This high demand

threatens the genus Hippocampus globally, which were

placed on Appendix II of the Convention on International

Trade in Endangered Species of Wild Fauna and Flora in

2004 (CITES 2004). During the process of listing this

genus, H. ingens emerged as one of the six most impacted

seahorse species (CITES 2002). Furthermore, Mexico and

Peru are classified as major seahorse exporters with more

than 1 dry ton sold annually (Baum and Vincent 2005). To

manage and conserve seahorse populations, as required by

CITES, resource managers need basic information such as

species distributions, population size and structure, and

genetic indices of geographic partitioning that could help

define management units (Moritz 1994; Palsbøll et al.

2007). Additionally, phylogeographic analyses may allow

preliminary assessments of the origin of specimens con-

fiscated in light of the trade regulations mandated by

CITES in 2004 (Lourie et al. 2004).

The objectives of the present study are to (i) examine

demographic and phylogeographic patterns of H. ingens

sampled from multiple localities within four biogeographic

provinces (ii) interpret these demographic and phylogeo-

graphic findings considering likely variables of past and

present geology, oceanography, and ecology and (iii) elu-

cidate conservation implications. We hypothesize that

geographic genetic structure in H. ingens will correspond

with oceanographic barriers that have caused biogeo-

graphic and phylogeographic breaks in other eastern

Pacific species (e.g. Bernardi et al. 2003; Selkoe et al.

2007; Terry et al. 2000; Jacobs et al. 2004; Muss et al.

2001; Robertson and Cramer 2009). We further hypothe-

size that the barriers most likely to have influenced

H. ingens’ phylogeography include historical vicariance

and oceanographic barriers between the GOC and the

Pacific coast, and the combination of ocean currents and

geographic distance between the extreme northern and

southern limits of H. ingens’ range; San Diego, California

and Peru.

Materials and methods

Localities sampled

A total of 115 H. ingens individuals were sampled from 13

localities: San Diego, California (n = 18); Loreto, Mexico

(n = 1); Guaymas, Mexico (n = 9); Mazatlan, Mexico

(n = 6); Salina Cruz, Mexico (n = 5); Buena Vista, Gua-

temala (n = 18); Puerto San Jose, Guatemala (n = 12);

Guayaquil, Ecuador (n = 6); Manta, Ecuador (n = 14);

Salango, Ecuador (n = 3); Sechura, Peru (n = 3); Chi-

clayo, Peru (n = 4); Pisco, Peru (n = 4). Another 12

samples of unknown port of entry are from within the

political boundaries of Peru. DNA sequence data from 56

of these samples were donated without corresponding tis-

sues via Dr. K. Koepfli, Dept. of Ecology and Evolutionary

Biology, UCLA. Additional Genomic DNA extractions

were obtained via Dr. Stephen Palumbi, Dept. of Biology,

Stanford University, in collaboration with the Redpath

Museum, McGill University, and Project Seahorse. The

remaining 29 H. ingens samples were obtained as whole

specimens in collaboration with the Birch Aquarium at

Scripps Institution of Oceanography, the Ecuador Dept of

Fisheries, and the U.S. Fish and Wildlife Service.

DNA extraction, amplification, and sequencing

DNA was extracted from a 3 9 3 mm piece of skin and

muscle tissue using the Qiagen DNAeasyTM tissue extrac-

tion protocol and quantified using a Nanodrop nucleic acid

calibrator. A 428 basepair (bp) fragment spanning the last

70 bp of mitochondrial tRNA-Pro and the first 359 bp of

the control region was sequenced for all individuals. This

region is designated as bp 15,580–16,008 in the annotated

H. kuda mitochondrial genome available on Genbank (NC-

010272.1, Kawahara et al. 2008). The target region was

amplified in a 25 ll polymerase chain reaction (PCR) using

Taq polymerase (New England Biolabs Inc.) at the recom-

mended final concentration of 25 units per ml. A PTC-100

Conserv Genet (2010) 11:1989–2000 1991
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Thermocycler was used under the following PCR condi-

tions: 94�C for 2 min 30 s; 35 cycles of 94�C for 30 s,

50�C for 45 s, and 72�C for 1 min 15 s; and then a final

extension step of 72�C for 5 min. We used the following

primers: forward HCBF1009 50-TGAATTGGGGGAA-

TACCTGT-30 and reverse HCRLrv 50-AAGCGTCG

ATGAAAGTGTG-30 designed for this study. PCR prod-

ucts were cleaned using shrimp alkaline phosphatase and

exonucleotide I (USB Corp., Cleveland, OH, USA). Cycle

sequencing was performed in both directions with BigDye

TerminatorTM (vers. 3.0, Applied Biosystems Inc.) fol-

lowing the manufacturer’s protocol scaled to a final volume

of 10 ll, using the following reaction mix: 5.3 ll of H2O,

1.5 ll of BigDye TerminatorTM buffer (5X), 0.2 ll of

BigDye TerminatorTM (3:1 dilution), 0.2 ll primer (10

uM), 5.0 ll PCR product under the following PCR condi-

tions (PTC-100 Thermocycler): 24 cycles of 96�C for 10 s,

50�C for 5 s, and 60�C for 4 min. Sequencing reactions

were precipitated in Sephadex gel filtration spin columns

(Sigma-Aldrich, Inc.), dried in a speed-vacuum for 30 min

on medium heat, re-suspended in 10 ll formamide, and

loaded on an ABI Prism 3730 DNA sequencer (Applied

Biosystems Inc.). Both strands were sequenced in all

samples. Sequences were assembled and edited using

Sequencher (Gene Codes Corp.) and aligned using the

Clustal-W algorithm in BioEdit (Hall 1999). Sequences are

available on Genbank, accession numbers GQ386655–

GQ386769.

Sequence variation

The number of unique haplotypes, segregating sites, pair-

wise average nucleotide diversity (hp) (Nei and Li 1979),

segregating sites diversity (hs) (Watterson 1975), and

haplotype diversity (Hd) were calculated using DnaSP

(vers. 4.1, Rozas et al. 2003). Deviation from neutrality

expectations was tested with Tajima’s D (Tajima 1989) and

Fu’s Fs statistic (Fu 1997), calculated using DnaSP (vers.

4.1, Rozas et al. 2003) and Arlequin (vers. 3.0, Excoffier

et al. 2005). Tajima’s test is the most conservative test of

neutrality, while Fu’s Fs is the most powerful test for

population growth (Ramos-Onsins and Rozas 2002). Fu

and Li’s D* and F* statistics (Fu and Li 1993) were also

calculated in DnaSP (vers. 4.1, Rozas et al. 2003) and

compared with Fu’s Fs statistic (Fu 1997) to test for pop-

ulation expansion. In conjunction, these statistics are able

to distinguish between demographic effects and selection

which are the two major causes of deviation from mutation/

drift equilibrium.

A signal of demographic non-equilibrium was further

tested using the coalescence-based method implemented

in FLUCTUATE (vers. 1.4, Kuhner et al. 1998) to jointly

estimate regionally specific exponential growth rate (g)

and nucleotide diversity (h). All runs were completed

including only the in-group sequences, for the total data

set and for each regional definition with the following

model parameters; random starting trees, empirical

nucleotide frequencies, initial g value of 0, starting h
value estimated with Watterson’s (1975) approach, overall

transition-transversion bias ti/tv = 2.7545 determined in

MrModeltest (vers. 2.3, Nylander et al. 2004) under the

best fit model, HKY?I?G. The search strategy imple-

mented is as follows; 10 short chains of 4,000 steps and 4

long chains of 400,000 steps, trees sampled every 20

steps. Analyses were repeated five times per data partition

to ensure stability of the estimates; the mean values are

reported. Significance was assessed using a two-tailed chi-

square likelihood test.

For regions with significant results from the coalescence

based test of growth, we estimated the time of coalescence

as the time at which effective population size was 1% of

the present day effective population size, following Wares

and Cunningham (2001). The time at which the population

was 1% of its current size is given as ln(0.01)/lg, a cal-

culation derived from the equation Nt = he-(gl)t, where Nt

is the population size at time t, h is the nucleotide diversity

(=2 Nl), l is the mutation rate per site for mtDNA, and g is

the estimated exponential growth rate (Wares and Cunn-

ingham 2001). Mutation rate l was estimated at

6.3 9 10-9 per site based on a generation time of

approximately 1 year (Curtis and Vincent 2006), and time

since divergence from outgroup H. kuda of 5 mya as cal-

ibrated in Teske et al. (2007).

Phylogenetic analysis

The minimum spanning haplotype network was built using

a parsimony based median-joining method in Network

(vers. 4.5, Bandelt et al. 1999). This method combines

multiple equally parsimonious minimum-spanning trees

into a single minimum-spanning network with the addition

of a few consensus sequences (median vectors) of three

mutually close sequences to improve visualization (Bandelt

et al. 1999).

Phylogenetic relationships among sequences were

assessed using the maximum parsimony method as

implemented in PAUP* (vers. 4.0, Swofford 2002), and

Bayesian methods as implemented in MrBayes (vers. 3.1,

Huelsenbeck and Ronquist 2001; Ronquist and Huelsen-

beck 2003). The HKY?I?G model of molecular evolution

was applied in Bayesian analyses, which was the best fit

model selected by a hierarchical likelihood ratio test as

implemented in MrModeltest (vers. 2.3, Nylander et al.

2004). A consensus tree was constructed from 15 million

generations sampled every 1,000 trees after stationarity

was observed. A burn in of 12,000 generations was
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excluded from the consensus tree. The corresponding

control-region sequence from the H. kuda mitochondrial

genome (Genbank NC-010272.1) was used as the outgroup

(Kawahara et al. 2008; Teske et al. 2004).

Population subdivision

Biogeographic provinces define regions that have been

influenced by a unique set of evolutionary and ecological

forces. However, they do not necessarily correlate well

with intraspecific phylogeographic boundaries in eastern

Pacific marine taxa (Jacobs et al. 2004). For this reason, we

conducted analyses at multiple scales with attention to

evolutionary processes that have operated in other species

of similar contemporary and historical range. Population-

level geographic definitions were used in descriptive sta-

tistics, neutrality statistics, Analysis of Molecular Variance

(AMOVA), estimates of UST (analogous to FST), and a

Mantel test for ‘isolation by distance’ (IBD). Regional-

level geographic definitions were used in AMOVA,

descriptive statistics, neutrality statistics, estimates of UST,

growth rate (g), and time of coalescence (Tc). For regional

analyses we pooled samples into five groupings (Califor-

nia, GOC, Central America, Ecuador, and Peru) on the

basis of recognized biogeographic provinces (Hastings

2000; Robertson and Cramer 2009). Both the Central

American and Ecuador localities fall into the same exten-

sive Panamic biogeographic province defined by Robertson

and Cramer (2009). However, we maintain separate

regional definitions to improve geographic resolution

because there has been discussion regarding whether this

region should be considered two provinces divided north

and south of the Central American Gap (e.g. Hastings

2000; Robertson and Cramer 2009).

To test for population structure among localities,

an AMOVA was performed using Arlequin (vers. 3.0,

Excoffier et al. 2005). Overall UST and pairwise UST values

at both the population and regional scales were calculated.

The FST analog UST was used to estimate population

structure in this study to take nucleotide differences

between haplotypes of sequence data into account

(Excoffier et al. 1992). Significance of these values was

tested using a non-parametric permutation approach

described in Excoffier et al. (1992).

A pattern of IBD was tested with a Mantel test using

GENEPOP (vers. 3.0, Raymond and Rousset 1995). For

this test, four populations were pooled to increase sample

size; Loreto and Guaymas, Mexico (separated by 183 km),

Buena Vista and Puerto San Jose, Guatemala (separated

by 19 km); Manta and Salango, Ecuador (separated by

57 km); and Sechura and Chiclayo, Peru (separated by

131 km). Matrices were calculated for both geographic and

genetic distances. The logarithmic distance matrix was

based on geographic distance in km measured in Google

Earth (vers. 4.3, Google 2008) using the ruler function with

shortest line defined by eye, avoiding land. The genetic

distance was defined by pairwise UST generated in Arle-

quin (vers. 3.0, Excoffier et al. 2005). The analysis was

repeated excluding the GOC to compare with the overall

results.

Results

Sequence variation and estimates of demographic

history

The 115 H. ingens mitochondrial sequences, 428 bp in

length, contained 23 polymorphic sites defining 28 unique

H. ingens haplotypes (Table 1), with 1–9 base differences

between sequences. Nucleotide diversity hp, and segre-

gating site hs diversity estimates were about half that found

in several other species of seahorses (e.g. hp = 0.016 in

H. kuda; hp = 0.013 in H. spinosissimus, Lourie et al.

2005) (Table 1), and consistent with estimates of diversity

in cyt b found in this species by Sanders et al. (2008). A

single insertion was detected at basepair number 207 of this

dataset which falls within the control region at basepair

15,787 in the annotated H. kuda mitochondrial genome

available on Genbank (NC-010272.1, Kawahara et al.

2008). This insertion defines one unique haplotype (named

HapA207) with a count of just four.

Tajima’s D (Tajima 1989) was significantly different

from neutral expectations for the total data set (Table 1).

Fu and Li’s D* and F* statistics (Fu and Li 1993) did

not reject neutral expectations while Fu’s Fs (Fu 1997)

was significantly negative and rejected neutral expecta-

tions in four population definitions; Buena Vista and

Puerto San Jose, Manta and Salango, Guayaquil, and

unknown Peru, and in three regional definitions; Central

America, Ecuador, and Peru, and in the overall dataset

(Table 1).

Results from the coalescent based analysis using

FLUCTUATE (vers. 1.4, Kuhner et al. 1998) suggest a

high growth rate for the entire geographic range sampled

(Table 2). At a regional scale, non-significant growth

estimates were observed in California, and the GOC, and

high estimates of growth with significant probability values

were found in Central America, Ecuador and Peru

(Table 2). Time since coalesence approximates the lower

limit in timing of population growth. All four analyses that

produced significant results (Central America, Ecuador,

Peru, and the overall dataset) indicated a coalescent time

during the middle Pleistocene (0.25–0.54 mya) (Table 2).
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Phylogenetic analysis

The minimum spanning network demonstrates that the

most common haplotype (A) was found in 47 sequences

representing all geographic regions (Fig. 1). Median vec-

tors were calculated and are shown in this network as solid

squares at the intersection of two separate network bran-

ches. Most haplotypes were separated by a single mutation,

with no clear assortment of haplotypes based on geo-

graphic locality. The two most distant haplotypes were

found in the GOC, separated from one another by six

polymorphic sites, and a minimum of three polymorphic

sites from closest haplotype C. There were four common

haplotypes with total counts ranging from 9 to 47. All San

Diego, California individuals sampled (n = 18) shared

three haplotypes; A, A207 and B (Fig. 1).

Both parsimony and Bayesian phylogenetic methods

recovered a star phylogeny with minimal topology.

Bayesian analyses produced trees with an average likeli-

hood score of -ln L = 895.40. The resulting consensus

tree was not included as a figure in this manuscript because

of the simple topology and the low posterior probability

Table 1 Genetic diversity indices and sample sizes (n) of the California, Gulf of California, Central America, Ecuador and Peru regional

populations, and the total combined data set

Sampling locality n S H Hd hp hs Tajima’s D Fu’s Fs Fu and Li’s D* Fu and Li’s F*

San Diego, California 18 1 3 0.471 0.0011 0.0007 1.17 1.22 0.67 0.91

Gulf of California 10 9 5 0.756 0.0062 0.0074 -0.74 0.03 -0.59 -0.71

Central America

Mazatlan 6 6 4 0.800 0.0047 0.0061 -1.37 -0.50 -1.40 -1.49

Salina Cruz 5 2 2 0.400 0.0020 0.0024 -0.97 1.04 -0.97 -0.95

BuenaVista and Puerto San Jose 30 13 17 0.897 0.0058 0.0083 -1.01 -10.69*** -0.27 -0.59

Central America (pooled) 41 15 18 0.834 0.0052 0.0089 -1.33 -11.04*** -1.05 -1.34

Ecuador

Manta and Salango 17 4 5 0.684 0.0020 0.0028 -0.89 -1.79* -0.67 -0.84

Guayaquil 6 3 4 0.800 0.0057 0.0031 -0.45 -1.45* -0.37 -0.41

Ecuador (pooled) 23 6 7 0.704 0.0023 0.0039 -1.24 -3.38*** -0.95 -1.20

Peru

Chiclayo and Sechura 7 2 3 0.667 0.0018 0.0019 -0.27 -0.44 -0.06 -0.11

Pisco 4 3 3 0.833 0.0035 0.0038 -0.75 -0.29 -0.75 -0.67

Unknown 12 8 8 0.894 0.0046 0.0062 -1.05 -4.10*** -1.01 -1.16

Peru (pooled) 23 8 9 0.798 0.0034 0.0051 -1.09 -4.33*** -1.02 -1.21

Overall 115 23 28 0.782 0.0039 0.0101 -1.79* -23.62*** -1.93 -2.25

Populations were grouped according to region of origin (italics entries) to gain statistical strength. Indices include number of segregating sites

(S); number of haplotypes (H); haplotype diversity (Hd); nucleotide diversity (hp); and segregating site diversity (hs), neutrality statistics

Tajima’s D, Fu’s Fs and Fu and Li’s F* and D* statistics. Neutrality tests are non-significant unless bold italics and marked

* Represents significance P \ 0.05, ** represents significance P \ 0.02, *** represents significance P \ 0.01

Table 2 Estimates of theta with variable growth (hv), standard deviation (SD of hv), effective population size (Ne) expressed in millions of

individuals, growth factor (g), standard deviation (SD of g), and time of coalescence (Tc) expressed in ‘‘years ago’’

Region hv SD of hv g SD of g Tc (-SD–?SD)

San Diego, California 0.0011 ±0.0004 358.14 ±871.27 Not estimated

Gulf of California 0.0156 ±0.0057 236.81 ±140.87 Not estimated

Central America 0.0745 ±0.0206 1351.26 ±237.96 541,135 (460,109–656,797)

Ecuador 0.0248 ±0.0113 2256.17 ±778.89 324,095 (240,921–494,973)

Peru 0.0655 ±0.0148 2899.93 ±330.03 252,148 (226,384–284,529)

Overall 0.1295 ±0.0099 1913.33 ±83.45 382,166 (366,193–399,596)

Estimates reported are the mean value of repeated coalescence based analyses using FLUCTUATE (vers. 1.4.) with mutation rate per site (l) set

to 6.3 9 10-9, and populations grouped according to region of origin. Estimate of Tc in parentheses indicates the range of time estimates

including standard deviation of growth factor. Significant growth factor (g) estimates with a probability value below 0.05 shown in bold italics

1994 Conserv Genet (2010) 11:1989–2000

123



node support values recovered. However, it is worth noting

that two haplotypes sampled exclusively from within the

GOC (F and H) formed a sub-clade with posterior proba-

bility node support of 0.88 nested within the poorly sup-

ported clade (posterior probability 0.67) comprised of

haplotypes C, P, F, and H.

Population subdivision

The overall UST value 0.109 revealed statistically signifi-

cant (P value = 0.00) moderate genetic differentiation

between geographic regions (Table 3). An AMOVA anal-

ysis excluding the GOC revealed low structure; UST was

calculated at 0.023 with a probability value of 0.03

(Table 3). Almost 90% of the control region genetic vari-

ation resided within populations rather than among the five

regions (Table 3). The Central American regional defini-

tion spans the largest distance (2,195 km), from Mazatlan

to Panama (Table 4). This regional grouping is justified by

UST calculations that indicated much greater differentiation

north of Mazatlan than south of Mazatlan. UST between

Mazatlan and the GOC was moderate (Table 4), though

marginally significant (probability value = 0.05, value not

shown in table), while the overall UST among the 3 Central

American populations was non-significant (Table 3). Pair-

wise estimates of genetic structure produced high and

significant UST values, ranging from 0.21 to 0.45 between

the GOC and all other regions (Table 5). San Diego, Cal-

ifornia had statistically significant but low pairwise UST

values of 0.10 and 0.04 when compared to Ecuador and

Central America, respectively. We found no evidence of

population structure south of the GOC.

The Mantel test performed in GENEPOP (vers. 3.0,

Raymond and Rousset 1995) with the genetic and geo-

graphic distances displayed in Table 4 show a slight but

non-significant pattern of IBD, with a one-tailed proba-

bility value of 0.91 (Slatkin 1993). When analysis was

repeated excluding the GOC, there was no pattern of IBD,

with a one-tailed probability value of 0.74.

Discussion

Demographic history

Our results are consistent with a dynamic demographic

history for the H. ingens lineage. Evidence of a recent

population bottleneck in H. ingens include deviation from

neutrality expectations, FLUCTUATE estimates of posi-

tive population growth, and a star phylogeny. Significant

deviation from neutrality expectations in Tajima’s and Fu’s

statistics rejected a neutral model with constant population

size. Negative values of these statistics are signatures of

population expansion or purifying selection (Tajima 1989),

specifically in the southern portion of H. ingens’ range

(Table 1). Non-significant Fu and Li’s D* and F* statistics

point to demographic expansion rather than selection (Fu

1997). Inferences drawn from these neutrality statistics

were consistent with FLUCTUATE results and provide

evidence of population expansion within the last 0.25–

0.54 mya (Table 2). We hypothesize that H. ingens
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experienced a severe bottleneck (where effective popula-

tion size dropped below 1% of its current size) subsequent

to its divergence from H. fisheri during the middle Pleis-

tocene. This bottleneck may have been associated with a

number of dynamic processes that occurred in the eastern

Pacific during the Pleistocene. This epoch is characterized

by the re-establishment of an upwelling regime, significant

sea level flux, increasingly rocky shorelines, multiple gla-

ciation events, and finally a general increase in sea level at

the end of the epoch (Jacobs et al. 2004). A more detailed

reconstruction of historical population dynamics awaits

increased sampling in the northern portion of H. ingens’

range.

Standard diversity statistics revealed interesting dynam-

ics at the northern end of H. ingens’ range. Comparison of

regional sequence variation shows that San Diego, Califor-

nia had extremely low relative diversity (Table 1) suggesting

a recent founder event. This evidence supports the hypoth-

esis that H. ingens populations are mainly transient north of

the Tropical Eastern Pacific (TEP). Warming of coastal

water during El Niño events (Robertson and Cramer 2009)

can temporarily extend the range of tropical endemics, and

may play a role in the periodic H. ingens colonization of San

Diego Bay (Hubbs and Hilton 1963; Jones et al. 1988). A

Table 3 Analysis of Molecular Variance (AMOVA) calculated in Arlequin (vers. 3.0)

Hierarchical level Variance % Variation UST P

Among all groups 0.13 11.47 0.115 0.0000

Among all groups excluding Gulf of California 0.02 2.33 0.023 0.0303

Among sampling sites within all groups 2.59 -1.83 -0.021 0.7908

Among sampling sites within Central America 1.06 [100 -0.041 0.8446

Among sampling sites within Ecuador 0.36 [100 0.000 0.5698

Among sampling sites within Peru 0.41 [100 0.000 0.7278

Within sampling sites (overall) 0.79 89.11 0.109 0.0000

Probability value displayed in parentheses; calculated with 1,023 permutations with a random value less than or equal to observed value for UST,;

significant UST values displayed in bold. Populations were grouped according to region of origin to gain statistical strength. Groups defined with

sampled sites as follows with population size in parentheses: California = San Diego Bay, USA (18); Gulf of California = Loreto and Guaymas,

Mexico (10); Central America = Mazatlan, Mexico (6), Salina Cruz, Mexico (5) and Buena Vista/Puerto San Jose, Guatemala (30); Ecua-

dor = Guayaquil, Ecuador (6) and Manta/Salango, Ecuador (17); Peru = Sechura/Chiclayo, Peru (7) and Pisco/unknown origins, Peru (16)

Table 4 Pairwise comparisons of genetic structure (UST) among all sampled sites (defined by closest port of entry) below the diagonal;
significant UST values (UST [ 0) with a probability value below 0.05 show in bold

Sampling locality 1 2 3 4 5 6 7 8 9

1. San Diego, California 0 878 1494 2911 3400 5204 5091 4792 4649

2. Gulf of California 0.4458 0 618 2052 2552 4340 4234 3944 3890

3. Mazatlan 0.0697 0.1682 0 1443 1948 3724 3622 3336 3346

4. Salina Cruz 0.0901 0.1338 -0.0990 0 510 2293 2181 1893 2031

5. Guatemala 0.0477 0.2098 -0.0414 -0.0299 0 1819 1692 1392 1568

6. Manta and Salango 0.1745 0.3554 0.0497 0.0084 0.0217 0 210 527 1507

7. Guayaquil -0.0148 0.2630 -0.1077 0.0000 -0.0610 0.0970 0 336 1298

8. Chiclayo and Sechura -0.0343 0.3418 -0.0244 0.0615 -0.0434 0.0337 -0.0792 0 1053

9. Pisco and unknown 0.0546 0.3282 0.0024 0.0298 0.0066 0.0283 -0.0221 -0.0665 0

UST calculated in Arlequin (vers. 3.0). Approximate geographic distance between localities used in analyses shown in kilometers above the

diagonal (italics)

Table 5 Pairwise comparisons of genetic structure measured with

UST among five geographic regions shown below the diagonal

Region 1 2 3 4 5

1. San Diego, California

(18)

0 0.000 0.0473 0.0132 0.0929

2. Gulf of California (10) 0.4459 0 0.0000 0.0000 0.0000

3. Central America (41) 0.0392 0.2162 0 0.4790 0.1477

4. Ecuador (23) 0.1004 0.3616 -0.0034 0 0.2288

5. Peru (23) 0.0388 0.3718 0.0159 0.0114 0

Significant UST values (UST [ 0) with a probability value below 0.05

shown in bold; probability value shown above the diagonal (italics).

UST calculated in Arlequin (vers. 3.0)
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single H. ingens specimen, housed in the Harvard Museum of

Comparative Zoology (specimen number MCZ 53292), was

collected as far north as San Francisco Bay in 1960 following

the El Niño event of 1957–1959 (Hubbs and Hilton 1963).

Collection records (Jones et al. 1988) and recent field work

done for this study suggest that there has been a breeding

population of H. ingens in San Diego Bay since the mid

1980s, putatively following the major El Niño event of

1982–1983 (Jones et al. 1988). The low haplotype diversity

observed in San Diego, California relative to all other

localities sampled (Table 1) implies that the founding pop-

ulation was small. Non-significant FLUCTUATE results

from this region leave this interpretation a tentative

hypothesis.

Phylogeographic patterns and potential barriers

to gene flow

Population structure develops when gene flow between two

populations is low enough to allow genetic drift and local

adaptation to create genetic divergence. Discrete genetic

breaks can be caused by both incomplete and complete

barriers that operate across multiple scales in both time and

space. Examples include persistent oceanographic barriers

and geological events. Even when these barriers are lack-

ing, simple geographic distance coupled with limited dis-

persal ability can be enough to prevent gene flow between

separate populations.

In contrast to previous analysis of H. ingens phyloge-

ography (Sanders et al. 2008), our study indicates moderate

and statistically significant overall population structure

(Table 3). Our results are consistent with vicariance by

persistent oceanographic processes. Vicariance yields a

pattern of high UST values between isolated populations,

and low UST among populations on either side of the

barrier. We observed high and significant UST values

between the GOC and Pacific coast populations from

California to Peru, and low UST values among Pacific coast

populations. Spatial resolution of sampling both north and

south of the GOC was not sufficient to fully evaluate this

genetic break in H. ingens. Nonetheless, lack of structure

along the Pacific coast is exemplified by non-significant

pairwise UST estimates between the two most geographi-

cally distant regions, San Diego, California and Peru, and

between all localities and regions south of the GOC

(Tables 4 and 5). The exception to this trend is found in

minimal but still significant pairwise UST estimates

between San Diego, California and Central America and

Ecuador. This signal is difficult to interpret in light of the

low haplotype diversity found in San Diego, California and

the unresolved transient status of this population.

We hypothesize that two main processes have contributed

to the pattern of a single distinct genetic break; the life

history of H. ingens, and oceanographic conditions of both

the eastern Pacific and the GOC. Seahorses are thought to

display site fidelity as adults, but dispersal ability in juveniles

is largely unknown. There is genetic evidence for limited

dispersal in all Hippocampus species that have been previ-

ously analyzed in a phylogeographic context (Lourie et al.

2005; Teske et al. 2003). Nonetheless, after male pregnancy,

fully formed juveniles are delivered into the water column

and the few that survive seem to rise in the water column to

surface waters and float with little mobility in currents for

unknown duration (Lourie et al. 2004). Hitch-hiking on

macro algae floats may be one mode of dispersal that could

increase connectivity across large geographic distances

dependent on oceanographic processes.

The eastern Pacific coast is characterized by stochastic

processes which facilitate sporadic dispersal. Siegel et al.

(2008) demonstrate through modeling that alongshore lar-

val connectivity is inherently a stochastic process due to

chaotic coastal currents. This local process, coupled with

extensive mixing due to a seasonal shift of the Inter-trop-

ical Convergence Zone and periodic El Niño events,

facilitate sporadic dispersal between regions of the eastern

Pacific (Muss et al. 2001; Pisias and Mix 1997). The

geographic scale of the resulting pattern of genetic con-

nectivity depends on dispersal potential, which in turn

depends on larval characteristics such as duration and

mobility. A species with low dispersal potential would

experience reduced likelihood of gene flow with greater

distance, which may be reflected in statistically significant

UST estimates and population structure exhibiting IBD. On

the other hand, a species with high dispersal potential

would display a pattern of minimal or non-significant UST

estimates and no IBD (e.g. Epinephelus labriformis, Craig

et al. 2006; Ophioblennius steindachneri, Muss et al.

2001). H. ingens exhibited moderate UST estimates driven

by structure across one discrete barrier, but no pattern of

IBD. Although there remains the possibility that population

structure exists on the Pacific coast at scales not captured in

this dataset, the most likely explanation is that dynamic

oceanographic conditions facilitate connectivity along the

Pacific coast, while unique oceanographic conditions of the

GOC facilitate population structure.

We hypothesize that population structure developed

between the GOC and Pacific coast localities because of

restricted genetic exchange due to site fidelity in adults and

contemporary oceanographic barriers to juvenile dispersal

between regions. Site fidelity is typical in adult seahorses

(Foster and Vincent 2004). Potential juvenile dispersal

barriers include the formation of two gyres in the upper and

central GOC regions (Alvarez-Borrego 2002; Beier 1997;

Lavin et al. 1997), a persistent oceanic front where the

California Current Water, Tropical Surface Water, and the

Gulf of California Waters converge (Castro et al. 2006),

Conserv Genet (2010) 11:1989–2000 1997
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and inflow of surface waters during summer months (Lavin

and Marinone 2003). The patterns of gyre formation,

positioning of the oceanic front, and patterns of inflow and

outflow are heavily influence by inter-annual variability

caused by El Niño (Lavin and Marinone 2003; Castro et al.

2000). Despite this variability, conditions within the GOC

may increase self-recruitment of juvenile H. ingens. High

diversity and the presence of endemic haplotypes in the

GOC are congruent with this hypothesis. Additionally, the

oceanic inflow of surface waters during the summer may

coincide with H. ingens’ peak in reproductive output,

pending confirmation that H. ingens follows the trend in

breeding season timing and duration reported in other

seahorses (Foster and Vincent 2004). Coincidence of

breeding season with surface water inflow would facilitate

a decrease in juvenile migration out of the GOC while

allowing genetic influx from the outer coast. Detailed

studies of breeding habits in H. ingens and finer scaled

sampling within the GOC and along the adjacent outer

coasts would be necessary to further resolve this question.

Conservation implications

Understanding broad patterns of gene flow is an important

advancement in creating a successful international man-

agement plan for H. ingens. Moderate overall geographic

structure with only one distinct genetic break suggests that

H. ingens populations comprise a large management unit of

the entire Pacific coast, and a possible second management

unit within the GOC. Significant UST values (Tables 4 and 5)

between the GOC and all other localities sampled correlate

with migration levels of less than two individuals per gen-

eration under the Wright-Fisher island population model.

This implies demographic independence (Palsbøll et al.

2007). Evidence of demographic independence and high

relative nucleotide diversity in the GOC suggest that the

GOC depends heavily on self-recruitment and may be more

vulnerable to over-fishing than populations with greater

connectivity such as those along the Central American coast.

These results have important implications for manage-

ment of seahorse populations in Mexican waters. Mexico is

considered a major exporter of dried seahorses (Baum and

Vincent 2005). The majority of these seahorses are caught

as bycatch by shrimp trawlers operating along the western

coast of Mexico (Baum and Vincent 2005, Sarah Foster

pers obs. 2010). Furthermore, the effort of trawlers mea-

sured in number of boats operating are much greater in the

GOC than elsewhere, evidenced by the fact that the states

of Sonora, Sinaloa and Nayarit produce the most shrimp in

Mexico (SAGARPA 2008). The combination of higher

bycatch of seahorses in the region surrounding the

GOC, and low connectivity of the GOC with the outer

coast populations leaves GOC populations particularly

vulnerable to overharvest. Current regulations of shrimp

trawl bycatch within the states of Sonora, Sinaloa and

Nayarit and regulation of seahorse exports from northern

Mexico may need to be strengthened in order to meet

CITES requirements.

Although results of this study have increased our

understanding of the geographic genetic relationships

among H. ingens populations, several pertinent questions

remain unanswered. The limited size of some sampled

populations and the relatively low diversity of the mito-

chondrial gene fragments sequenced do not allow identi-

fication of TCM trade source populations derived from

Pacific coast populations. Furthermore, these data provide

insufficient power to determine migration rates with coa-

lescent based methods, and specific demographic dynamics

in the GOC and San Diego, California could not be

resolved. This study highlights the need for further genetic

characterization with more rapidly evolving markers and

fine-scaled geographic sampling focused on the GOC.

Field work that can yield improved estimates of life history

characteristics such as adult movement, generation time,

and breeding season are further steps to ensure the per-

sistence of this valuable and threatened species.
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