Title
ELEMENTARY DERIVATION OF THE DIELECTRIC CONSTANT OF AN IMPERFECT GAS

Permalink
https://escholarship.org/uc/item/3vm23750

Authors
Kaufman, Allan N.
Watson, Kenneth M.

Publication Date
1961-05-10
Ernest O. Lawrence

Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ELEMENTARY DERIVATION OF THE
DIELECTRIC CONSTANT OF AN IMPERFECT GAS

Allan N. Kaufman and Kenneth M. Watson

May 10, 1961
ELEMENTARY DERIVATION OF THE DIELECTRIC CONSTANT OF AN IMPERFECT GAS

Allan N. Kaufman and Kenneth M. Watson

Lawrence Radiation Laboratory and Physics Department
University of California, Berkeley and Livermore, California

May 10, 1961

ABSTRACT

A general formula for the "second Clausius-Mossotti coefficient" is obtained from elementary considerations of statistical mechanics.
ELEMENTARY DERIVATION OF THE
DIELECTRIC CONSTANT OF AN IMPERFECT GAS*

Allan N. Kaufman and Kenneth M. Watson

Lawrence Radiation Laboratory and Physics Department
University of California, Berkeley and Livermore, California

May 10, 1961

The static dielectric constant of an imperfect gas in thermal equilibrium can be expressed as a function of density \(n \) and temperature \(\Theta \) as follows:

\[
\frac{K-1}{K+2} = \frac{4\pi}{3} \left[n \alpha_1(\Theta) + n^2 \alpha_2(\Theta) + \mathcal{O}(n^3) \right].
\]

(1)

In another publication we have applied linked-cluster techniques to the grand partition function, and have derived explicit expressions for \(\alpha_1, \alpha_2, \) etc. In this note we present an elementary derivation of the same result, lacking in rigor but appealing to intuition.

We begin by considering a monatomic gas, such that the excitation energy of an atom is large compared to the temperature. For an isolated atom, the polarizability tensor is

\[
\chi_{1} = 2 \sum_{\lambda'} \langle \lambda' \mid \rho \mid \lambda \rangle \langle \lambda \mid \rho \mid \lambda \rangle \frac{\epsilon - \epsilon_0}{(\epsilon' - \epsilon_0)},
\]

where \(\rho \) is the dipole-moment operator, \(\epsilon \) is the energy eigenvalue for the eigenstate \(|\lambda\rangle \), and the subscript zero refers to the ground state. Similarly, for two (interacting) atoms with fixed nuclei an interval \(z \) apart, the polarizability tensor is
\[\zeta_2(\xi) = 2 \sum \langle \Lambda_0 \mid \vec{p}^{(2)} \mid \Lambda' \rangle \langle \Lambda' \mid \vec{p}^{(2)} \mid \Lambda_0 \rangle / (\mathcal{E}' - \mathcal{E}_0), \quad (3) \]

where \(\vec{p}^{(2)} \) is the total dipole-moment operator, and \(\mathcal{E} \) is the energy eigenvalue for the eigenstate \(\mid \Lambda \rangle \) of the two-atom Hamiltonian with fixed nuclei. We note that \(\mathcal{E} \) and \(\mid \Lambda \rangle \) depend upon \(\xi \) parametrically.

The polarization \(\vec{P} \), or mean dipole density, may be found by calculating the mean dipole moment \(v \vec{P} \) of a spherical volume \(v \), large compared to the volume of an atom but small enough so that \(nv \) is much less than \(\alpha \xi \). (Such a \(v \) can be found only for a dilute gas.) To terms of order \(n^2 \), the probability density that a pair of atoms (with the line of centers \(\xi \)) is in \(v \) is

\[P_2(\xi) = \frac{1}{2} n^2 v e^{-\beta \phi(r)}, \quad (4) \]

where the interatomic potential energy is

\[\phi(r) = \mathcal{E}_0(r) - \mathcal{E}_0(\infty). \quad (5) \]

To the same order, the probability that just one atom is in \(v \) is

\[P_1 = n v - n^2 v \int d^3r e^{-\beta \phi(r)}, \quad (6) \]

with suitable integration limits. The mean dipole moment of \(v \) is thus

\[v \vec{P} = [P_1 a_1 + \int d^3r P_2(r) a_2(r)] \cdot \vec{E}_{\text{eff}}, \quad (7) \]

where the effective field in \(v \) is
Using formulas (4) and (6), we obtain

\[\text{E}_{\text{eff}} = \text{E} + \frac{4}{3} \pi \text{P}. \]

(Since \(\alpha_2(\infty) = 2 \alpha_1 \), the integration may be taken over all \(\text{P} \).

The coefficients of \(n \) and \(n^2 \) in Eq. (9) are scalar tensors:

\[\alpha_1 \text{I} = \alpha_1, \]

and

\[\alpha_2(0) \text{I} = \int d^3r \left[\frac{1}{2} \alpha_2(r) - \alpha_1 \right] e^{-\beta \phi(r)}, \]

where \(\text{I} \) is the unit tensor. Using the definitions (10) and (11) in Eq. (9), and introducing the dielectric constant \(K \):

\[4\pi \text{P} = (K - 1) \text{E}, \]

we obtain the form (1). (In this case \(\alpha_1 \) is independent of temperature.)

The Jansen-Mazur result \(\frac{1}{4} \) can be obtained from ours if, in evaluating \(\alpha_2(r) \) from formula (3), one finds \(C \) and \(\langle A \rangle \) from a second-order perturbation treatment of the two-atom problem, using the dipole-dipole approximation for the interaction energy, with the interaction strength as the perturbation expansion parameter. The Kirkwood approximation \(\frac{5}{5} \) replaces the two atoms by harmonic oscillators and also uses the dipole-dipole approximation.
With intuitive concepts, we may generalize our formulas to apply to a molecular gas, for which the excitation energies are not large compared to the temperature. Formula (2) is replaced by

\[\alpha_\lambda (\theta) = \sum_\lambda e^{-\beta \epsilon} \alpha_\lambda (\lambda) / \sum_\lambda e^{-\beta \epsilon} , \quad (13) \]

with

\[\alpha_\lambda (\lambda) \equiv 2 \sum_{\lambda'} \langle \lambda | p | \lambda' \rangle \langle \lambda' | p | \lambda \rangle / (\epsilon' - \epsilon) , \quad (14) \]

and formula (3) by the analogous form:

\[\beta_\omega (r; \theta) = \sum_\Lambda e^{-\beta \epsilon} \beta_\omega (r; \Lambda) / \sum_\Lambda e^{-\beta \epsilon} , \quad (15) \]

with

\[\beta_\omega (r; \Lambda) \equiv 2 \sum_{\Lambda'} \langle \Lambda | p^{(2)} | \Lambda' \rangle \langle \Lambda' | p^{(2)} | \Lambda \rangle / (\epsilon' - \epsilon) . \quad (16) \]

(If expression (14) or (16) involves matrix elements between degenerate states, one may introduce an artificial perturbation \(\epsilon\) to remove the degeneracy, and then in the result (13) or (15) take the limit of vanishing perturbation.)

The interaction potential energy \(\phi(r)\) is replaced by the interaction free energy \(\phi(r)\):

\[e^{-\beta \phi(r)} \equiv \sum_\Lambda e^{-\beta \epsilon} \phi(r) / \sum_\Lambda e^{-\beta \epsilon} (\infty) . \quad (17) \]

Thus Eq. (11) becomes
\[\alpha_2(\theta) \sim \int d^3r \left[\frac{1}{2} \alpha_2(r; \theta) - \alpha_1(\theta) \right] e^{-\beta\Phi(r)}; \tag{18} \]

as found in the rigorous approach of reference 1. Various treatments of molecular gases (quadrupole interactions, permanent dipole interactions, etc.) can now be obtained by making suitable models or approximations.

We acknowledge the benefit of a discussion with Dr. M. Mittleman.
FOOTNOTES

* This work was done under the auspices of the U. S. Atomic Energy Commission.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.