ELECTRON CAPTURE HALF-LIFE OF \(^{243}\text{Am}\)

G. R. Choppin and S. C. Thompson

December 1957

Printed for the U. S. Atomic Energy Commission
ELECTRON CAPTURE HALF LIFE OF Cm243

G. R. Choppin and S. G. Thompson

Radiation Laboratory and Department of Chemistry
University of California, Berkeley, California

Calculations of closed decay-energy cycles1 predict equal masses for Am243 and Cm243, leaving unresolved the direction of beta-decay emission between these neighboring isobars. A previous attempt to milk Am243 from a sample of Cm243 produced negative results and a lower limit of 50,000 years was set for the electron-capture half-life of Cm243.2 However, that experiment was performed in the presence of relatively large amounts of Am241 and with cruder chemical separation techniques than are presently available. For the present investigation, a sample of curium was used that had been prepared by successive neutron capture in Am244 using the NRU reactor. The curium was purified initially in March 1954, and this plus later purifications ensured complete removal of all americium isotopes from the curium.

Following a growth period of almost ten months after the last purification, the curium was milked for Am243. Isotopically pure Am241 was added as a chemical-yield tracer prior to the separations. Three successive elutions from Dowex-50 cation resin using ammonium alpha-hydroxyisobutyrate as eluant3 were necessary for removal of all the parent curium. The americium fraction was then electroplated by a previously described method4 to obtain a thin sample for pulse-height analysis. The ratio of Am243 to Am241 was determined in a 50-channel differential pulse-height analyzer and the total amount of Am243 calculated from the initial amount of Am241 activity added.

*Present address: Florida State University, Tallahassee, Florida.
Table I gives the relative activity intensities of the curium isotopes obtained from an alpha-particle spectrograph and the relative weights obtained from a mass spectrometer.

Table I

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Relative activity</th>
<th>Relative weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cm242</td>
<td>1.00</td>
<td>----</td>
</tr>
<tr>
<td>Cm243</td>
<td>3.01</td>
<td>2.43</td>
</tr>
<tr>
<td>Cm244</td>
<td>1.95</td>
<td>1.00</td>
</tr>
</tbody>
</table>

These data can be used with the best value for the half-life of Cm244 (18.4 ± 0.5 years) to obtain an alpha half-life for Cm243 of 29.0 ± 0.8 years.

In a similar manner the electron-capture half-life of Cm243 can be calculated from the expression

$$t_{1/2,63} = 0.693 \Delta t \frac{N_{63}}{N_{53}},$$

where Δt represents the time of Am243 growth (0.821 years), 63 refers to Cm243 and 53 refers to Am243. N_{63} was obtained by use of the 29.0-year value given above and N_{53} by use of a value of 7951 ± 48' years for the Am243 half-life. From 2.2×10^7 d/m of Cm243, 4.10 d/m of Am243 was milked. The half-life calculated for electron capture in Cm243 was 1.1 ± 0.1 x 104 years. The errors reported are based upon the estimated half-life errors in Cm244 and Am243 and the errors in counting and assaying.

This work was performed under the auspices of the United States Atomic Energy Commission.
REFERENCES

5. F. Asaro, private communication, UCRL, (1957).

