The Communal Pronghorn Hunt: A Review of the Ethnographic and Archaeological Evidence

PATRICK M. LUBINSKI, Archaeological Services, Western Wyoming College, P.O. Box 428, Rock Springs, WY 82902-0428.

A review of the available archaeological, ethnographic, and historical data reveals that there is compelling evidence for communal pronghorn hunting across western North America in the protohistoric and early historic periods. The evidence is particularly compelling for the Great Basin, where corrals were in common use, as well as for the Great Plains, where drives into corrals or pits were common. Evidence for such activities in the remote past, including projectile point concentrations, hunting facilities, and bonebed sites, is considerably sparser and more ambiguous. Nonetheless, it appears that communal pronghorn hunting did not decrease through time, but rather was maintained or has increased within the last 1,500 years.

The aboriginal communal pronghorn hunt of the last few centuries is well recorded in historical documents and ethnographies of the Great Basin and the Plains, but the nature of pronghorn hunting prior to contact is not well understood. Some have argued that the archaeological data indicate a decrease in communal hunting through time (Pendleton and Thomas 1983; Kelly 1997), while others see a maintenance or increase in communal hunting within the last 1,500 years (Arkush 1986, 1995; Frison 1991:241). Among the small-scale hunter-gatherers of the Basin and Plains, any significant change in the incidence of communal hunting might have “profoundly affected sharing and intragroup social relations” (Kelly 1997:29). Given the presence of contradictory assertions about the history, periodicity, seasonality, and other aspects of communal pronghorn hunting, a review of the documentary and archaeological evidence is in order.

THE PRONGHORN

Commonly called antelope in North America, biologists normally prefer to call this animal the pronghorn (*Antilocapra americana* Ord; Fig. 1). Today, pronghorn can be found over the western Great Plains and Intermountain West of North America. In the recent past, they probably were distributed into the central Plains and northern Mexico as well (Nelson 1925:Fig. 1). Like many species of large game, pronghorn numbers were drastically reduced with Euroamerican settlement of North America. Pronghorn populations began to recover with the onset of modern conservation and management, and by 1970 there were over 400,000 pronghorn in North America (Sundstrom et al. 1973).

Pronghorn are animals of the open plains, and have adapted to this condition with excellent eyesight, extraordinary speed, and a well-developed ability to broad jump. Pronghorn can see objects several kilometers away (Nowak and Paradiso 1983:1231). They can reach speeds of 60 or 70 miles per hour in short bursts, the fastest for a land animal in the western hemisphere (Whitaker 1980:662; Wyoming Game and Fish Department 1992:1). Fast runs of five to six km. (three to four mi.) are common, but exhaustion occurs rapidly (Nowak and Paradiso 1983:1231). They are accomplished broad jumpers, commonly completing leaps of 14 ft. (4.3 m.) at high speed, reaching up to 27 ft. (8.2 m.) or more (Wyoming Game and Fish Department 1966:30). However, they generally are poor at vertical jumping.
Pronghorn are social and form herds that vary in size throughout the year. Winter herds are the largest, containing all sex and age classes, and ranging from two animals to loosely associated herds of thousands of animals (Einarsen 1948; Mitchell 1980). As winter abates, pronghorn split into smaller, segregated herds; bachelor herds, female herds that regroup into nursery herds after birth, and solitary old males (Kitchen and O’Gara 1982). In Wyoming, the winter herd breakup may not take place until May in some years, and winter aggregation usually occurs after the rut at the first sign of winter (Creek 1967:5).

There may be a pronounced migration between
the summer and winter ranges, but some years there appears to be essentially no movement (Nelson 1925; Crump 1966; Kitchen and O’Gara 1982; Raper et al. 1989). There is historical evidence of large pronghorn migrations in the Dakotas in the early 1800s (Thwaites 1906b:215; Coues 1970:171). In western Wyoming, radio-collared pronghorn have been recorded to move up to 150 air miles between summer and winter ranges, the farthest known seasonal pronghorn migration in North America (Christiansen 1993:11). The migration routes in this area today appear to be highly regular and predictable (Raper et al. 1989).

Pronghorn Behavior and Hunting

Effective methods for hunting any game species are determined in large part by the habits of the prey (Frison 1987). For example, jackrabbits—which run when frightened—were hunted in communal drives in the Great Basin, but cottontail rabbits—which hide when frightened—were collected singly in snares or deadfalls (Thomas et al. 1986:268). Pronghorn have a number of characteristics that can be exploited by the hunter, particularly their reluctance to jump vertically, hazing characteristics, curiosity, predictable movements, and migration habits.

As pronghorn are poor vertical jumpers, in areas of the country where fences are relatively uncommon, they will rarely leap an encountered fence, preferring to search for an opening (Greenquist 1983:71; Frison 1991:240). Pronghorn also remember fences, and will not pass through a fence that they have learned about in the past, even if the fencing is removed and the posts remain (W. Hepworth, personal communication 1995). Although panicked pronghorn have cleared 8-ft. (2.4-m.) fences (Spillet et al. 1967) and will readily jump stock fences that have been in place for many years, all evidence suggests that pronghorn were extremely reluctant to jump vertically prior to the widespread introduction of modern fences. These characteristics suggest that it would have been relatively easy to keep pronghorn in an enclosure (unlike, for example, bighorn sheep). Modern pronghorn trapping operations (normally for transplantation) commonly involve a small fenced corral with long V-wing fences to funnel the animals into the corral (O’Gara and Yoakum 1992:Fig. 2). The modern corrals use high (8-ft.) fences, as pronghorn will begin to panic and jump once they pass from the open V-wings into the confined area of modern traps. Corrals that encompass large areas can avoid this problem by allowing animals to run in search of an escape rather than being forced to attempt jumping a fence.

Pronghorn have been hazed successfully by just a few people taking care not to approach too closely during Wyoming Game and Fish Department trapping operations (W. Hepworth, personal communication 1995). Once approached too closely, the animals bolt and the drive is a failure. Due to this behavior, a stampede-like drive for pronghorn is unlikely, at least until the animals are securely between trap walls.

Curiosity is another characteristic of pronghorn, and this is likely to have been exploited by hunters of the past. Pronghorn often come to investigate anything unusual in their territory that does not cause alarm by scent or sudden movement (Nowak and Paradiso 1983:1231). Although pronghorn can see great distances, they apparently lack visual acuity, and a motionless person only 10 to 15 meters away may be unnoticed (Kitchen 1974). Modern hunters have used small flags or ribbons to lure pronghorn within bow range (Schuh 1987). Pronghorn have also been observed to approach a human wearing a sheet, a person waving a colored cloth, a blanket draped over sagebrush, a tent, and even a crawling photographer (Thwaites 1906c:264; Nelson 1925:5; Greenquist 1983:21; Frison 1991). It would seem that such methods work only so long as a human is not recognized (Denig 1930:535).

The daily movements of pronghorn are also somewhat predictable. Many modern bowhunters have maintained that the most effective hunting method is to use a blind or stand by a water source (Cooney 1986; Schuh 1987) because pronghorn...
will commonly come to drink several times daily when water is available (Cadieux 1986). A well-hidden ground blind also works well when placed at predictable travel locations, such as traditional fence crossings (Schuh 1987). One or two pronghorn can be stalked in broken country with good cover, but stalking generally is not effective for herds or on flat terrain (Schuh 1987). Decoy hunting also has some success when used during the rut. A buck decoy can draw a competing buck, and a doe decoy can draw a buck that is gathering a harem (Schuh 1987). Regular seasonal migrations of large numbers of pronghorn would present the opportunity for effective communal hunting, particularly if migration routes were predictable, as they appear to be in western Wyoming today (Raper et al. 1989).

ETHNOGRAPHY OF PRONGHORN HUNTING

Not surprisingly, there are ethnographic and ethnohistoric accounts of pronghorn hunting by aboriginal groups across most of the animal’s range. Pronghorn were taken by a variety of methods, from single hunters using disguises to large-scale communal drives of many animals. Both encounter and intercept strategies (cf. Binford 1978) were used to hunt pronghorn. While encounter hunting might be productive, pronghorn behavior probably lends itself more profitably to a strategy of intercepting the animal in predictable locations, such as at watering holes or along migration routes. Most of the written records of pronghorn hunting describe intercept methods, often involving some constructed facilities, such as blinds, cairns, walls, and pits that sometimes leave archaeological traces.

Pronghorn may have been hunted for reasons other than food. Indeed, some records indicate that pronghorn meat was undesirable, at least compared to that of deer, bighorn sheep, and bison (Thwaites 1906a:298, 1906c:264; Fowler 1989:17). Tumey-High (1937:119) noted that “the Flathead did not relish its musky meat. It was hunted only when hungry.” However, pronghorn appear to have been desired for clothing (Irving 1837:214; Thwaites 1906a:298). Brumley (1984:109) noted that the “light hides of antelope were preferred by various tribes in the northern Plains for the manufacture of clothing items such as shirts, leggings and moccasins (cf. Masson 1889:279; Burpee 1910:67; Ewers 1955:170).”

Recorded methods of procuring pronghorn involve a variety of participants, from single hunters to large groups of cooperating men, women, and children. For the purpose of this discussion, a distinction is made between single hunter and small-scale cooperative hunting on the one hand, and larger scale communal hunting on the other (cf. Frison 1987). Although it is difficult to draw a clear distinction between these methods (as pronghorn hunting techniques form a continuum between these extremes), communal hunting implies a larger number of participants, greater degree of planning, and larger potential harvest than simple cooperative hunting.

Single Hunter and Small Group Methods

Pronghorn were hunted by a variety of single hunter and small group methods. In some cases these methods involved constructed facilities that could persist in the archaeological record. For example, pronghorn were driven past “ambushed” hunters hidden in brush or stone blinds (Drucker 1941:98; Stewart 1941:367; Steward 1943:294, 360; Smith 1974:55-56). Drive lines or V-wings might be constructed to help direct the game past the concealed hunter (Simpson 1869:52-53; Reagan 1934:54; Steward 1943: 360).

Communal Hunting Methods

Communal pronghorn hunting, as described in the ethnographic and historical literature, can be characterized by three major methods; drives, surrounds, and chases. For drives, the procedure generally was to drive the animals past waiting hunters or into a “catch” structure. Rarely, pronghorn might be driven into a river or over a cliff. In many cases, a series of “drive lines” was constructed to
guide the animals to the desired location. These might be composed of spaced people and/or cairns (piles of earth, buffalo chips, brush, or stones) or fences composed of stones, brush, logs, and/or living trees. Catch structures were highly variable, but usually consisted of V-shaped drive line wings leading into the entrance of a fenced enclosure or into a pit. The V-wings were often straight, but sometimes included a semicircular side (e.g., Hill 1938), perhaps for use as a “circling pen,” or a bend near the trap (e.g., Wissler 1910:38) to help obscure it. In some cases, a shaman or antelope charmer would draw the animals into the trap (e.g., Fowler 1989:14-19).

A surround is a simpler method wherein the target animals were encircled at some distance and herded into a more concentrated group where they could be shot or clubbed. The surrounded animals were sometimes run in circles until they dropped from exhaustion (Egan 1917:240-241). The herding was accomplished by groups of noisy people with or without the aid of fire or horses (e.g., Grinnell 1962b:283-288). A third communal hunting method, the chase, consisted of running down and shooting pronghorn, often from horseback. While horseback chases were used extensively for bison on the Great Plains, they were rarely mentioned in the hunting of pronghorn.

Written records of communal pronghorn hunting are summarized in Appendix 1. Good summaries of written accounts for the Plains have been provided by Brumley (1984:111-120), and for the Great Basin by Arkush (1986) and Petersen and Stearns (1992:140-147; see also Anell’s [1969] summary for all game in North America).

Although it is clear that communal pronghorn hunting did take place elsewhere, by far the most has been written about the Great Basin and Great Plains. In the Great Basin, pronghorn were hunted by a variety of methods, but drives into a corral are most commonly recorded. Perhaps the corral was indeed the preferred method, but it may have been widely reported simply because it was a late development that was still fresh in the minds of the Indian consultants (Arkush 1986:243). In any event, it is discussed at some length here because it was so common and has the potential for leaving archaeological traces in the form of corral remnants.

Most corrals were constructed of juniper posts or logs and/or piled sagebrush, and measured from 18 in. to 10 ft. high, and 50 ft. to a mile or more in diameter (Fowler 1989:18; Steward 1941:219, 328, 1943:359). Sometimes, the corral was formed simply by placing a rope in a circle directly on the existing brush (Stewart 1941:422), or on widely spaced sagebrush piles (Steward 1943:359). In one account by Sarah Winnemucca Hopkins (1883:55-56), six widely spaced piles of sagebrush (with no rope) were used. Most corrals had one opening 15 ft. (Fowler 1989:16) to a half mile wide (Steward 1941:219). In many cases, the corral had V-shaped entrance wings and drive lines. One wing might be significantly longer than the other (Fowler 1989:16), and the length of one or both wings might reach three miles (Steward 1941:328). Sometimes, the entrance wings might have one or several turns (Egan 1917:239). A “typical” Nevada Shoshone pronghorn corral with V-wings is shown in Figure 2.

The variety of methods used to drive or lure pronghorn into a corral might account for some of the variation in construction. For example, if pronghorn are to be trapped when they unwittingly wander into a corral, the corral needs to extend over a large area. One Shoshone corral used in this way enclosed 100 acres (Irving 1837:51; see Appendix 1). A rather passive “drive,” more akin to hazing, would require only widely spaced cairns or people in the V-wings, whereas a more aggressive drive would require more substantial facilities as pronghorn are likely to bolt or even jump when panicked. Thus the sturdier, taller corrals might well reflect a more aggressive style of pronghorn drive. Taller and more substantial corrals would also seem necessary for the small enclosures because the animals would easily be panicked, whereas a large enclosure would allow the animals to attempt escape by running within it (Greenquist 1983; W. Hepworth, personal communication 1995).
The time needed to construct corrals is not described for the Great Basin, but one Hidatsa account noted that a corral was built in half a day (Thwaites 1906b:383), and a Navajo account reported that it took five days to build a stout corral (Hill 1938:149). Egan (1917:238) mentioned that it took the Deep Creek Gosiute “a few days” to refurbish an existing corral.

Differences in the style of pronghorn drive, as well as differences in the topography, the available
number of hunters, and other factors, all contrib­
uted to additional variation in Great Basin prong­
horn corrals. In some cases, fire was used to help
drive the animals (Steward 1941:220). The corral
opening usually was closed with a brush gate when
the animals entered it (Steward 1941:219), al­
though sometimes it was left open and the prong­
horn did not escape (Fowler 1989:16). The corral
opening might also have had flagstones placed
across the entrance “so the antelope cannot smell
where the men have stepped” (Henry Williams,
Yerington Paiute, as cited in Fowler [1989:18]).

The Great Basin communal pronghorn drive
might involve men only (Smith 1974:55; Fowler
1989:17-18), or men and women (Irving 1837:51;
Fowler 1989:16), or men, women, and children
(Egan 1917:239-240; Lowie 1924:305; Kelly 1932:
83-84; Steward 1941:219). Few accounts list spe­
cific numbers of participants for pedestrian drives,
but it appears that there were often several drivers,
one or more archers, and a number of butchers.
Specific numbers mentioned include two to three
drivers (Steward 1938:120), and eight to ten drivers
(Steward 1938:82; Fowler 1989:18), but Steward
(1938:163) also described “large crowds of peo­
ples.” For comparison, a 1981 trapping operation in
Wyoming employed 20 to 30 people to drive the
pronghorn into the corral once they were in the V­
wings (Greenquist 1983:70).

The communal antelope hunt was an important
event in the Great Basin. It might have drawn to­
gether a large number of people once or twice a
year (Steward 1941:219). For example, a Northern
Paiute informant stated that “15 or 20 camps came,
maybe 100 men” (Kelly 1932:83). There often was a
leader (“hunt boss”) or a shaman.

On the Great Plains, there are accounts of
horseback surrounds and chases, as well as pedes­
trian drives through V-wings into corrals, much like
that in the Great Basin. However, some groups
commonly drove pronghorn through V-wings into
a pit, a method not recorded in the Great Basin. A
sketch of an 1855 Cheyenne pit with V-wings is
provided in Figure 2 (middle). These pits apparent­
ly were designed for taking multiple pronghorn, al­
though no accounts mentioned a specific number, or
whether only a few at a time were driven into the fi­
nal wings and pit. In the three accounts that men­
tioned dimensions, the pits were 4.8 to 6.0 m. long
by 2.0 to 2.4 m. wide by 2.4 to 4.0 m. deep (Snow­
den 1868:160; Wissler 1910:38; Stands in Timber
and Liberty 1967:85). In many cases, the pit was par­
tially disguised by branches, grass, and/or an
earthen berm (Mooney 1898:309; Wissler 1910:38;
Grinnell 1962a:236, 1962b:278-283), and/or sur­
rrounded by a fence (Snowden 1868:160; Grinnell
1962b:278-283). Either modification presumably
was to prevent the pronghorn from jumping the pit,
since they can easily broad jump 14 ft. (4.3 m.),
and are known to jump 27 ft. (8.2 m.) or more (Wy­
oming Game and Fish Department 1966:30).

In some accounts, communal hunts so devas­
tated local pronghorn populations that they could be
used only rarely (Steward 1938:33; Shimkin 1947:
268). For example, Egan (1917:240) noted that the
drive he observed was only the second in 12 years,
and a Kiowa informant noted that he had seen but
one in 60 years (Mooney 1898:288). However, it is
unclear whether pronghorn drives were this rare
in all places and at all times because some Sho­
shone consultants described it as an annual event
(Steward 1938:175). Additionally, as suggested by
Arkush (1995:12), ethnographic accounts that de­
scribe the rarity of pronghorn hunts largely come
from a period during which there had been major
impacts on ungulate herds and native populations
by Euroamericans. Pronghorn herds may have
been larger, and communal hunting more common,
prior to the influx of explorers, miners, ranchers,
and settlers in the nineteenth century.

ARCHAEOLOGY OF
PRONGHORN HUNTING

There is no doubt that pronghorn were hunted in
all areas of their modern range in prehistory, as
amply demonstrated by the presence of pronghorn
bones in archaeological sites. In the Wyoming Ba­
sin of southwest Wyoming, pronghorn remains oc­
cur in 67% of all radiocarbon dated assemblages with 10 or more genus level identified bones (Lubinski 1997). The method by which these animals were taken is, of course, unknown. While documentary records testify to the practice of mass procurement of pronghorn in many areas after Euroamerican contact, evidence prior to this time is more limited. In part, this is because it is difficult to demonstrate communal hunting in the archaeological record (Driver 1990; Hofman 1994; Shaffer and Gardner 1995). Archaeological evidence for communal pronghorn hunting might include concentrations of projectile points, extant hunting facilities, and pronghorn bonebed sites.

Projectile Point Concentrations

It has been suggested that particular concentrations of projectile points may be locations of communal kills, or point retooling locations associated with kills (e.g., Parr 1989; Hall 1990; Petersen and Stearns 1992). Point concentrations are consistent with ethnographic accounts that involve the use of bows and arrows to kill the animals in corrals (e.g., Egan 1917; Fowler 1989:16-18). However, it should be noted that pronghorn also were killed with clubs (Irving 1837:214-215; Lowie 1939:325; Riddell 1960: 56). In many cases, the animals were run until exhausted for easy clubbing (Irving 1837:51), or even killed simply by twisting their necks (Fowler 1989:17). Some projectile point concentrations that have been associated with communal kills are listed in Table 1. Such sites may, in fact, be communal kill locations, but the interpretation is hampered by inherent difficulties in establishing the target species or the contemporaneity of the points. There also is no obvious threshold point density above which a site might be considered a kill site.

Extant Hunting Facilities

Extant hunting facilities may provide less ambiguous evidence, although they clearly are limited by the preservation of organic construction materials, and may be difficult to link to a particular prey species. There is also the problem of distinguishing between aboriginal hunting facilities and other aboriginal or Euroamerican features (see Thomas 1988:336-339; Arkush 1995:13-14; Schwartz 1995). Documented archaeological features that may be associated with pronghorn hunting include fences/alignments, hunting blinds, pits, and enclosures. As described in the ethnographic review, enclosures and pit traps are most commonly associated with communal hunts, while isolated fences and blinds may better be associated with single hunters or small-scale cooperative hunts. For this reason, fences and blinds not part of a corral or pit-trap complex are not adequate evidence for communal hunting of pronghorn by themselves. Extant enclosures provide better evidence of communal hunting because they are well-documented during the historic period and their characteristics compare favorably with ethnographic descriptions.

Most of the extant enclosures (corrals) are in northeast Nevada or on the Nevada-California border (Fig. 3; Appendix 2). This distribution probably reflects more on the potential for preservation than original distribution, since the known corrals are all in remote areas not cleared for agriculture. Many are constructed with juniper, using vertical posts, end-to-end logs, and/or living trees (Murphy and Frampton 1986). Other enclosures, such as the Hendry’s Creek or Mount Moriah trap (Rudy 1953), are composed primarily of stones, with remnants of juniper posts in protected locations (author’s personal observation, 1994). Extant enclosures generally are from 150 to 600 m. in diameter. Most attempts to determine the age of these corrals by dendrochronology have failed (e.g., Polk 1987; Arkush 1995), but they clearly cannot be more than a few hundred years old. The stone enclosures could be considerably older, but, of course, it is difficult to date them.

A pronghorn corral might be associated with one or more butchery or short-term camps. Ethnographic accounts vary as to the location of such camps, with some sources placing them immediately adjacent to the corral (Steward 1941: Fig. 1f),
Table 1
SOME SURFACE SITES POSSIBLY REPRESENTING PRONGHORN KILLS.

<table>
<thead>
<tr>
<th>Site</th>
<th>Location</th>
<th>Projectile Points</th>
<th>Area (m²)</th>
<th>Point Density (points/m²)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town Creek</td>
<td>NE NV</td>
<td>146 91 Gatecliff</td>
<td>1,134</td>
<td>1/8</td>
<td>Petersen and Stearns 1992</td>
</tr>
<tr>
<td>Clover Valley</td>
<td>NE NV</td>
<td>256 72 Humboldt 7 Elko 1 Gatecliff 5 Rosegate</td>
<td>14,137</td>
<td>1/55</td>
<td>Petersen and Stearns 1992</td>
</tr>
<tr>
<td>CR-11-8030</td>
<td>NE NV</td>
<td>149 55 Humboldt 45 Elko 1 Pinto 1 Rosegate</td>
<td>14,175</td>
<td>1/95</td>
<td>Hockett 1993</td>
</tr>
<tr>
<td>26MN705</td>
<td>SW NV</td>
<td>133 20 Humboldt 48 Humboldt/Elko 65 Elko</td>
<td>2,827</td>
<td>1/36</td>
<td>Hall 1990</td>
</tr>
<tr>
<td>26MN736</td>
<td>SW NV</td>
<td>179 2 Humboldt 6 Elko 1 Desert Side-notched</td>
<td>2,000</td>
<td>1/11</td>
<td>Parr 1989</td>
</tr>
</tbody>
</table>

* Points recovered below surface are excluded from table. Site area is calculated as an ellipse (L*W*π/4) if area is not provided in the original report.

and others placing them several miles away “so that the pronghorn would not smell the hunters” (Fowler 1989:17). In other words, a camp may not necessarily be found adjacent to a proposed prong­horn corral.

Extant pronghorn pits are rare and limited to the Great Plains. The only examples of which the author is aware are a pit in Belle Fourche, South Dakota, the Missouri Buttes trap in Wyoming, and the Laidlaw site in Alberta (see Appendix 2). The trap at Laidlaw consists of stone V-wings and a square enclosure about 7 m. long by 3 m. wide (Fig. 2, lower). Test excavations in 1983 revealed a silted-in pit with pronghorn and bison-sized bone (Brumley 1984), and produced a radiocarbon date of 3,280 RCYBP (Brumley 1986).

Of course, corrals and pit traps could be for other game besides pronghorn. Other possible big­game animals in pronghorn habitat might have in­cluded bighorn sheep, deer, bison, and elk. Bighorn sheep, deer, and bison are known to have been hunted communally, but there is some disagreement about elk (Grinnell 1962b:273, 276; Frison 1991:261). However, pronghorn trap structures differ in several ways from the sort of trap needed for these other species, primarily because of differences in size and behavior between the species. As de­scribed above, the capture of pronghorn requires only a low fence or even a shaking rope or circle of people, as they are reluctant jumpers and climbers.

Capturing bighorn sheep, on the other hand, re­quires stout fences that cannot easily be jumped, because they are accomplished climbers and leapers. Although there are numerous ethnographic ref-
Fig. 3. Distribution of extant pronghorn traps and bonebed sites in western North America. The enclosures and pits are listed in Appendix 2 and the bonebed sites in Table 2.

References to drives past hidden hunters, there are few descriptions of sheep traps, perhaps because they were considered ineffective (Steward 1941:220). A corral reported for the Egan Canyon Shoshone was a 100-ft. diameter enclosure of "mountain mahogany sticks sloping inward," with accompanying V-wings (Steward 1941:329).

Bison require fences that appear to be solid, although they may be made simply of willow or brush, as they may try to rush and break through any seemingly insubstantial wall that they can see through (Grinnell 1962a:231; Frison 1991). Blackfoot corrals were sometimes made with crisscrossed lodgepoles lashed together, filled with brush, and inclined slightly inward (Wissler 1910:36), or with heavy logs about 8 ft. high (Grinnell 1962a:231). A corral might also be formed simply by "pitching the tipis closely in a circle and joining the covers" (Wissler 1910:38). Bison corrals often were built at the base of a small cliff, or on flat ground with V-wings leading to an earthen ramp before the pen (Wissler 1910:38; Grinnell 1962a:230-231).

The capture of deer requires tall fences that cannot easily be jumped, because they are accom-
plished leapers. Deer corrals and pits are described for a number of areas. For example, a Grouse Creek Shoshone “cedar” (juniper) post corral 30 ft. in diameter was constructed with V-wings and an entrance hurdle with “posts leaning inward, so that the deer could leap in but not out”; it yielded 5 to 15 deer per night (Steward 1943:359). An Elko Shoshone corral had a fence 8 ft. high (Steward 1941:218). Pronghorn corrals might not be adequate for deer, “as the deer could jump over an ordinary corral” (Mooney 1898:309). As Gifford (1940:85) noted, deer require an “extra high corral of logs and foliage.” Deer pits, however, may not have been much different from pronghorn pits. A Eureka Shoshone pit was 20 ft. long, 5 ft. wide, and 8 ft. deep (Steward 1941:218).

Elk traps and communal hunts are rarely mentioned in the ethnographic literature (Frison 1991:261), but Grinnell (1962b:276) stated that the Arapahos drove elk over a bank into an enclosure or pit “in old times.” There does not appear to be any other mention of elk drives or corrals, but elk pits might be six to nine feet deep (cf. Gifford 1940:82).

In summary, pronghorn pits probably cannot be distinguished from deer, bison, or elk pits except when they are associated with fences, or when their location is inconsistent with prey habitat. The pits listed in Appendix 2 may thus be generalized traps not limited to pronghorn. Corrals are more easily distinguished as to target species, at least when they are well preserved. Deer and bighorn corrals should be taller, and bison corrals more solidly built than pronghorn corrals. Bison and elk are unlikely targets for most of the corrals in Appendix 2 because the habitat is inconsistent with the trap locations. Although one could argue that these corrals are too decayed to dismiss deer and bighorn as the target species, they are far more consistent with the habitat, behavior, and ethnographic records of pronghorn than of any other species.

Bonebed Sites

Pronghorn bonebed sites might provide good evidence for communal hunting if they can be shown to represent a single kill event. Table 2 provides a list of pronghorn bonebed sites representing possible communal kills, including all pronghorn-dominated sites in North America with five or more individuals. Sites such as those in Table 2 with significant numbers of pronghorn are not, in and of themselves, compelling evidence for communal kills, as such sites might well represent accumulations of smaller kills or even natural accumulations.

In order to provide compelling evidence for a communal kill, a pronghorn bonebed should exhibit evidence for human-caused mortality, a single depositional episode, and a single mortality event. Human-caused mortality might be indirectly indicated by butchery evidence, bone impact marks, green bone fractures, burning, and associations of bone and features or artifacts. On the other hand, location of the bonebed in a likely natural death location (e.g., the base of a cliff) or evidence for carnivore accumulation might indicate that the bonebed is not the result of human hunting. A single episode of bone deposition might be indicated by stratigraphic evidence, unimodal bone weathering, articulated bone elements, and elevation-related bone weathering trends. A single mortality event would be indicated by uniform seasonality estimates, evidence of discrete age classes, and an animal age distribution similar to that of living herds.

There is no obvious threshold number of animals expected at a communal kill. Communal hunt yields from ethnographic accounts of drives into corrals range from 12 (Ray 1963:185-187) to 200 or more (Thwaites 1906c:264; Kelly 1932:85; Smith 1974:55-56), while yields from horseback communal hunts range from none (Thwaites 1904:345-346) to three (Egan 1917:241) to 500 or more (Bixby 1880:380; Grinnell 1962b:283-288; Kindig 1987). A communal hunt might result in any number of animals being taken, and a single pronghorn at an archaeological site could represent a communal kill. However, larger archaeofaunal assemblages provide better intuitive evidence for a communal kill and more adequate samples to evaluate the cause of mortality, weathering trends, seasonal-
THE COMMUNAL PRONGHORN HUNT

Table 2

<table>
<thead>
<tr>
<th>Site</th>
<th>Location</th>
<th>Mean Age (RCYBP)</th>
<th>Pronghorn MNI</th>
<th>% of site MNI total</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREAT BASIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whisky Flat</td>
<td>W NV</td>
<td>none</td>
<td>8</td>
<td>Unk</td>
<td>Yohe 1985</td>
</tr>
<tr>
<td>26MN715</td>
<td>W NV</td>
<td>1,750</td>
<td>21</td>
<td>62</td>
<td>Dansie 1990</td>
</tr>
<tr>
<td>ROCKY MOUNTAINS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trapper’s Point</td>
<td>SW WY</td>
<td>5,587</td>
<td>27</td>
<td>54</td>
<td>Miller et al. 1999</td>
</tr>
<tr>
<td>Austin Wash</td>
<td>SW WY</td>
<td>1,187</td>
<td>15</td>
<td>60</td>
<td>Schroedl 1985</td>
</tr>
<tr>
<td>Firehole Basin</td>
<td>SW WY</td>
<td>628</td>
<td>26</td>
<td>84</td>
<td>Lubinski and Metcalf 1996</td>
</tr>
<tr>
<td>Eden Farson</td>
<td>SW WY</td>
<td>230</td>
<td>212</td>
<td>95</td>
<td>Frison 1971</td>
</tr>
<tr>
<td>Gailiun</td>
<td>SW WY</td>
<td>150</td>
<td>8</td>
<td>Unk</td>
<td>Current 1993; Lubinski 1997</td>
</tr>
<tr>
<td>Boar’s Tusk</td>
<td>SW WY</td>
<td>100</td>
<td>6</td>
<td>Unk</td>
<td>Fisher 1981; Lubinski 1997</td>
</tr>
<tr>
<td>GREAT PLAINS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lost Terrace</td>
<td>N MT</td>
<td>1,061</td>
<td>41</td>
<td>92</td>
<td>Davis and Fisher 1988</td>
</tr>
<tr>
<td>Lightning Spring</td>
<td>NW SD</td>
<td>4,038</td>
<td>8</td>
<td>57</td>
<td>Keyser and Davis 1984;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Keyser and Wettstaed 1995</td>
</tr>
<tr>
<td>39FA23</td>
<td>SW SD</td>
<td>688</td>
<td>15</td>
<td>52</td>
<td>Lippincott 1996</td>
</tr>
<tr>
<td>39FA83</td>
<td>SW SD</td>
<td>none</td>
<td>31</td>
<td>Unk</td>
<td>White 1952</td>
</tr>
<tr>
<td>48CA1391 (Component 2)</td>
<td>NE WY</td>
<td>2,760</td>
<td>5</td>
<td>50</td>
<td>McKibbin et al. 1988</td>
</tr>
</tbody>
</table>

* This table lists all known assemblages with pronghorn MNI ≥ 5, and pronghorn MNI ≥ 50% of total MNI. Fetal material has been excluded from pronghorn MNI as possible. Radiocarbon ages averaged with Long and Rippeteau’s (1974) method.

Unk: Unknown (could not be determined from reported data).

Based on the 1985 excavations (Lippincott 1996); the 1948-1950 excavations produced 15 MNI mature and 6 MNI immature pronghorn (Wheeler 1996).

ity, and animal age distribution. Since large pronghorn bonebeds are rare (Table 2), five individuals might present a reasonable arbitrary value for initial consideration of an archaeological bonebed.

Few of the bonebeds listed in Table 2 have been examined in detail to determine if they represent communal kills. However, Lubinski (1997) evaluated five sites in southwest Wyoming. On the basis of evidence for human-caused mortality, single depositional episode, and single mortality event, Firehole Basin and Eden-Farson were accepted as mass kills while Austin Wash and Gailiun were rejected. The evidence at Boar’s Tusk was considered equivocal (see Lubinski 1997).

OBSERVATIONS ON THE EVIDENCE

Across North America, there is abundant evidence for communal pronghorn hunting in the last
300 years or so from written accounts and standing juniper corrals, but what do the available data indicate about the prevalence of such activities in prehistory? At first glance, the various lines of evidence appear to offer contradictory conclusions. The projectile point concentrations, like rock wall sites in the Great Basin, tend to lack Late Prehistoric Period arrow points, suggesting a decrease in use of these facilities through time (Pendleton and Thomas 1983; Thomas 1988). On the other hand, the corral sites tend to include only late prehistoric/protohistoric features such as arrow points, steel axe cuts, or late radiocarbon ages, and three-quarters of the bonebed sites date within the last 1,200 years.

This dichotomy may not be as real as it appears, because the preponderance of Archaic projectile point types on the surface of some sites may simply reflect continuous hunting loss of projectile point styles utilized for different lengths of time. Using the Fort Sage Drift Fence (Pendleton and Thomas 1983) as an example, if a hunting facility came into use during Gatecliff times, then there may be 4,000 years (or more) for deposition of Gatecliff, Elko, and Rosegate series points but only 600 years for deposition of Desert series points (Table 3).

Even if use of a hunting facility was constant through time after 5,000 B.P., there would be far more of the earlier points simply because the earlier time span is more than six times longer. Even taking into account the age range for each point style, there is little evidence for a decrease in use with the introduction of Desert series points (Table 3). The lack of any Desert series points at other rock wall sites (e.g., Pendleton and Thomas 1983:Table 3) might present more compelling evidence for a shift in hunting strategies, but it might simply reflect the fact that points are lost or discarded somewhat rarely at such sites and the Desert series sampling period is so much shorter than the pre-Desert series sampling period. Naturally, a hunting facility might have been used over shorter intervals than implied by the maximum age range for point styles, but given the nature of projectile point cross-dating, it is difficult to support the argument for a decrease in use at about 1,500 B.P. at Fort Sage and many other similar sites.

Although the evidence for communal pronghorn hunting in the historic and protohistoric periods is abundant and convincing, the data indicating communal pronghorn hunting in the remote past is considerably sparser and more equivocal. None of the enclosure sites possess more than a handful of dart points. Many of the bonebed sites may as easily be palimpsests of small kills as single communal kills. The point concentrations may be hunting camps, retooling loci, or favorable ambush locales that were used repeatedly. Some rock wall and hunting blind sites undoubtedly date to the remote past, but probably represent single hunters or small cooperating groups rather than large cooperative ventures (see also Delacorte 1985).

Whether the preponderance of recent evidence reflects a change in the importance or frequency of communal hunts is, of course, questionable, since written accounts and standing juniper corrals cannot be very old. On the other hand, large pronghorn bonebed sites more than 10,000 years old could theoretically exist, yet to date there are few pronghorn-dominated faunal assemblages over 2,000 years old, only one of which (Trapper's Point) is thought to represent a communal kill (Miller and Francis 1993). In southwest Wyoming, none of 57 pronghorn-bearing faunal assemblages dating between 5,000 and 700 B.P. were found to be mass kills, while two of five such assemblages dating after 700 B.P. were found to be mass kills (Lubinski 1997). This seems to indicate a late increase in communal pronghorn hunting at the periphery of the Great Basin and Great Plains. In the Great Basin proper, a similar shift might have occurred as hunting from blinds and rock walls was replaced or supplemented with communal drives into enclosures.

It is reasonable to suggest that communal pronghorn hunting has a long history (Arkush 1986), but clearly it is more difficult to prove for the remote past than for the recent past due to inherent differ-
Table 3
POINT DEPOSITION AT TWO PRONGHORN-RELATED HUNTING COMPLEXES*

<table>
<thead>
<tr>
<th>Point Style</th>
<th>Age Range</th>
<th>Span (in years)</th>
<th>Fort Sage Deposition Rate</th>
<th>Box Spring Deposition Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desert series</td>
<td>A.D. 1300-1859</td>
<td>559</td>
<td>1</td>
<td>1/559</td>
</tr>
<tr>
<td>Rosegate series</td>
<td>A.D. 500-1300</td>
<td>800</td>
<td>2</td>
<td>1/400</td>
</tr>
<tr>
<td>Elko series</td>
<td>1,000 B.C.-A.D. 500</td>
<td>1,500</td>
<td>3</td>
<td>1/500</td>
</tr>
<tr>
<td>Gatecliff series</td>
<td>3,000-1,300 B.C.</td>
<td>1,700</td>
<td>3</td>
<td>1/567</td>
</tr>
<tr>
<td>Pre-Desert series</td>
<td>3,000 B.C.-A.D. 1300</td>
<td>4,300</td>
<td>8</td>
<td>1/538</td>
</tr>
</tbody>
</table>

*Age ranges are those given by Thomas (1983:Table 7; Pendleton and Thomas 1983). Fort Sage Drift Fence point distribution from Pendleton and Thomas (1983). Box Spring point distribution from Thomas (1988:Table 52). Deposition rate in points per year.

ences in the quality of the data available. It is possible that there was little or no change in pronghorn hunting tactics throughout prehistory. Many sites that appear superficially to be communal kill locations (particularly bonebed sites) have not been subjected to detailed investigations that might test this interpretation. Further faunal analyses of bonebed sites, the development of explicit criteria for distinguishing between fortuitous point concentrations and kill locations, and the dating of extant trap sites would provide us with more definitive information with which to address the antiquity of communal pronghorn hunting.

Traps and bonebed sites seem to have a nearly inverse distribution across western North America (Fig. 3). This may be because traps have remained only in areas with little land disturbance of the kind that has exposed bonebed sites. Presumably, there are as-yet undiscovered bonebed sites among the numerous standing corrals in northeast Nevada, for example. If this is not the case, one wonders why there is so much more faunal evidence in the Rockies and Plains than in the Great Basin.

CONCLUSION

There is compelling evidence for communal pronghorn hunting across western North America in the protohistoric and early historic periods, and intriguing if equivocal evidence for the prehistoric Basin and Plains. Although prehistoric pronghorn hunting facilities and bonebeds have been documented in increasing numbers in recent years, there are undoubtedly more of these facilities that have yet to be reported. Much more can be learned from extant hunting facilities like pronghorn corrals. In addition to the importance of discovering and documenting such perishable facilities before they are lost to fire, vandalism, or decay, excavations might allow us to determine if bonebeds are associated with them, and whether the present distribution of such traps accurately reflects a late phenomenon, or merely the surviving remnants of a long-term pattern.

ACKNOWLEDGEMENTS

This article is a revised portion of Chapter 3 of my dissertation (Lubinski 1997). I am indebted to W. G. Hepworth (former Director of Technical Research, Wyoming Game and Fish Department) for information on pronghorn behavior. For providing information on pronghorn trap sites, much of which is unpublished, I am indebted to B. S. Arkush, F. P. Frampton, M. C. Hall, B. S. Hockett, T. W. Murphy, R. E. Parr, P. J. Wilke. R. M. Yohe, II, and several anonymous reviewers provided useful suggestions for improving the manuscript. Problems and omissions are, of course,
mine alone. This research was partially supported by a Dissertation Improvement Grant from the National Science Foundation.

REFERENCES

Amme, Brian, and Pattick Lubinski

Anell, Bengt

Arkush, Brooke S.

Binford, Lewis R.

Bixby, A.

Blissenbach, Tim

Brumley, John H.

Burpee, L. U. (ed.)

Cadieux, Charles L.

Christiansen, Tom

Cooney, Judd

Couch, Elliot (ed.)

Creek, Darwin E.

Cremony, John C.
1868 Life Among the Apaches. San Francisco: A. Roman & Company. (Reprinted in 1983 by University of Nebraska Press, Lincoln.)

Crump, William

Current, William

Curtis, Edward S.

1924 The North American Indian: Being a Series of Volumes Picturing and De-

Dansie, Amy

Davis, Leslie B., and John W. Fisher, Jr.

Delacorte, Michael G.

Denig, Edwin T.

Driver, Jonathan C.

Drucker, Philip

Egan, Howard R.
1917 Pioneering the West 1846 to 1878: Major Howard Egan’s Diary. Salt Lake City: Skelton Publishing.

Einarsen, A. S.

Ewers, John C.

Fisher, John W., Jr.

Fowler, Catherine S.

Frison, George C.

Gifford, Edward W.

Greenquist, Connie M.

Grinnell, George Bird

Hall, M. C.
1990 The OXBOW Archaeological Incident:

Hill, W. W.
1938 The Agricultural and Hunting Methods of the Navajo Indians. Yale University Publications in Anthropology No. 18.

Hindley, Dixon

Hockett, Bryan S.

Hofman, Jack L.

Hopkins, Sara Winnemucca
1883 Life Among the Piutes: Their Wrongs and Claims. Boston: Cupples, Upham.

Hutchison, Daniel

Hyde, George E.

Irving, Washington
1837 The Rocky Mountains: Or, Scenes, Incidents, and Adventures in the Far West; Digested from the Journal of Captain B. L. E. Bonneville, of the Army of the United States, and Illustrated from Other Sources, Vol. II. Philadelphia: Carey, Lea & Blanchard.

Jaynes, S., and Tim Murphy

Kelly, Isabel T.

Kelly, Robert L.

Keyser, James D., and Carl M. Davis
1984 Lightning Spring: 4,000 Years of Pine Parkland Prehistory. Archaeology in Montana 25(2 and 3):1-64.

Keyser, James D., and James R. Wettstaedt

Kindig, Jean M.

Kitchen, David W.

Kitchen, David W., and Bart W. O’Gara

Kroeber, A.L.

Lippincott, Kerry

Long, Austin, and Bruce Rippegeau

Lowie, Robert H.

Lubinski, Patrick M.

Lubinski, Patrick M., and Michael D. Metcalf

Masson, Louis F. R.

McKibbin, Anne, Kevin D. Black, Ronald J. Rood, Margaret A. Van Ness, and Michael D. Metcalf

Miller, Mark E., and Julie E. Francis

Miller, Mark E., Paul H. Sanders, and Julie E. Francis (eds.)

Mitchell, George J.

Mooney, James

Murray, Dirk

Murphy, Robert F., and Yolanda Murphy

Murphy, Tim

Murphy, Timothy W., and Fred P. Frampton

Murphy, Tim, and Peggy Waski

Nelson, Edward W.

Novak, Ronald M., and John L. Paradiso

O’Gara, Bart W., and Jim D. Yoakum (eds.)

Parr, Robert E.

Parsons, Elsie C. (ed.)

Penfield, Lorann S. A., and David Hurst Thomas

Petersen, Frederick F., and Steven M. Stearns
Polk, Michael R.

Raper, Elaine, Tom Christiansen, and Brad Petch

Ray, Verne F.

Raymond, Anan

Reagan, Albert B.
1934 The Gosiute (Goshute), or Shoshoni-Goship Indians of the Deep Creek Region in Western Utah. Proceedings of the Utah Academy of Sciences, Arts and Letters 11:43-54.

Riddell, Francis A.

Rudy, Jack R.

Schroedl, Alan R. (comp.)

Schuh, Dwight

Schwartz, Richard

Schwartz, Warren E.

Shaffer, Brian S., and Karen M. Gardner

Shimkin, Demetri B.

Simpson, James H.

Smith, Anne M.
1974 Ethnography of the Northern Utes. Museum of New Mexico, Santa Fe, Papers in Anthropology No. 17.

Snowden, J. Hudson

Spillet, J. J., J. B. Low, and D. Sill

Stands in Timber, John, and Margot Liberty

Steward, Julian H.

Stewart, Omer C.

THE COMMUNAL PRONGHORN HUNT

Sundstrom, Charles, William G. Hepworth, and Kenneth L. Diem

Thomas, David Hurst

Thomas, David Hurst, Lorann S. A. Pendleton, and Stephen C. Cappannari

Thwaites, Reuben G. (ed.)

Turney-High, Harry H.

Voegelin, Erminie W.

Wheeler, Richard P.

Whitaker, John O., Jr.

White, Theodore E.

Wilke, Philip J.

Wissler, Clark

Wyoming Game and Fish Department

1992 Natural History and Management Information for Selected Wildlife Species in Wyoming. Cheyenne: Wyoming Game and Fish Department, Biological Services.

Yohe, Robert M., II
APPENDIX 1
WRITTEN ACCOUNTS OF COMMUNAL PRONGHORN HUNTS

California Culture Area

Achomawi: Pronghorn sometimes surrounded or run down by men on snowshoes (Curtis 1924:140).

Achomawi: Charmed, then driven into tule corral; women inside corral kill them, in spring near Alturas, California (Voegelin 1942:169).

Yokuts: Intertribal pedestrian surround, narrowing down from circle several miles in diameter, animals shot or exhausted (Kroeber 1925:528-529).

Plateau Culture Area

Klamath: Surrounds with a large net set on stakes in a wide, closed circle in the Klamath Marsh area, Oregon (Voegelin 1942:169).

Modoc: Pedestrian drive of up to 12 pronghorn through V-wings into corral (made of burning sage and women with circle of rope), near Tule Lake, California (Ray 1963:185-187).

Southwest Culture Area

Apache: Six to eight men drive into 300-ft. diameter juniper corral (one released for good luck); also horseback drive to waiting hunters (Gifford 1940:85).

Apache: Horseback surround involving 110 hunters (95 men and 15 women) yielded 87 pronghorn ca. 1863 near Ft. Sumner, New Mexico (Cremo ny 1868:203-204).

Hopi: Pedestrian relays exhausting animals inside surround (Curtis 1922:47).

Hopi: Story of former pedestrian drives into 600 x 300 ft. corral with 15 to 20 ft. opening and 800 to 1,000 yd. V-wings. (Although the enclosure is described as “a strong high stockade of tree boles and limbs, close, compact, and slightly overhanging inward, to prevent the antelope from jumping out” [Parsons 1936:278], it also is called a “sheep house,” which implies that the structure may be designed for sheep but used for pronghorn in this case.)

Navajo: Twelve men sufficed to drive pronghorn into brush corral, one released for good luck (Gifford 1940:85).

Navajo: Drive of 20 to 50 men on horse or foot into 300-ft. diameter corral of pinyon and cedar, with walls 10 to 12 ft. high, and V-wings (one possibly curved) 1,200 ft. to a mile long (Hill 1938:145-156).

Tiwa: Horseback chase involving 400 men from five pueblos, ca. 1896 in Estancia Valley, New Mexico (Curtis 1926:11).

Zuni: Up to 200 horsemen drive through two- to three-mile-long V-wings into corral and close rope/blanket gate (Gifford 1940:85).

Great Basin Culture Area

Gosiute: Pedestrian drive of 25 animals through winding V-wings into 250-ft. diameter corral; also horseback surround by 16 hunters, yielding three animals; both near Deep Creek, Utah (Egan 1917:238-241).

Northern Paiute: March drive into corral formed of brush and a shaking rope in Secret Valley, California (Riddell 1960:55-56).

Northern Paiute: Various pedestrian drives into corrals 150 ft. to one-quarter mile across, formed of sagebrush or brush and shaking rope, all directed by charmers; also run down on horseback; reported from Deep Creek, Honey Lake, Pyramid Lake, Walker River, and Yerington, Nevada (Fowler 1989:14-19).

Northern Paiute: Horseback drive abandoned, then ambush of pronghorn by concealed hunters when the animals returned; also driven into corrals (Curtis 1926:73).

Northern Paiute: Winnemucca charmed antelope into a circle of six sagebrush piles; the pronghorn then ran about inside it as if there were a fence (Hopkins 1883:55-57).

Northern Paiute: Sagebrush or tule rope with suspended balls of sagebrush placed in circle on top of existing shrubs (Stewart 1941:422).

Northern Paiute: Accounts of driving pronghorn into a sagebrush pile corral or sagebrush rope circle by six Surprise Valley Paiutes (Kelly 1932:83-86).

Southern Paiute: Antelope surrounded, or driven past waiting hunters or into corral (Stewart 1942:241).

Southern Paiute: Pronghorn driven towards a straight 500-ft.-long sagebrush fence and shot as they passed through the single opening, or driven into a semicircular corral with V-wings,
or surrounded by 10 hunters under the direction of a chief (Kelly 1964:50).

Eastern Shoshone: Surround, then run down in relays on horseback during early Reservation Period; reported not to have built corrals (Murphy and Murphy 1960:308).

Northern Shoshone: Horseback chase of 10 antelope for two hours by 20 hunters (none killed), August 14, 1804, near present-day Bannock, Idaho (Thwaites 1904:345-346).

Northern Shoshone: Women constructed 100-acre sagebrush enclosure in spring, and await pronghorn. When pronghorn entered, men ran them in relays and exhausted them before clubbing, in southern Idaho (Irving 1837:51).

Northern Shoshone: Drive into corral of sage bark rope placed on sagebrush piles, reported from Mountain Home, Idaho (Steward 1943:266-267).

Northern Shoshone: Drive into 18-in.-high sagebrush corral with additional poles supporting sage bark rope; also use of rattle to draw to waiting archers, reported from South Promontory, Utah (Steward 1943:359).

Western Shoshone: Various drives into corrals, usually directed by charmers. Informants from Battle Mountain, Eureka, Kawich, Reese River, and Ruby Valley, Nevada, describe 50 ft. to one-mile diameter corrals, with or without wings up to three miles long (Steward 1941:219-221, 328-329).

Western Shoshone: Various drives into corrals, usually directed by charmers or shaman, and also horseback surrounds (Steward 1938).

Ute: Antelope surrounded, or driven past waiting hunters or into corral (Stewart 1942:241).

Ute: Men drove up to 200 animals through V-wings over low cliff into corral, or ran them down on horseback (Smith 1974:55-56).

Washoe: Antelope formerly driven through a chute into a sagebrush corral one acre in size and dispatched with arrows and clubs (Lowie 1939:325).

Plains Culture Area

Arapaho: Horseback surround of a variety of animals, ca. 1880 in present-day Boulder County, Colorado (Kindig 1987:23).

Arapaho: Relays of ponies until over 500 exhausted pronghorn were taken in a hollow near Valmont in present-day Boulder County, Colorado, in the fall of 1860 (Bixby 1880:380, as cited in Kindig 1987).

Arikara: Prevented pronghorn from exiting river during fall migration across river, killing 58 with arrows and sticks, October 16, 1804, on Missouri River, south of Cannonball River in North Dakota (Coues 1893:170).

Assiniboine: Abandoned corral attributed to Assiniboin observed by Lewis and Clark, April 15, 1805, near present-day New Town, North Dakota (Coues 1893:274).

Brulé Sioux: Several hundred people drove several hundred antelope over cliffs into corrals in the White River Badlands (Denig 1961:18).

Brulé Sioux: Hinman party observed pronghorn bone in a brush corral at the base of a cliff, attributed to a Brulé Sioux horseback drive, near present-day Pine Ridge Reservation, South Dakota, in 1874 (Hyde 1974:21).

Blackfoot: Pedestrian drive through curved V-wings into partially covered pit 6 m. long by 2 m. wide by 3 to 4 m. deep on the Blackfoot Reservation, Montana (Wissler 1910:38).

Blackfoot: Pedestrian drive through V-wings into covered pits (Grinnell 1893:236).

Cheyenne: Pedestrian drive through V-wings into partially concealed pit, ca. 1855 (Grinnell 1923:278-283).

Cheyenne: Horseback drive of 600 or more pronghorn into human corral in 1858, with William Bent on Wild Horse Creek (Grinnell 1923:283-288).

Cheyenne: Pedestrian drive through human V-wings into 8 x 16 ft. pit, then killed with clubs, in present-day Belle Fourche, South Dakota, before 1850 (Stands in Timber and Liberty 1967:84-86; Schwartz 1988:67).

Hidatsa and Mandan: Horse driven through one-to two-mile-long V-wings over a low cliff into small enclosure, then clubbed or taken alive (Thwaites 1906b:347).

Kiowa: Drive through V-wings (built of posts set closely together and hung with blankets) into log post corral; also driven along game trail into a large pitfall covered with bushes and grass (Mooney 1898:309).

Mandan: Drive into corral with V-wings, yield of 100 pronghorn in two days, observed near present-day Washburn, North Dakota, on November 5, 1804 (Coues 1893:190).
APPENDIX 2
POSSIBLE PRONGHORN TRAPPING STRUCTURES

California

Stampede Valley: Lake Tahoe area, California; rock enclosure 65 ft. in diameter and 0.5 to 2.5 ft. high, with a 6 ft. entrance. Removed before reservoir flooded (Schwartz 1995).

Great Basin

42BO447: Utah; juniper enclosure about 300 m. in diameter, with V-wings (one 115 m. long), and no typeable points but steel axe cuts on wood (Raymond 1982).

42BO448: Utah; 170 x 140 m. juniper enclosure with 20-m.-long V-wings and steel axe cuts on wood, but no points (Raymond 1982).

Butte Valley: Northeast Nevada; U-shaped enclosure about 500 x 200 m. in size (Murphy and Frampton 1986).

Clover Valley: CRNV-11-3350 in northeast Nevada; U-shaped juniper enclosure about 380 x 320 m., some steel axe cuts (Murphy and Frampton 1986; Polk 1987).

Currie Hills: CRNV-11-3334 in northeast Nevada; 360 x 250 m. juniper enclosure with one 62 m. wing and one 785 m. circling wing, and some steel axe cuts (Murphy and Frampton 1986).

Cobre: CRNV-11-3335 in northeast Nevada; 330 x 300 m. juniper enclosure incorporating posts (some standing, some axe-cut) and living trees; 50 arrow points and four hearths on surface (Murphy and Frampton 1986; Polk 1987).

Dry Lake Flat North: CRNV-11-3337 in northeast Nevada; juniper enclosure about 400 x 300 m. in size (Murphy and Frampton 1986).

Dry Lake Flat South: CRNV-11-3338 in northeast Nevada; U-shaped juniper enclosure about 500 x 400 m. in size, incorporating a few living trees; some steel axe cuts (Murphy and Frampton 1986).

Five Mile Draw North: CRNV-11-3613 in northeast Nevada; juniper enclosure about 400 x 300 m. in size (Hindley 1985; Murphy and Frampton 1986).

Five Mile Draw East: CRNV-11-3613 in northeast Nevada; juniper enclosure about 400 x 300 m. in size (Hindley 1985; Murphy and Frampton 1986).

Hendry's Creek: CRNV-04-04; 26WP13 in northeast Nevada; U-shaped enclosure about 180 x 160 m. in size formed largely of cobbles and boulders (Rudy 1953).

Little Smoky Valley: CRNV-04-7490 in northeast Nevada; U-shaped enclosure about 320 x 425 m. in size, constructed mostly of basalt cobbles and boulders (Amme and Lubinski 1994).

Maverick Range: CRNV-11-1561 in northeast Nevada; juniper enclosure about 500 x 500 m. in size with short V-wings (Jaynes and Murphy 1980; Murphy and Frampton 1986).

Mizpah: CRNV-11-8037 in northeast Nevada; juniper enclosure (B. Hockett, personal communication 1994).

Ruby Wash: CRNV-11-0142 in northeast Nevada; 400 x 200 m. enclosure formed by juniper logs (Blissenbach 1977; Murphy and Frampton 1986).

Thorpe: CRNV-11-7914 in northeast Nevada; U-shaped juniper enclosure about 620 x 280 m. in size (Murphy 1992).

Toano Draw: CRNTV-11-3339 in northeast Nevada; enclosure about 350 x 300 m. in size (Murphy and Frampton 1986).

Tobar: CRNV-11-3336 in northeast Nevada; 430 x 360 m. juniper post enclosure with 100 m. V-wings, and some steel axe cuts (Murphy and Frampton 1986; Polk 1987).

Wendover: CRNV-11-2773 in northeast Nevada; stone and juniper enclosure about 275 x 275 m., with attached circling wall about 400 m. long and seven interior blinds; 82 points recovered on surface, mostly arrow point forms (Murphy and Waski 1983; Murphy and Frampton 1986).

Anchorite Pass: 26MN711 in Mono Lake area, Nevada; 300 x 300 m. enclosure of juniper, rocks, and living trees, with three Humboldt and one Rose Spring point recovered (Hall 1990:513-524).

Excelsior: Mono Lake Area, Nevada; 215 x 165 m. juniper, pinyon, and rock enclosure with ca. 400 m. long V-wings, flagstones across entrance; thought to be a deer trap (Wilke 1986).

Huntoon: 26MN589 in Mono Lake area, Nevada; 335 x 260 m. juniper and rock enclosure with 3,285 m. drift fence, and flagstones at the entrance (Parr 1989).

Whisky Flat: 26MN5 in Mono Lake area, Nevada; 345 x 260 m. juniper and rock enclosure with 1,046 m. drift fence, interior rock blinds, flagstones at the entrance; 79 Desert Side-notched and Cottonwood points recovered inside trap (Wilke 1986).
CA-MNO-2122, Trap 1: Mono Lake area, California; burnt juniper enclosure 230 x 200 m. in size, with parallel, sinuous entrance wings about one km. long; adjacent arrow points, historical debris, and feature dated 410 RCYBP (Arkush 1995).

CA-MNO-2122, Trap 2: Mono Lake area, California; burnt juniper enclosure 350 x 300 m. in size, with ca. 500 m. V-wings and 50 m. wide entrance associated with arrow points and dates from 560 to 490 RCYBP (Arkush 1995).

CA-MNO-2122, Trap 4: Mono Lake area, California; burnt juniper enclosure about 500 x 400 m. in size, with basalt flagstones across 60 m. entrance, and ca. 250 m. V-wings (Arkush 1995).

Rocky Mountains

Fort Bridger: 48UT1 in southwest Wyoming; juniper debris in 200 x 150 m. enclosure with 625 m. long “circling fence” (Frison 1991: 244).

Upper Powder Spring: 48SW9463 in southwest Wyoming; series of drift fence, wickiups, and rock art in a large (3,050 x 1,370 m.) juniper log and post enclosure with some steel axe cuts (Murcray 1993).

Great Plains

Laidlaw: D10u-9 in Alberta; 35-m. long stone V-wings leading into 7 x 3 m. enclosure; test unit revealed pit with one pronghorn and probable bison (Brumley 1984); 3,280 RCYBP date on bone (Brumley 1986:205).

Belle Fourche: South Dakota; extant 16 x 8 ft. (4.9 x 2.4 m.) pit trap identified as a pronghorn trap by a Cheyenne shaman (Stands in Timber and Liberty 1967:84-86; Schwartz 1988:167).

Missouri Buttes: 48CK49/69 in Wyoming; a three-sided, log-lined 3 x 3 m. pit “appearing like an abandoned cellar” (Hutchison 1975) and attached juniper log V-wings (Frison 1991: 245).