Title
MAGNETIC-ANISOTROPY IN THE UXTH1-XZN8.5 SYSTEM

Permalink
https://escholarship.org/uc/item/3x68w68w

Journal
JOURNAL OF APPLIED PHYSICS, 61(8)

ISSN
0021-8979

Authors
WILLIS, JO
FISK, Z
AIKIN, RM
et al.

Publication Date
1987-04-15

DOI
10.1063/1.338426

License
CC BY 4.0

Peer reviewed
Magnetic anisotropy in the \(\text{U}_x \text{Th}_{1-x} \text{Zn}_{8.5} \) system

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

We have investigated the source of the anisotropic susceptibility of \(\text{UZn}_{8.5} \) by preparing single crystals of \(\text{U}_x \text{Th}_{1-x} \text{Zn}_{8.5} \), for small \(x \). Preliminary indications are that anisotropic exchange, rather than crystal field effects, are responsible for the anisotropy, but possible impurity contributions to the (anisotropic) susceptibility of the \(\text{ThZn}_{8.5} \) do not permit a stronger statement. Further measurements for small \(x \) show that both the electronic specific heat and the susceptibility at low temperature are strongly enhanced, and that Kondo-type resistivity minima are observed. The enhancements are somewhat reduced in the concentrated system \(\text{UZn}_{8.5} \).

In the last several years, a new class of materials has been discovered that is characterized by extremely large values of the effective electron mass \(m^* \), which are known as heavy electron or heavy fermion systems. Experimentally, very large values of the electronic specific-heat coefficient \(\gamma \) and magnetic susceptibility \(\chi \), at \(T = 0 \) are observed. From these, a very high density of states at the Fermi energy \(N(E_F) \) and consequently large \(m^* \) are inferred. These values of \(m^* \) range up to several hundred times the free electron mass \(m_e \), hence the adjective "heavy." These compounds exhibit superconducting, normal Fermi liquid, or magnetically ordered ground states.\(^1\) It is the latter that is of interest in the present paper. \(\text{UZn}_{7.1} \), or \(\text{UZn}_{8.5} \), which is the formula unit we employ, is a heavy electron antiferromagnet with a Neél temperature \(T_N \) of 9.8 K as determined from anomalies in the specific heat \(C_p \), the dc susceptibility \(\chi \), and the resistivity \(\rho \) as a function of temperature \(T \).\(^2\) The compound \(\text{UZn}_{8.5} \) forms in the rhombohedral \(\text{Th}_2\text{Zn}_1 \) structure, which we will deal with in the usual hexagonal representation. From neutron diffraction results, the ordered moments of \(0.8 \pm 0.1 \mu_B \) on the uranium sites were found to lie in the basal plane and to be oriented antiparallel to the nearest neighbors within the \(ab \) plane and along the \(c \) axis.\(^3\) Recent magnetotransport measurements show a local minimum in the Hall coefficient and a sign change in the magnetoresistivity at \(T_N \) (Ref. 4); the authors interpret the results as suggesting an independent Kondo system at high temperature, gradually transforming to a coherent one below about 18 K and then magnetically ordering at \(T_N \).

In the present work we focus on two questions in \(\text{UZn}_{8.5} \): the anisotropy in the magnetic susceptibility and the dilute Kondo regime accessed in pseudobinary compounds of \(\text{U}_x \text{Th}_{1-x} \text{Zn}_{8.5} \) for small \(x \). The source of the anisotropy can be identified by examining the anisotropy for small \(x \), for which anisotropic exchange should be very small relative to \(x = 1 \), whereas crystal field anisotropy should be relatively unchanged. Studying the properties of dilute uranium compounds is useful in understanding the independent Kondo system and its progression to the concentrated Kondo lattice of the heavy electron systems. To these ends, we have prepared and examined single-crystal specimens near \(x = 0 \) and reexamined pure \(\text{UZn}_{8.5} \).

Samples of \(\text{U}_x \text{Th}_{1-x} \text{Zn}_{8.5} \) were prepared by placing the constituents in an outgassed BeO crucible, sealing this in a quartz tube, heating to 1050 °C, and cooling slowly. The large single crystals that resulted were oriented by x-ray diffraction using a standard Laue camera and spark-cut from the bulk for further measurement. The susceptibility was determined in either a Faraday balance magnetometer or in a SQUID susceptometer in magnetic fields from 2 to 20 kOe. The specific-heat measurements were carried out in a small sample calorimeter using the time-constant relaxation method. Resistivity measurements were performed using a standard four-terminal ac technique. The compositions stated are those of the starting materials.

Figure 1 shows the results of dc susceptibility measurements on pure \(\text{UZn}_{8.5} \). The anisotropy is readily apparent near the Neél temperature \(T_N \) of 9.8 K. At 15 K the susceptibility for the applied field \(H \) perpendicular to the hexagonal \(c \) axis, \(\chi_{H||c} \), is about 30% greater than the susceptibility for the field applied parallel to the \(c \) axis, \(\chi_{H\perp c} \). A plot of \(1/\chi \) vs \(T \) for these data yields an effective paramagnetic moment \(\mu_{eff} \) of \(3.3 \pm 0.1 \mu_B \) per uranium atom and Curie-Weiss intercepts \(\theta_{Cw} \) of \(-130 \pm 5 \) K for \(H || c \) and \(-95 \pm 5 \) K for \(H \perp c \) for a calculated powder average of \(-107 \pm 7 \) K. These values are slightly different from those reported in Ref. 2, but in good agreement \((3.15 \pm 0.1 \mu_B, -120 \pm 5 \) K) with those of UZn.

FIG. 1. The dc susceptibility and the inverse susceptibility vs temperature for \(\text{UZn}_{8.5} \) for \(H \parallel c \) to and \(H \parallel c \) to the \(c \) axis.
The susceptibility was measured for \(H \parallel c \) and \(H \parallel c \). Magnetization \(M \) vs \(H \) curves were practically linear to 50 kOe, showing only slight tendencies toward saturation, for \(H \parallel c \) at 1.8 K. However, for \(H \parallel c \) for the \(x = 0 \) and 0.02 specimens, there was a much stronger tendency to saturate one component of the magnetization at fields on the order of 20–30 kOe at 1.8 K. This suggests an unusual intrinsic effect or the possibility of ferromagnetic impurities in the lattice, which would account for the anisotropic saturation behavior. We estimate that this effect would require 350 ppm of Gd (or equivalent) on Th sites in the lattice. We saw no evidence of this number of magnetic impurities in any of the starting materials; however, contamination by the crucible cannot be ruled out at present. Neglecting this unlikely impurity effect, which is small above 100 K, we then find, after subtracting the diamagnetic contribution of the ThZn\(_{8.5}\), that the trend is for \(\chi_{Hlc} \) to be depressed relative to \(\chi_{Hlc} \) as \(x \) is increased.

Several parameters from the susceptibility data are collected in Table I for the \(H \parallel c \) axis case from which \(M \) was always linear with \(H \). In the dilute limit, the \(\theta \) values are still substantially negative indicating some residual antiferromagnetic interactions, and the susceptibility \(\chi_0 \) at \(T = 0 \) per mole uranium is enhanced a factor of 10 over the value for \(x = 1 \). The moment values are close to those for the U 5f\(^2\) or 5f\(^3\) configuration.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\rho_{em}) ((\mu_B/\text{U atom}))</th>
<th>(\theta_{cw}) (K)</th>
<th>(\chi_0 = \chi(T=0)) (emu/mol-U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020</td>
<td>3.87 \pm 0.1</td>
<td>-36.5</td>
<td>10 \times 10(^{-2})</td>
</tr>
<tr>
<td>0.043</td>
<td>3.54 \pm 0.15</td>
<td>-33</td>
<td>9.2 \times 10(^{-2})</td>
</tr>
<tr>
<td>(T > T_N)</td>
<td>3.3 \pm 0.1</td>
<td>-130</td>
<td>1.0 \times 10(^{-2})</td>
</tr>
<tr>
<td>(T < T_N)</td>
<td></td>
<td></td>
<td>0.8 \times 10(^{-2})</td>
</tr>
</tbody>
</table>

The low-temperature specific heats \(C_p \) for \(x = 0.020 \) and 0.043 deviate from the value for \(x = 0 \) below about 7 K. For \(x = 0 \) the specific heat can be represented as

\[C_p = \gamma T + \beta T^3 \]

where \(\gamma \) is the electronic specific-heat coefficient related to the density of states at the Fermi energy, and hence to the effective electron mass \(m^* \), and \(\beta \) is proportional to \(\theta_D \)\(^{3/2} \) where \(\theta_D \) is the Debye temperature. For \(x > 0 \) there are strong enhancements to the value of \(\gamma = C_p / T \) below 10 K. The measured \(\gamma \) value plus a calculated \(\gamma \) value per mole uranium are given for each \(x \) in Table II.

The temperature dependence of the resistance of U\(_x\)Th\(_{1-x}\)Zn\(_{8.5}\) changes drastically as \(x \) is increased from 0 to 1; see Fig. 2. For \(x = 0 \) the behavior is the same as a normal metal-linear temperature dependence at high temperatures and saturation below 10 K. For \(x = 0.020 \) and 0.043, there appears a Kondo-type minimum in the resistance. This minimum at \(T(R_{\text{min}}) \) moves to higher temperatures with \(x \), with \(T(R_{\text{min}}) \) apparently much greater than 300 K at \(x = 1 \), for which a coherent ground state begins to develop below about 17 K. Several of the resistance parameters are collected in Table III. We also observed a substantial resistance drop below 5 K for \(x = 0.043 \); we see no corresponding feature in

<table>
<thead>
<tr>
<th>(x)</th>
<th>(R(300 \text{ K}))</th>
<th>(R(1.4 \text{ K}))</th>
<th>(T(R_{\text{min}})) (K)</th>
<th>(T(R_{\text{max}})) (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>37</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0.020</td>
<td>3.4</td>
<td>16</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0.043</td>
<td>1.9</td>
<td>22</td>
<td>6</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>> 300</td>
<td>17</td>
<td>...</td>
</tr>
</tbody>
</table>

![FIG. 2. The resistance of U\(_x\)Th\(_{1-x}\)Zn\(_{8.5}\) normalized to the room-temperature value vs temperature for the indicated values of \(x \).](image)
either χ or C_p near this temperature. It is known that for $x = 0.9$ the coherent state present for $x = 1$ has already been destroyed6 and thus would not be expected for $x = 0.043$; the nature of this feature is not currently understood.

In conclusion, we find resistivity minima and strong enhancements of the specific heat γ values and the low-temperature susceptibility χ_0 for small values of x. In the concentrated system the resistivity minimum is pushed above 300 K, and coherence develops at low temperature; the strong enhancements are reduced somewhat but are still orders of magnitude larger than seen in normal, not heavy, electron systems. We believe that these results suggest some similarities between Ce-based Kondo systems and the uranium-based compound under study here.

We acknowledge useful discussions with B. R. Copper and J. W. Wilkins. This work was performed under the auspices of the U.S. Department of Energy.