Title

Permalink
https://escholarship.org/uc/item/3xh8n1c9

Authors
Heinemann, H.
Somorjai, Gabor A.

Publication Date
1990-12-01
Fundamental Studies of Catalytic Gasification
Quarterly Report
October 1, 1990 — December 31, 1990

H. Heinemann and G.A. Somorjai

December 1990

Materials and Chemical Sciences Division
Lawrence Berkeley Laboratory • University of California
ONE CYCLOTRON ROAD, BERKELEY, CA 94720 • (415) 486-4755

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
QUARTERLY REPORT
October 1, 1990 - December 31, 1990

FUNDAMENTAL STUDIES OF CATALYTIC GASIFICATION

Principal Investigators: Heinz Heinemann
Gabor A. Somorjai

Center for Advanced Materials
Materials Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

This work was supported by the Assistant Secretary for Fossil Energy, Office of Technical Coordination, U.S. Department of Energy under Contract DE-AC03-76SF00098, through the Morgantown Energy Technology Center, Morgantown, West Virginia 26505.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Task Description for FY 1990</td>
<td>3</td>
</tr>
<tr>
<td>II. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>III. Highlights</td>
<td>4</td>
</tr>
<tr>
<td>a) Catalytic Steam Gasification</td>
<td>4</td>
</tr>
<tr>
<td>b) Oxidative Methane Coupling</td>
<td>4</td>
</tr>
<tr>
<td>IV. Progress of Studies</td>
<td>5</td>
</tr>
<tr>
<td>V. Appendix</td>
<td></td>
</tr>
</tbody>
</table>
I. Task Description for FY 1991

STUDIES OF THE CATALYTIC STEAM GASIFICATION OF CARBON SOLIDS

In this project a considerable number of important findings have been made. Leads for scale-up have been developed and mechanisms for the reaction have been delineated. A small amount of additional experimental work is necessary and the extensive body of this project must be summarized in a final report. Recently limited experimentation has been carried out on the production of C₂ hydrocarbons from methane in the presence of Ca/K/Ni oxide catalysts and of oxygen, carbon and water. The main finding thus far has been that C₂ yields of 10-13% can be obtained at about 600°C or 150° lower temperature than described in the literature for similar yields. Occasionally much higher yields were obtained and reasons for this must be determined. We have recently found that with a modified catalyst and by operating at quite low temperature (~600°C) CO₂ formation can be almost totally suppressed. Yields of 7-10% C₂ hydrocarbons at 99+% selectivity have been obtained. The presence of water and small amounts of oxygen is essential. Yields of this magnitude may be attractive since there is no loss of methane to valueless by-products, no purification of the recycle steam is required and no oxygen is used to burn methane. Further improvement in yields by catalyst and operating conditions modification will be investigated. It is also intended to clarify the chemistry which inhibits burning of methane to carbon oxides.

II. Introduction

Much of the work performed in FY 1990 on the oxidative coupling of methane has been summarized in a paper which has been published in CATALYSIS LETTERS in October, 1990, and a copy of which is reproduced in the Appendix. Patent applications on this work have been filed.
III. Highlights

a) Catalytic Steam Gasification

- A final report of the work on catalytic gasification fundamentals under this contract is in preparation.

- A series of petroleum cokes of different metals and sulfur content have been catalytically gasified at standard conditions with a K-CaO catalyst. All but one of the cokes gasified at reasonable rates, very similar to coal.

- Some of the cokes showed minor initial activity for gasification in the absence of catalysts, but this activity was short lived and permitted gasification of only a small percentage of the coke.

b) Oxidative Methane Coupling

- Activation energies for the CaNiK oxide catalyst have been determined for both oxidative methane coupling and for steam reforming.

- An Arrhenius plot of the activation energies shows that the lines for methane coupling and for steam reforming cross at about 600°C, explaining the need for low temperatures for coupling in the presence of steam.

- Isotope studies have shown that carbon on the catalyst is an intermediate in the oxidative coupling of methane over CaNiK oxide catalysts.

- Isotope studies have also shown that water does not enter into the chemistry of the reaction, but is apparently necessary for the oxidation state of the catalyst.
A series of CaNiK oxide catalyst with different K content was prepared and tested. The optimum K content seems to be close to 0.1%.

IV. Progress of Studies

a) Catalytic Steam Gasification

Work has started on writing a comprehensive final report on the experimental studies undertaken during the past five years.

In an attempt to determine the effect of metals in the substrate on catalytic gasification, a series of petroleum cokes with different composition and metal contents were gasified. The approximate composition of the cokes is shown in Table 1. It is apparent that there are wide variations of sulfur content (0.6-8%) in metal content (116-4011ppm) and metal distribution between Ni, V, and Fe. Coke samples were supplied by Mobil Research and Development Corporation.

The cokes were impregnated with 1 mol% of a catalyst comprised of equimolar calcium and potassium oxides for a Ca+K/C atomic ratio of 0.04. Gasification was at 600° C using 8cc water per gram of carbon per hour at atmospheric pressure. Results of the gasification of several of the cokes are shown in Figure 1 and in greater detail in Figures 2-4.

It is apparent from Fig. 1 that all but one of the cokes tested were easily gasified in the presence of catalyst and that their gasification rate was somewhere between those of subbituminous and bituminous coals. The relatively poor performance of coke #1 is unexplained and cannot be attributed to metals, sulfur or high carbon content, since these (as shown in Table 1) are not essentially different from some of the other cokes. This particular coke behaves more like graphite.

Figures 2-4 compare gasification of some cokes in the absence of catalyst with gasification in the presence of catalyst. In all cases there was only a very slight initial conversion in the absence of catalyst which disappeared rapidly.
Table 1
Analytical Data for Petroleum Coke Samples

<table>
<thead>
<tr>
<th>Number</th>
<th>%C</th>
<th>%H</th>
<th>%O</th>
<th>%S</th>
<th>ppmNi</th>
<th>ppmV</th>
<th>ppmFe</th>
<th>ppm Total Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87.6</td>
<td>3.55</td>
<td>2.39</td>
<td>2.55</td>
<td>707</td>
<td>1090</td>
<td>832</td>
<td>2629</td>
</tr>
<tr>
<td>2</td>
<td>86.1</td>
<td>3.61</td>
<td>1.48</td>
<td>6.12</td>
<td>422</td>
<td>1919</td>
<td>1166</td>
<td>3507</td>
</tr>
<tr>
<td>3</td>
<td>92.8</td>
<td>3.90</td>
<td>1.41</td>
<td>0.55</td>
<td>147</td>
<td>20</td>
<td>3844</td>
<td>4011</td>
</tr>
<tr>
<td>4</td>
<td>88.6</td>
<td>3.76</td>
<td>0.97</td>
<td>5.13</td>
<td>223</td>
<td>657</td>
<td>209</td>
<td>1089</td>
</tr>
<tr>
<td>5</td>
<td>87.7</td>
<td>3.18</td>
<td>1.07</td>
<td>5.62</td>
<td>334</td>
<td>809</td>
<td>536</td>
<td>1679</td>
</tr>
<tr>
<td>6</td>
<td>90.9</td>
<td>4.0</td>
<td>0.42</td>
<td>4.45</td>
<td>12</td>
<td>5</td>
<td>99</td>
<td>116</td>
</tr>
<tr>
<td>7</td>
<td>86.6</td>
<td>3.35</td>
<td>0.93</td>
<td>7.96</td>
<td>175</td>
<td>509</td>
<td>178</td>
<td>862</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>analysis not yet available</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>analysis not yet available</td>
</tr>
</tbody>
</table>

b) Oxidative Methane Coupling

Since the most active and selective catalyst thus far found for oxidative coupling of methane (Ca:Ni:oxide = 3:1:0.1) is similar to catalysts previously used in coal gasification, activation energies were obtained for the two reactions on this catalyst. For gasification the activation energy is 263 kJ/mol (as previously reported) while for methane coupling it is 84 kJ/mol. Figure 5 shows an Arrhenius plot for the two reactions. The two curves intersect at 600°C and this explains why selectivity of methane coupling declines above this temperature. Steam reforming becomes prominent above 600°C. Coal gasification on the other hand is poor below 600°C probably because water dissociation does not occur at those temperatures.

An extensive isotope study is underway to determine the role of steam and of carbon in the coupling reaction. Using D₂O as the water source, no deuterium was found in the hydrocarbon products. It is therefore concluded that steam does not enter the chemistry of the reaction, but is necessary to maintain the oxidative (hydroxylated?) state of the catalyst. Early work with ¹³C isotope throws some light on the role of carbon on the catalyst as an intermediate in the reaction. An experiment was carried out as follows: methane (¹²CH₄), oxygen and steam were charged to the catalyst (Ca:Ni:K = 3:1:0.1) at standard conditions for 100 minutes until steady state production of hydrocarbons is obtained; the reaction is then stopped and the system is purged with helium for 100 min; finally methane (¹³CH₄), O₂ and
water are charged back into the system. Samples of the effluent mixture are analyzed periodically in a GC-MS apparatus. The sequence which was repeated several times was therefore:

\[
\begin{align*}
12\text{CH}_4, \text{O}_2, \text{H}_2\text{O} & \quad \rightarrow \quad \text{He} \\
\text{He} & \quad \rightarrow \quad 13\text{CH}_4, \text{O}_2, \text{H}_2\text{O}
\end{align*}
\]

After each cycle the catalyst was oxidized overnight. The cycle could be started with either isotope and the results were always the same. While there was considerable scattering of data, ethane and ethylene containing both ^{13}C and ^{12}C in the same molecule were found in amounts order of magnitude greater than natural abundance. In a blank run in the absence of catalyst no exchange of ^{13}C and ^{12}C was found, eliminating the reactor walls as contributors. It thus appears that carbon deposited on the catalyst in the initial stages of the reaction and probably throughout the reaction is an intermediate in the overall chemistry. Further work with isotopes is in progress.

In the last quarterly report we presented data on oxidative methane coupling with CaNi oxide catalysts in the absence of potassium. These showed that a Ca$_4$Ni to Ca$_2$Ni$_1$ ratio gave high selectivity at reasonable conversion, but that the selectivity was not stable over longer times.

We have now carried out a series of catalyst preparations with a Ca:Ni ratio of 4:1 and containing from 0.05 to 0.3% K oxide. Not all samples have yet been catalytically evaluated, but it appears that 0.05% potassium has lower conversion and stability than 0.1% and that 0.3% gives lower conversion and selectivity than 0.1%. It thus appears that a Ca:Ni:K ratio of 4:1:0.1 is preferred (Table 2)
Table 2

Conversion and Selectivity as a function of K content
600°C; CH₄:O₂:H₂O=3:1:6

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Conversion %</th>
<th>Selectivity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca₄Ni₁KO₅</td>
<td>3</td>
<td>55-40</td>
</tr>
<tr>
<td>Ca₄Ni₁KO.01</td>
<td>8-12</td>
<td>98</td>
</tr>
<tr>
<td>Ca₄Ni₁KO.03</td>
<td>6</td>
<td>70</td>
</tr>
</tbody>
</table>

In addition a larger quantity of our best catalyst is being prepared to serve as a standard and to allow samples to be given to interested persons in industry.
Figure 1

COKES WITH CATALYST(KCa), STANDARD CONDITIONS
CONVERSION VS TIME

conversion (fraction)

0.00 0.20 0.40 0.60 0.80 1.00
0 1000 2000 3000 4000 5000 6000

time (min)

#1
#3
#8
#2
#6
#9
#5
Figure 2

Coke #7 Without and With Catalyst: Conversion vs. Time
Figure 4

Coke #9 Without and With Catalyst: Conversion vs. Time

- □□□□□ Coke #9 without catalyst
- △△△△△ Coke #9 with catalyst
METHANE DIHYDRODIMERIZATION (O₂/STEAM)
ARRHENIUS PLOT (T=580-660°C)
THE CONVERSION OF METHANE TO ETHYLENE AND ETHANE WITH NEAR TOTAL SELECTIVITY BY LOW TEMPERATURE (< 610 °C) OXYDEHYDROGENATION OVER A CALCIUM-NICKEL-POTASSIUM OXIDE CATALYST

P. PEREIRA, S.H. LEE, G.A. SOMORJAI and Heinz HEINEMANN

Materials and Chemical Sciences Division, Center for Advanced Materials, University of California, Lawrence Berkeley Laboratory, Berkeley, CA 94720, U.S.A.

Received 10 July 1990; accepted 22 July 1990

Total selectivity in methane conversion, calcium-nickel-potassium oxide catalyst, methane conversion to ethylene and ethane

The catalytic oxidative coupling of methane to C₂, C₃ and C₄ paraffins and olefins has been accomplished with close to 100% selectivity at methane conversions of about 10% per pass. Essentially no carbon oxides are formed and the mechanism appears to be a surface catalyzed reaction. Temperatures of < 600 °C are used and the presence of steam is important. The catalyst comprises a ternary mixture of calcium, nickel and potassium oxides. Method of preparation and composition of the catalyst are critical for its performance. Presence of a carbidic carbon on the catalyst surface may be important.

1. Introduction

This letter reports the catalytic oxidative coupling of methane to C₂ hydrocarbons and to small amounts of C₃ hydrocarbons at close to 100% selectivity at about 10% CH₄ conversion/pass. At this high selectivity oxygen consumption is minimized as is the need for purification of recycle methane. Even though the yield of C₂ and C₃ hydrocarbons/pass is relatively low, these factors offer advantages over higher yields at relatively high conversions to carbon oxides.

It appears that the reaction path is catalytic and that there is no evidence for homogeneous gas phase oxidative reaction, in contrast to most of the methane conversion studies reported in the literature [1] that are usually performed at high temperatures (700 °C) and high space velocities.

The reaction of methane with small amounts of oxygen is carried out in the presence of steam typically at ratios of methane:oxygen:water = 3:1:6.5 at relatively low temperatures < 600 °C and at atmospheric pressure. The role of water is under study and it is shown to be essential. In the absence of water much...
lower selectivities are obtained and substitution of inert gases: e.g. helium, for water to achieve the same partial pressure of the reactants and products results in lower yields of hydrocarbons.

The catalyst used is a calcium-nickel-potassium oxide and care should be taken for catalyst formulation. Slight variations in catalyst preparation have led to materials exhibiting different activities and selectivities.

2. Experimental

The equipment used has been described before [2]. Methane and oxygen were obtained from Matheson with a purity of better than 99.99%. Steam was produced from distilled water pumped into the reactor by a Harvard syringe pump; the lines from the exit of the syringe up to the inlet of the reactor were heated at 140°C.

After the catalyst has been loaded into the reactor, it is oxidized with O₂ at 680°C. The flow rate is approximately 2 cc of oxygen per minute. The length of time of oxidation is important as shown in the Results section. The reaction temperature is then raised to the desired value and steam and methane mixed with oxygen are introduced. The range of reaction temperatures explored was 580–750°C. The methane space velocity was 4.0 mmol/g cat./hr. There is an induction period as shown in table 1 (which presents a carbon material balance) during which carbon is deposited on the catalyst. (The deposited carbon may play a significant role as an elementary reaction step or for modifying the catalyst.) After this induction period, a 100% ± 2% carbon material balance is obtained for extended periods of time (days).

Products of the reaction are analyzed by gas chromatography using FID, TCD and mass spectrometer detectors.

Blank runs were performed over inert ceramic granules and in the absence of catalyst and indicated that in the temperature range of 560–600°C, approximately 2–4% conversion of methane to CO₂ was obtained. Since less carbon oxides are obtained during the runs over the catalyst, it is apparent that in the

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Carbon balance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>70</td>
</tr>
<tr>
<td>50</td>
<td>95</td>
</tr>
<tr>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>400</td>
<td>100</td>
</tr>
</tbody>
</table>
presence of the catalyst, the gas phase reaction leading to \(\text{CO}_2 \) formation is minimized.

XPS analyses of the catalyst were performed in a PE 5000 ESCA unit. The samples consisted of powdered catalysts compressed between a gold mesh and a gold foil. Charging effects were thus minimized and were corrected for the spectra shown in this work. The standard conditions for the analysis were: angle 45°; acquisition time 5 min; pass energy 35.7 eV; anode: Mg 400 W.

The preparation of the catalyst is of great importance and is very sensitive to the procedure employed. Most catalysts of high activity were prepared from solutions of calcium and nickel nitrates which were dried and decomposed in air at 700°C to the corresponding oxides, then, small amounts of potassium nitrate were added and decomposed in oxygen and further oxidized at 700°C as well. Catalysts of similar performances were obtained by starting with the corresponding hydroxides. The ratio of the components is important and the best catalyst thus far prepared consists of an atomic ratio of calcium to nickel to potassium of 2:1:0.1. As previously mentioned, oxidation of the finished catalyst is also very important. Studies to elucidate the reasons for this and to find catalyst modifications giving higher yields are underway.

3. Results and discussion

When the methane-steam-oxygen reaction mixture was passed over the best performing calcium-nickel-potassium oxide catalyst at 600°C, conversion of methane was 10% and selectivity to \(\text{C}_2 \) hydrocarbons was 97 + %. Fig. 1 shows the hydrocarbon selectivity over a 6 hour period for the calcium-nickel-potassium

![Graph showing hydrocarbon selectivity over time](image-url)

Fig. 1. Effect of potassium on the selectivity to hydrocarbons. Standard conditions.
oxide catalysts. The 2:1:0.1 ratio of components gave appreciably better selectivity than the same ratio of calcium and nickel in the absence of potassium. The conversion in both cases was about 10%. The selectivity to C_2 of 95% was stable over extended periods (8-10 hours). CO_x was produced in quantities less than in the blank runs (> 3-4%), indicating that most of the conversion to carbon oxides occurred in the preheat zone of the reactor.

The importance of activation of the catalyst in oxygen is indicated in table 2. It clearly shows that conversion of methane increases with activation time and that the selectivity to the olefin content of hydrocarbons also increases. Further, it is interesting to note that with increasing oxidation time, larger amounts of C_3 hydrocarbons are formed and that C_4 hydrocarbons appear.

Fig. 2 shows that variation of the ratio of the components gives catalysts showing greatly different yields of hydrocarbons (product of selectivity and conversion) as well as of stability.

An investigation of the effects of temperature on the yield and selectivity are shown in fig. 3. While methane conversion increased over a 150°C range (600-750°C), hydrocarbon selectivity declined dramatically with increasing temperature and CO_x formation increased correspondingly. When the temperature was lowered back to 600°C from 750°C, the earlier results exhibiting near 100% selectivity for hydrocarbons were reproduced. Thus the catalyst is stable in spite of temperature excursions in the 150°C range.

The effect of steam is shown in table 3. When steam was replaced with helium (same partial pressure of methane and oxygen) the selectivity to hydrocarbons at 600°C dropped from 100% to 75% and rapidly declined further to 15%. When steam was substituted for helium, selectivity and conversion recovered to near the original values. Thus the catalyst is stable in the presence and absence of steam.

XPS analysis was used to compare the surface of an active and a less active form of the catalyst. The active sample (A) was analyzed after reaction during 10 hours. The less active sample (B) was analyzed both before and after reaction and

Table 2
Effect of the in-situ activation of the catalyst on its performance; activation was with oxygen prior to reaction.

<table>
<thead>
<tr>
<th>Activation time (hours)</th>
<th>% conversion of CH_4</th>
<th>% hydrocarbon selectivity</th>
<th>% C_2H_4 selectivity</th>
<th>% C_2H_6 selectivity</th>
<th>% C_3H_6 selectivity</th>
<th>% C_3H_8 selectivity</th>
<th>% C_4 selectivity</th>
<th>Total Olef/Paraf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.8</td>
<td>100</td>
<td>16.0</td>
<td>82.0</td>
<td>0</td>
<td>2.0</td>
<td>0</td>
<td>0.19</td>
</tr>
<tr>
<td>18</td>
<td>6.6</td>
<td>100</td>
<td>32.3</td>
<td>57.1</td>
<td>2.7</td>
<td>5.8</td>
<td>2.1</td>
<td>0.56</td>
</tr>
<tr>
<td>40</td>
<td>9.5</td>
<td>100</td>
<td>38.1</td>
<td>48.2</td>
<td>5.3</td>
<td>5.6</td>
<td>2.8</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Selectivity was assumed 100% because CO_2 production was always below the blank run values and approximately constant.
there were neither qualitative nor quantitative changes in the spectra. In fig. 4 the
Ni 2p$_{3/2}$ photoemission signals are shown for both samples. Analysis of the Ni
2p$_{3/2}$ signal for the inactive sample shows the presence of a shoulder at 854.5 eV
that has been assigned in the literature to NiO [9]. In both samples A and B the
presence of NiOH at the surface is shown by the peak at 856.4 eV. This value
corresponds to the binding energy reported by Kim et al. [9]. There is a third

![Graph showing hydrocarbon yield over time](image1)

Fig. 2. Effect of catalyst composition on the yield of hydrocarbons at standard conditions.

![Bar chart showing temperature effects](image2)

Fig. 3. Effect of temperature cycling on catalyst performance of a Ca/Ni/K-2:1:0.1 oxide
catalyst.
Table 3
The importance of steam in the reaction mixture for methane conversion and hydrocarbon selectivity

<table>
<thead>
<tr>
<th>Time on stream (min)</th>
<th>Temp. (°C)</th>
<th>Dilutant</th>
<th>Hydrocarbon selectivity</th>
<th>Methane conversion</th>
<th>Hydrocarbon yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>600</td>
<td>steam</td>
<td>100</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>200</td>
<td>600</td>
<td>helium</td>
<td>75</td>
<td>5.0</td>
<td>3.8</td>
</tr>
<tr>
<td>300</td>
<td>600</td>
<td>helium</td>
<td>15</td>
<td>2.1</td>
<td>0.3</td>
</tr>
<tr>
<td>400</td>
<td>600</td>
<td>steam</td>
<td>90</td>
<td>11.0</td>
<td>9.9</td>
</tr>
</tbody>
</table>

(shoulder) peak at higher binding energy (858.01 eV) in the signal for the active catalyst, which must correspond to a higher oxidation state of Ni. This peak does not correspond to values reported in the literature for Ni$_2$O$_3$; it could be due either to the formation of a non-stoichiometric oxide or to a calcium nickelate, a species which could be involved in the catalysis of the selective reaction. NiO appears to be the predominant form on the surface of the inactive catalyst. The presence of carbonates in both samples was also confirmed by XPS and X-ray

![XPS spectra from an active (A) and a low activity (B) Ca/Ni/K-2:1:0.1 oxide catalyst.](image)

Fig. 4. Ni$_{2p3/2}$ XPS spectra from an active (A) and a low activity (B) Ca/Ni/K-2:1:0.1 oxide catalyst.
diffraction analysis. The formation of calcium carbonate during the reaction could be related to deactivation of the catalyst [3]. However, the analyzed powder (A) was still very active when it was again used for conversion of methane. Potassium seems to be forming an oxidic-hydroxidic mixture in both samples A and B as deduced by XPS and X-ray diffraction. A subsequent paper will comment more specifically on the details concerning oxide states and deactivation of the catalyst.

A surface composition Ca : Ni : K equal to 2 : 1 : 0.1 was obtained for the active catalyst from the ESCA analysis. The use of this formula for the preparation of the catalyst led to the results already shown in fig. 2.

The Ca-oxide-Ni-oxide-K-oxide catalyst exhibits chemical behavior that is very different from other catalysts used for methane coupling; it operates at a significantly lower temperature range and it does not produce carbon oxides, CO or CO₂.

It has been proposed that the mechanism of methane oxidative dimerization in the presence of alkali-earth alkali oxides at high temperatures involves a catalytic activation of methane. The active species is a methyl free radical that consequently reacts, mostly in gas phase [4-6]. Because of the lower temperatures and the fact that the reaction does not occur in the absence of the catalyst, we can rule out the gas phase free radical reaction path.

The formation of carbon oxides constitutes a thermodynamically driven pathway that affects the selectivity when long residence times and high temperatures are used. When methane is activated at high temperatures it is difficult for oxidative dimerization to occur without producing substantial amounts of carbon oxides. Our catalysts, however, produces hydrocarbons with near 100% selectivity and thus CO or CO₂ formation is inhibited.

If an active adsorbed species from methane were to form on the surface of the catalyst and lower temperatures were used, a more selective methane coupling could be achieved. This is what we believe is taking place at the conditions of this work. Low temperatures were used while the longer than usual contact time is such that an amorphous carbon deposit could be continuously formed that apparently plays an important role in the reaction mechanism.

The need for the presence of a partial pressure of water requires further research to be understood. It could be related to the formation of a stable concentration of hydroxyl species on the surface instead of the O⁻ species that are more likely to produce carbon oxides.

A few results with stable catalysts, high selectivity (95 + %) and using a co-fed reactor system have been reported for the coupling of methane [7]. The relevance of the present finding is highlighted by relatively low oxygen consumption, by low temperature operation with steam and by the ability to recycle methane without scrubbing out CO₂ in the case of 100% selectivity to hydrocarbons.

Work is currently in progress to attempt to increase conversion at 100% selectivity and to change the olefin to paraffin ratio. Studies on the mechanism of
this reaction which appears different from those proposed in the literature [8] at different operating conditions are also under way.

Acknowledgement

This work was supported by the Assistant Secretary for Fossil Energy, Office of Management Planning and Technical Coordination, Technical Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, through the Morgantown Energy Technology Center, Morgantown, WV 26505.

References
