Lawrence Berkeley National Laboratory
Recent Work

Title
IS W156 A GOOD CLOSED SHELL?

Permalink
https://escholarship.org/uc/item/3xx5z9g2

Author
Zamick, Larry.

Publication Date
1968-08-14
IS Ni56 A GOOD CLOSED SHELL?

Larry Zamick

August 14, 1968

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
IS Ni56 A GOOD CLOSED SHELL?

Larry Zamick

August 14, 1968
IS ^{56}Ni A GOOD CLOSED SHELL?†

Larry Zamick

Lawrence Radiation Laboratory
University of California
Berkeley, California

and

Rutgers, the State University
New Brunswick, New Jersey

August 14, 1968

The beta decay of ^{56}Ni to the $J = 1^+$ state of ^{56}Co proceeds about ninety-five times slower than is predicted by the shell model. Perturbation theory does not change this very much. Hence ^{56}Ni is not a good closed shell.

There is some controversy over whether or not $^{56}\text{Ni}_{28}$ is a good closed shell nucleus. On the one hand, Hartree-Fock solutions yield deformed ground states for the nickel isotopes [1] but there is always the possibility that the inclusion of pairing will restore the spherical symmetry [2]. In favor of a spherical solution is the fact that the energy spectra of the Nickel isotopes come out well if one uses an effective interaction and assumes a closed $f_{7/2}$ shell.[3, 4]. But it is well known that the effective interaction can mask the effects of deformation.

Since evidence based on theoretical grounds is not very conclusive it is well to look for empirical evidence. We wish to show that the beta decay

† Work supported in part by the National Science Foundation.
of ^{56}Ni provides very strong evidence that ^{56}Ni is not a good closed shell nucleus.

The allowed Gamow-Teller transition of the $J = 0^+$ ground state of ^{56}Ni to the $J = 1^+$ state of ^{56}Co proceeds with a rate given by $\log ft = 4.4$. This rate is very easy to calculate in the shell model picture because both the initial and final states are unique. ^{56}Ni closes the $1f_{7/2}$ shell whereas the ^{56}Co wave function is $[f_{7/2}^{-1} f_{5/2}^{-1}] I = 1$.

The ft values are given by

$$\log ft = 3.64 - \log M_{\text{GT}}^2$$

$$M_{\text{GT}} = \Sigma_{M\Gamma\alpha} \left| \langle \psi_{M\Gamma}^{JF} \Sigma \alpha \tau_+ \alpha \psi_{M\Gamma}^{Jf} \rangle \right|^2 .$$

We find

$$M_{\text{GT}}^2 = \left[2 \sqrt{2j + 1} \sqrt{(2j + 1)/2l + 1} \right]^2$$

where $j = 5/2$ and $l = 3$

$$M_{\text{GT}}^2 = 96/7 \quad \log ft = 2.5.$$

It may at first be surprising that M_{GT}^2 is so large (it is only 3 for a free neutron). But note that the transition from $J = 0$ to $J = 1$ is three times faster than from $J = 1$ to $J = 0$. Also the fact that there are many $f_{7/2}$ protons each of which can undergo a beta decay. The shell model transition rate is ninety-five times faster than experiment.

We should check, however, to see whether the transition rate is sensitive to small perturbations. There exist examples where this is so.
In lowest order perturbation theory there is only one additional mechanism which will affect the decay—a two particle—two hole component is admixed into the ^{56}Ni ground state and the process proceeds via $f_{7/2}^2 f_{5/2} \rightarrow f_{7/2 N}^1 f_{5/2 N}$.

Let us write the ^{56}Ni wave function as

$$\Psi = |0\rangle + \sum_{I_A T_A} b(I_A) \left[[f_{7/2}^{-1} f_{7/2}^{-1}]^{I_A T_A} [f_{5/2} f_{5/2}]^{I_A T_A} \right]^{00} + \text{other configurations.}$$

Note that if I_A is even $T_A = 1$ and if I_A is odd then $T_A = 0$. In lowest order perturbation theory we find

$$M_{GT} = \frac{96}{7} \left[1 + \sum_{I_A = 0} b(I_A) \sqrt{2 I_A + 1} W(1 7/2, 5/2, I_A, 5/2, 7/2) \right]$$

$$\left(\frac{1}{\sqrt{3}} \quad \text{if } I_A \text{ is even} \right.$$
$$\left. -1 \quad \text{if } I_A \text{ is odd} \right) \right]^{2}$$

$$= \frac{96}{7} \left[1 + 0.083 b(0) - 0.240 b(1) + 0.163 b(2) - 0.286 b(3) + 0.145 b(4) - 0.174 b(5) \right]^{2}.$$

Now

$$b(I_A T_A) = -\sqrt{(2 I_A + 1)(2 T_A + 1)} \langle f_{5/2}^2 I_A \frac{\Delta E}{2} f_{7/2}^2 I_A \rangle$$

where ΔE is minus twice the $f_{5/2} - f_{7/2}$ single particle splitting.
$\Delta E \approx -12$ MeV. Using the two body matrix elements of Kuo and Brown [5] the following values of $b(I_A)$ are obtained

\[
\begin{align*}
 b(0) &= -0.402 \\
 b(3) &= 0.114 \\
 b(4) &= -0.172 \\
 b(5) &= 0.047 \\
 b(2) &= -0.206
\end{align*}
\]

The signs of the $b(I_A)$'s are such that the sum over I_A is coherent, all terms in the sum are important, and the correction goes in the direction of experiment. We find however that the correction is much too small.

\[
M_{GT}^2 = 96/7 [1 - 0.17]^2
\]

\[
\log ft. = 2.68.
\]

The combined set of circumstances—that the initial and final wave functions are unique in the shell model, that the Gamow Teller operator is an extraordinarily simple operator, that the deviation from experiment is large using shell model wave functions, and that this deviation persists after the use of perturbation theory—indicates without question that 56Ni is not a good closed shell nucleus.
REFERENCES

2. Y. Bar-Touv, private communication.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.