Title
ESTIMATES OF CORRELATION TIMES OF DISSOLVED COMPLEXES FROM ""ROTATIONAL TRACER"" EXPERIMENTS

Permalink
https://escholarship.org/uc/item/3zk7h0bn

Author
Shirley, D.A.

Publication Date
1970-02-01
ESTIMATES OF CORRELATION TIMES OF DISSOLVED COMPLEXES FROM "ROTATIONAL TRACER" EXPERIMENTS

D. A. Shirley

February 1970

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Recent angular-correlation studies have demonstrated the efficacy of gamma-emitting "rotational tracers" in detecting the tumbling of labeled macromolecules in solution.\(^1\)\(^2\) The purpose of this note is to point out that the perturbation factor\(^3\) \(g_{22}(t)\) in the time-dependent angular correlation function \(W(\theta,t) = 1 + A_2 g_{22}(t) P_2(\cos \theta)\) can provide a rough estimate of the rotational correlation time \(\tau_c\). In the theory of Abragam and Pound\(^4\) (applicable for short \(\tau_c\)) \(\tau_c\) is defined as the characteristic decay time for the auto-correlation function of the random transition matrix elements governing spin relaxation in the intermediate nuclear state.

Experimentally \(g_{22}(t)\) shows either "static" or "dynamic" behavior.\(^1\)\(^2\) The static \(g_{22}(t)\) curves (in which, however, \(g_{22}(t)\) is itself time-dependent) are observed for samples in which the intermediate-state Hamiltonian is expected to be time-independent, e.g., very large molecules, solids, or frozen solutions. \(g_{22}(t)\)\(^{\text{(static)}}\) falls quickly to zero, then rises to a low maximum at time \(T\) and remains essentially constant. Under certain assumptions\(^5\) an average quadrupole-coupling constant can be derived from \(T\). For the \(^{111}\)Cd spin-5/2 state the relation is \((e^2 qQ) = 20 \text{ h/3T}\).\(^6\) For solutions of \(^{111m}\)Cd-labeled N-benzyliminodiacetic acid (NBIDA) frozen and cooled to 77°K, \(^2\) \(T = 36\) nsec and \((e^2 qQ) = 1.23 \times 10^{-18}\) erg.
The "dynamic" $G_{22}(t)$ decays exponentially with decay constant λ_2, given by

$$\lambda_2 = \frac{63}{1000} \frac{(eqQ)^2}{\hbar^2} \tau_c,$$

for the spin 5/2 case, using the Abragam-Pound theory. Here $(eqQ)^2$ is the average square (time-dependent) quadrupole-coupling constant that relaxes the nuclear spin. This "dynamic" $G_{22}(t)$ was observed for several small molecules in solution: derived λ_2 values are given in Table I.

For all cases studied, reorientation of the static e.f.g. tensor due to molecular rotation should be the chief contributor to $(e^2qQ)^2$. We may thus relate τ_c to λ_2 by assuming $(e^2qQ)^2 \approx (e^2qQ)^2$. Values of τ_c were estimated for several complexes by combining $(e^2qQ)_{NBIDA}$ with Eq. (1). Figure 1 is a plot of the time-integral attenuation factor $\bar{G}_{22} = (1 + \lambda_2 \tau_N)^{-1}$ versus τ_c. The actual values of τ_c are not very accurate because $(e^2qQ)^2$ is probably overestimated, but this plot illustrates the range of τ_c that has been studied.

It is a pleasure to acknowledge the collaboration of J. D. Baldeschwieler, T. K. Leipert, R. G. Bryant, and C. F. Meares in obtaining the experimental data used in Table I.
FOOTNOTES AND REFERENCES

* Work performed under the auspices of the U. S. Atomic Energy Commission.

7. Reference 3, p. 46.

8. Here T_N is the nuclear mean life of 123 nsec. See Fig. 23, Ref. 3, and discussion. Our choice of e^{-qQ} translates the curve slightly.
Table I.

<table>
<thead>
<tr>
<th>Complex</th>
<th>T, °K</th>
<th>λ_2 (MHz)$_b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBIDA</td>
<td>77</td>
<td>(static)</td>
</tr>
<tr>
<td>NBIDA</td>
<td>273</td>
<td>71</td>
</tr>
<tr>
<td>NBIDA</td>
<td>295</td>
<td>37</td>
</tr>
<tr>
<td>NBIDA</td>
<td>328</td>
<td>12</td>
</tr>
<tr>
<td>NBIDA</td>
<td>358</td>
<td>8</td>
</tr>
<tr>
<td>EDTA</td>
<td>295</td>
<td>0.7</td>
</tr>
<tr>
<td>ATP</td>
<td>295</td>
<td>3.6</td>
</tr>
<tr>
<td>IDA</td>
<td>295</td>
<td>1.5</td>
</tr>
<tr>
<td>APO-CA</td>
<td>295</td>
<td>(static)</td>
</tr>
<tr>
<td>BSA</td>
<td>295</td>
<td>(static)</td>
</tr>
</tbody>
</table>

a All were labeled with 111mCd (Ref. 2). NBIDA = N-benzylinodiacetic acid, EDTA = ethylenediamine tetraacetic acid, ATP = adenosine triphosphate, IDA = iminodiacetic acid, APO-CA = apo-carbonic anhydrase, BSA = bovine serum albumin.

b Accuracy is about ±10%.
FIGURE CAPTION

Fig. 1. Variation of G_{22} with τ_c. The points are constrained to lie on the curves by our assumptions: both parameters are derived from λ_2. Dashed region is theoretically uncertain, as discussed in Ref. 3. The error in G_{22}, where not shown, is ±0.05.
Fig. 1
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.