Title
Photocarrier Relaxation in the Quantum Kinetics Regime

Permalink
https://escholarship.org/uc/item/3zv0x1vd

Author
Bar-Ad, S.

Publication Date
1995-11-01
Photocarrier Relaxation in the Quantum Kinetics Regime

S. Bar-Ad, P. Kner, K. El Sayed, and D.S. Chemla

November 1995

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
PHOTOCARRIER RELAXATION IN THE QUANTUM KINETICS REGIME

S. Bar-Ad1, P. Kner1, K. El Sayed2, and D. S. Chemla1

1Department of Physics
University of California
Berkeley, CA 94720

and

Materials Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

2Department of Physics
University of Florida
Gainesville, FL

November 1995

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Division of Materials Sciences of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Abstract

We present a study of carrier relaxation in GaAs in the Quantum-Kinetics regime. The results cannot be explained by Boltzmann Kinetics. They are in satisfactory agreement with Quantum-Kinetic theory calculation of the occupation number in k-space.
Photocarrier Relaxation in the Quantum Kinetics Regime
S. Bar-Ad (a), P. Kner (a), K. El Sayed (b), D.S. Chemla (a)

(a) Department of Physics, University of California at Berkeley and Materials sciences Division, Lawrence Berkeley national Laboratory MS 2-300, 1 Cyclotron Rd, Berkeley, CA 94720 (b) Department of Physics, University of Florida at Gainesville

The thermalization of nonequilibrium carrier distributions involve fundamentals of thermodynamics and solid states physics. Femtosecond spectroscopy has been employed to study this process,[1] and was analysed in the framework of Boltzmann Kinetics.[2] However, during and shortly after an ultrashort laser excitation, carrier kinetics are drastically altered. At this early stage the Coulomb potential is still unscreened and there is essentially no energy conservation in two-particle scattering events, instead scattering becomes non-local in time. In this regime the evolution of momentum-dependent occupation numbers can only be described by Quantum Kinetics, including memory structure in the scattering integrals.[3]

We present a study of carrier relaxation in bulk GaAs at room temperature in the Quantum-Kinetics regime. We use a modified frequency-resolved pump-probe technique, with pump and probe durations independently adjustable from 30fs to 100fs.

Figure 1a shows differential absorption spectra (DAS) for 70fs pump and probe at low excess energy. The evolution from a hole-burning-like signal with a characteristic Dynamic Fermi-Edge Singularity (DFES)[4,5] at \(\Delta t \approx -50\)fs, to a quasi-thermalized profile at \(\Delta t \approx 30\)fs is clearly seen, in agreement with previous experiments[1]. DAS obtained with 30fs pulses are shown in Fig. 1b, the higher excitation energy minimizing excitonic effects. Surprisingly, the DAS show an instantaneous response at low energies. Within \(\sim 50\)fs the DAS is characteristic of a thermalized distribution. The negative signal on the high-energy side, characteristic of the DFES, is absent. There is practically no response at the peak of the pump spectrum, in fact hole-burning is not observed at all. Such a behavior cannot be explained by Boltzmann Kinetics, which predict gradual diffusion of the initial spectral hole. With 100-fs excitation
high above the band edge and a 30-fs probe we also detect an instantaneous response at low energies and no spectral hole (Fig. 2). This last result is in agreement with another recent experiment.[6]

These observations cannot be explained in terms of coherent effects. Screening by nonequilibrium carriers is expected to be ineffective, as indicated by the excitons' response. It should not reduce the Sommerfeld enhancement significantly. Emission of optical phonons is clearly important. However, evaluation of the emission rate by Fermi golden-rule is inappropriate, since the inverse optical phonon energy is comparable to the time scale of the measurements.[7]

A consistent explanation can only be given in the framework of Quantum Kinetics. A complete model of the DAS in this formalism is presently unavailable. However, we give, in Fig. 3, an example Quantum Kinetic calculation that includes electron-electron scattering only, showing the time-evolution of the occupation number in k-space for excitation by a 20-fs pump pulse well above the band edge. The photocarriers rapidly scatter out of the energy window in which they were created. Due to the memory, kinetic overshoots develop. We find indications of such overshoots also in the experimental data. A complete description of the DAS requires inclusion of the short coherent probe. We stress that a very short probe is essential for the observation of Quantum Kinetic effects, which are due to the non-locality of scattering. For a probe longer than the range of non-locality (memory depth), >70 fs, the kinetics become indistinguishable from local Boltzmann Kinetics.

References:

S. Bar-Ad et al., Photocarrier Relaxation...

Figure captions:

Figure 1: Spectrally-resolved differential absorption signals measured with 70-fs pulses (a) and 30-fs pulses (b). The signals, measured for a carrier density of \(\sim 1 \times 10^{17} \text{ cm}^{-3} \), are representative of lower excitation densities as well, down to \(\sim 1 \times 10^{16} \text{ cm}^{-3} \). The zero delay is identical for both experiments. The arrows indicate the center laser energy in each case.

Figure 2: Spectrally-resolved differential absorption signals measured with a 30-fs probe and two different pump durations - 100 fs (solid) and 30 fs (dashed). In both cases an immediate response is observed at the band edge. The bottom panel shows the spectrum of the 100-fs pump (solid) and that of the 30-fs probe/unfiltered pump (dashed).

Figure 3: The time-evolution of the occupation number in k-space after an excitation with a single 20 fs pump pulse, calculated in the framework of Quantum Kinetic theory.