Title
Distributional Effects in Iconic Gesture Comprehension

Permalink
https://escholarship.org/uc/item/4016g6fv

Journal

ISSN
1069-7977

Authors
Campana, Ellen
Packard, Stephanie
Tanenhaus, Michael K.

Publication Date
2006

Peer reviewed
Distributional Effects in Iconic Gesture Comprehension

Stephanie Packard (sp002m@mail.rochester.edu)
Department of Brain and Cognitive Sciences, University of Rochester
CPU 276538, University of Rochester, Rochester, NY 14627 USA

Ellen Campana (ecampana@bcs.rochester.edu)
Department of Brain and Cognitive Sciences, University of Rochester
Meliora Hall, Rochester, NY 14627 USA

Michael K. Tanenhaus (mtan@bcs.rochester.edu)
Department of Brain and Cognitive Sciences, University of Rochester
Meliora Hall, Rochester, NY 14627 USA

Introduction
There is disagreement among researchers about the role of gesture in language comprehension; whether it is ignored (Krauss, Dushay, Chen & Rauscher, 1995), processed separately from speech (Goldin-Meadow & Singer, 2003), used only when speakers are having difficulty (Rauscher, Krauss & Chen, 1996), or immediately integrated with the content of the co-occurring speech (McNeill, Cassell & McCullough). In a previous eye-tracking study, Campana, et al (2005) showed that naturally produced iconic gesture speeds comprehension when the gesture is completely redundant with the content of speech. Specifically, trials with co-occurring speech and gesture showed earlier preference for the target item than trials with speech alone.

Method
Eighteen participants wore a light-weight head-mounted eye-tracker as they watched 18 videos which were surrounded by four potential referents: the target (consistent with both speech and gesture), a speech competitor (consistent with the speech early on, but inconsistent with the gesture), a gesture competitor (inconsistent with the speech, but consistent with the gesture), and an unrelated foil (inconsistent with both the speech and gesture). The task was to “click on what the speaker described.”

The stimuli were counterbalanced such that across participants each set of visual stimuli occurred once in either the redundant, supplemental or mismatch condition. In redundant trials, the speech and gesture convey the same information (i.e. have the same content and refer to the same object). In supplemental trials, the speech and gesture convey different information, but refer to the same object and integration of the information is necessary in order to choose the target referent. In mismatch trials, the speech and gesture convey conflicting information (i.e. have different content and refer to different objects).

Results
Both reaction times and eye-movement patterns were analyzed. Trials in the redundant condition failed to show early preference for the target as our previous study did. Subanalysis of 4 trials that were identical across the studies (i.e. had the same videos and set of potential referents) revealed a difference in both reaction time and eye-movement pattern. Reaction times in the current study were longer than those in the previous study (t(61)=2.817, p<.01). The proportion of looks to the speech competitor was not statistically different across the two experiments (p>.05); however, the proportion of looks to the foil was significantly higher in the current study compared to our previous study (Mann-Whitney U test=605.0, p<.05). Moreover, the proportion of looks to the target was significantly lower in the current study compared to our previous study (t(78)=2.831, p<.01).

Acknowledgments
The authors would like to thank Laura Silverman and Loisa Bennetto for theoretical contributions.

References