Title
Analysis of Adaptive Dynamical Systems for Eating Regulation Disorders

Permalink
https://escholarship.org/uc/item/40s0m0zc

Journal

ISSN
1069-7977

Authors
Bosse, Tibor
Delfos, Martine F.
Jonker, Catholijn M.
et al.

Publication Date
2003

Peer reviewed
Analysis of Adaptive Dynamical Systems for Eating Regulation Disorders

Tibor Bosse¹, Martine F. Delfos², Catholijn M. Jonker¹, and Jan Treur¹,³

¹ Vrije Universiteit Amsterdam, Department of Artificial Intelligence
² PICOWO, Psychological Institute for Consultancy, Education and Research
³ Universiteit Utrecht, Department of Philosophy

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands URL: http://www.cs.vu.nl/~{tbose, jonker, treur}

Abstract

To analyse a subject’s mental processes, psychotherapists often face nontrivial properties of adaptive dynamical systems. Analysis of dynamical systems usually is performed using mathematical techniques. Such an analysis is not precisely the type of reasoning performed in psychotherapy practice. In this paper it is shown how practical reasoning about dynamic properties of adaptive dynamical systems within psychotherapy can be described using dynamical logical methods and a high-level language to describe dynamics.

Introduction

Within the context of psychotherapy often types of human behaviour and development are addressed that are highly complex, dynamic and adaptive. Recently it has been suggested that the Dynamical Systems Theory (DST), cf. Port and van Gelder (1995), could be an adequate tool for psychotherapists to describe and analyse such behaviours; e.g., (Kupper and Hoffmann, 1996; Levine, 1996; Tschacher, Scheier, and Grawe, 1998; Warren, Sprott, and Hawkins, 2002). However, application of the DST approach in the practice of psychotherapy is not at all straightforward, and much remains to be done. A therapist’s reasoning usually is performed in an informal, intuitive, partly conscious manner. Explanation of (at least parts of) this reasoning may take place in a qualitative, logical manner. In contrast, DST requires quantitative mathematical modelling, and analysis of dynamic properties is based on quantitative techniques from mathematics. This contrast between ‘qualitative, logical’ and ‘quantitative, mathematical’ makes it very difficult, if not impossible, to use the DST approach in this domain. The main contribution of this paper is to show how alternative techniques are better suited to adequately describe the manner in which reasoning about such an adaptive dynamical system in therapy practice takes place, or can take place in a systematic manner.

Within the areas of Computer Science and Artificial Intelligence recently alternative techniques have been developed to analyse the dynamics of phenomena using logical means. Examples are dynamic and temporal logic, and event and situation calculi; e.g., (Reiter, 2001). These logical techniques allow to consider and relate states of a process at different points in time. The form of these relations can cover qualitative aspects, but also quantitative aspects.

This paper illustrates the usefulness of such an alternative approach for the analysis and formalisation of adaptive dynamical systems in psychotherapy practice, in particular for the first phase of eating regulation disorders; e.g., (Beument et al., 1987; Garner and Garfinkel, 1985). In Delfos (2002), an adaptive dynamical model that describes normal functioning of eating regulation under varying metabolism levels is used as a basis for classification of eating regulation disorders, and of diagnosis and treatment within a therapy. Reasoning about the dynamic properties of this model (and disturbances of them) is performed in an intuitive, conceptual but informal manner.

In this paper, first this model is formalised in a high-level executable format, and some simulations are shown, both for wellfunctioning situations and for different types of malfunctioning situations that correspond to the first phase of well-known disorders such as anorexia (nervosa), obsesitas, and bulimia. Next, as part of our analysis a number of relevant dynamic properties of this dynamical system are identified and formalised at different levels of aggregation: both for the regulation as a whole and for separate parts of the adaptive system. Using a software environment that has been developed, these properties have been checked for a number of simulation traces. Moreover, it is shown how these dynamic properties logically relate to each other, i.e., which properties at the lower level of aggregation together imply given properties at the higher level. Such logical relationships are especially important for the diagnosis of a malfunctioning system.

Modelling Approach

The domain of reasoning about dynamical systems in psychotherapy requires an abstract modelling form yet showing the essential dynamic properties. As dynamic properties of such a dynamical system can be complex, a high-level language is needed to characterise them. To this end the Temporal Trace Language TTL is used as a tool; for previous applications of this language to the analysis of (cognitive) processes, see, e.g., (Jonker and Treur, 2002). Using this language, dynamic properties can be expressed in informal, semi-formal, or formal format. The language allows to explicitly refer to (real) time, and to developments of processes over time. Moreover to perform simulations, models are desired that can be formalised and are computationally easy to
handle. These executable models are based on the scocalled ‘leads to’ format which is defined as a sublanguage of TTL; for a previous application of this forformat for simulation of cognitive processes, see (Jonker, Treur, and Wijngaards, 2003). The Temporal TraceLanguage TTL is briefly defined as follows.

A state ontology is a specification (in order-sorted logic) of a vocabulary to describe a state of a process. A state for ontology Ont is an assignment of truth-values true or false to the set At(Ont) of ground atoms expressed in terms of Ont. The set of all possible states for state ontology Ont is denoted by STATES(Ont). The set of state properties STATPROP(Ont) for state ontology Ont is the set of all propositions over ground atoms from At(Ont). A fixed time frame T is assumed which is linearly ordered, for example the natural or real numbers. A trace T over a state ontology Ont and time frame T is a mapping T : T → STATES(Ont), i.e., a sequence of states T(τ) (τ ∈ T) in STATES(Ont). The set of all traces over state ontology Ont is denoted by TRACES(Ont). The set of dynamic properties DYNPROP(Ont) is the set of temporal statements that can be formulated with respect to traces based on the state ontology Ont in the following manner.

These states can be related to state properties via the formally defined satisfaction relation |=, comparable to the Hoops-predicate in the Situation Calculus; cf. (Reiter, 2001): state(τ, t) |= p denotes that state property p holds in trace T at time t. Based on these statements, dynamic properties can be formulated, using quantifiers over time and the usual first-order logical connectives ¬ (not), & (and), ∨ (or), ⇒ (implies), ∀ (for all), ∃ (there exists); to be more formal: formulæ in a sorted first-order predicate logic with sorts T for time points, TRACES for traces and T for state formulæ.

To model basic mechanisms of a process at a lower aggregation level, direct temporal dependencies between two state properties, the simpler ‘leads to’ format is used. This executable format can be used for simulation and is defined as follows. Let α and β be state properties. In leads to specifications the notation α →e.t.g.h β, means:

if state property α holds for a certain time interval with duration g, then after some delay (between e and f) state property β will hold for a certain time interval h.

For a more formal definition, see (Jonker, Treur, and Wijngaards, 2003).

Local properties

Local properties are dynamic properties of the basic mechanisms in the dynamical model. Based on these properties the global properties of the system emerge; they together entail these global properties. Local properties are specified in the executable ‘leads to’ format; for simplicity, below the parameters e, f, g, and h have been left out (their values are discussed in the section on Simulation Experiments). An overall picture of the executable model can be found in Figure 1.

![Figure 1 Overview of the executable model](image-url)

The first two (action generation) properties characterise when a stimulus to eat is generated, based on an internal eat norm N that is maintained.

LP1 (eat-stimulus)
The first local property LP1 expresses that an eat norm N and an intermediate amount eaten E less than this norm together lead to an eat stimulus. Formalisation:

intermediate_amount_eaten(E) and eat_norm(N) and E < N → stimulus(eat)

LP2 (not-eat-stimulus)
Local property LP2 expresses that an eat norm N and an intermediate amount eaten E higher than this norm together lead to a non-eat stimulus. Formalisation:

intermediate_amount_eaten(E) and eat_norm(N) and E > N → stimulus(donot_eat)

The properties LP3, LP4, LP5 and LP6 characterise the effect of eating (on body state); it is assumed that the outcomes on amount eaten are taken by sensory processing.

LP3 (increase of amount eaten)
Local property LP3 expresses how an eat stimulus increases an intermediate amount eaten by additional energy d (the energy value of what is eaten). Formalisation:

intermediate_amount_eaten(E) and stimulus(eat) → intermediate_amount_eaten(E+d)

LP4 (stabilizing amount eaten)
Local property LP4 expresses how a non-eat stimulus keeps the intermediate amount eaten the same. Formalisation:

intermediate_amount_eaten(E) and stimulus(donot_eat) → intermediate_amount_eaten(E)

LP5 (day amount eaten)
Local property LP5 expresses that the day amount eaten is the intermediate amount eaten at the end of the day. Formalisation:

intermediate_amount_eaten(E) and time(24) → day_amount_eaten(E)

Here time counts the hours from 1 to 24 during the day.

LP6 (weight through balance of amount eaten and energy used)
Local property LP6 expresses a simple mechanism of how weight is affected by the day balance of amount eaten and
energy used. Here γ is a fraction that specifies how energy leads to weight kilograms. Formalisation:
\[
\text{day_amount_eaten}(E1) \text{ and } \text{day_used_energy}(E2) \text{ and weight}(W) \rightarrow \text{weight}(W + \gamma^* (E1 – E2))
\]

The last local property characterises adaptation: how the eat norm N is adapted to the day used energy.

LP7 (adaptation of amount to be eaten)
Local property LP7 expresses a simple (logistic) mechanism for the adaptation of the eat norm based on the day amount of energy used. Here α is the adaptation speed, β is the fraction of E that is the limit of the adaptation; normally $\beta = 1$. Formalisation:
\[
\text{day_used_energy}(E) \text{ and eat_norm}(N) \text{ and time(24)} \rightarrow \text{eat_norm}(N + \alpha^* N^* (1 - N/\beta E))
\]

Simulation Examples
A special software environment has been created to enable the simulation of executable models. Based on an input consisting of dynamic properties in 'leads to' format, the software environment generates simulation traces. Examples of such traces can be seen in Figure 2, 4 and 5. Here, time is on the horizontal axis, the state properties are on the vertical axis. A dark box on top of the line indicates that the property is true during that time period, and a lighter box below the line indicates that the property is false. These traces are based on all local properties presented above.

\[\text{Figure 2 Simulation of a normal pattern}\]

Certain parameters are the same in all three simulations. In the properties LP1 to LP5, the values (0.0,1,1) have been chosen for the timing parameters e, f, g, and h. In the properties LP6 and LP7, these values are (0.0,1,25); moreover, $\gamma = 0.2$ in LP6. The initial weight is always 60, the initial eat-norm is always 6, and the amount of energy used on each day remains 8. Thus, we are dealing with situations where initially the eat-norm is too low with respect to the energy used, and should be adapted accordingly. All simulations involve a period of 110 hours (i.e., slightly more than four days). In Figure 2, an example of a normal situation is shown (i.e., no eating regulation disorders are present). To simulate this, in the Norm Adaptation Property (LP7), $\alpha = 0.75$ and $\beta = 1$; As can be seen in the figure, it takes some time before the eat-norm is correctly adapted to the amount of energy used, but in the end they are practically equal. As a consequence, the subject first undereats a little bit (6 units), causing a loss of 0.4 kilogram. However, within the next 24 hours she starts eating more (8 units). Subsequently, the eating pattern stabilizes, and so does the weight (at 59.6 kg).

The simulation of anorexia is based upon the assumption that anorexia in many cases has a genetic background (Vink et al., 2001). This means that the signal 'stop eating', in this simulation translated into the 'stimulus(do-not-eat)', comes too early with respect to the amount of energy deployed. Delfos (2002) proposes that as a result of this condition, there exists an unconscious phase of slight underfeeding resulting in not gaining weight proportional to the growth and the risk of hampering growth. This first phase of anorexia, which can cover several years especially prepuberty, consists of a discrepancy between food eaten and energy deployed at an unconscious level; the person is not consciously trying to lose weight.
exactly the opposite pattern. In that case, the simulated subject continuously eats too much and gains weight.

As for bulimia there exists two kinds of situations. First the prephase of bulimia, in which the eating disorder exists at an unconscious level, and second the bulimia that evolves from consciously slight underfeeding or anorectic underfeeding that results in compensating urges of excessive eating.

Analysis of Dynamic Properties of the System

Complex dynamic processes can be described at different aggregation levels, varying from the local level of (generating) basic mechanisms to the level of (emerging) global dynamic properties of a process as a whole. To analyse how such global dynamic properties relate to local properties it is useful to distinguish intermediate properties. Moreover, some other (environmental) properties may be needed that relate the considered process to other processes that are not modelled and considered as external environment. In this section, the different types of non-local dynamic properties of the system are identified. For the relationships between the properties see also Figure 6.

For the adaptive dynamical system, the amount of used energy is an exogenous variable, i.e., this comes from the environment. To be able to do analysis, it is convenient to consider certain simplifying assumptions on the environment. For example, to study limit behaviour, a suitable assumption is that from a certain point of time no changes occur in the used energy (EP2), or to study how the system behaves under one change, a suitable assumption is that only one change occurs in the environment (EP1). The latter type of environment may be used, for example, to study transitions occurring in subjects of around 35 years old, when the metabolism becomes slower, and hence the day amount of used energy will become lower. For each of the properties, first an informal description is given, and next the formal description that has been used for the automated checking software; see Discussion.

EP1(t1, t2, E1, E2) (Transition from one used energy E1 to another used energy E2)

Property EP1 expresses that first the day amount of used energy is constant at value E1, and next it is constant at (another) value E2. Formalisation:

For all t < t1 \[\text{state}(T, t) \models \text{day使用的energy}(E1) \]

& for all t ≥ t2 \[\text{state}(T, t) \models \text{day使用的energy}(E2) \]

EP2(t, E) (Constant amount of used energy E from time t)

Property EP2 expresses that from a certain time point t the day amount of used energy is constant E. Formalisation:

For all t ≥ t \[\text{state}(T, t) \models \text{day使用的energy}(E) \]

Global properties (GP) are dynamic properties of the process as a whole.

GP1(W, m) (Stable weight W, margin m, e.g., 2%)

Property GP1 expresses that fluctuations in weight are limited to a relative m-interval of weight W. Formalisation:

For all t \[\{ \text{state}(T, t) \models \text{weight}(W1) \Rightarrow - m \leq (W1 - W) / W \leq m \} \]

GP2(t1, t2, E1, E2, W, m) (Conditional constant weight W with margin m)
Property GP2 states that GP1 holds in environments in which only one change occurs in the day amount of used energy. Formalisation: \(\text{EP1}(t_1, t_2, E_1, E_2) \Rightarrow \text{GP1}(W, m) \)

GP3(t, E, d, e) (Adaptation of day amount eaten)
Property GP3 expresses that if the day amount of used energy is constant E after a time point t, then the day amount of food eaten will be in a relative d-interval of E. Formalisation:

For all t \(\text{EP2}(t, E) \Rightarrow \exists t' \leq t \oplus (t') \land \text{state}(T, t) \models \text{time}(24) \land \forall E|\text{day_amount_eaten}(E) \models \lnot d \leq (E_1 - E)/E \leq d \)

Intermediate properties are dynamic properties, normally fulfilled by parts of the dynamical system such that together they entail the global properties.

IP1(t, E, d, e) (Eat norm is adapting to used energy)
Intermediate property IP1 expresses that, if the day amount of used energy is constant after time point t, then, after some time the eat norm will be in a relative d-interval of E. Formalisation:

For all t \(\text{EP2}(t, E) \Rightarrow \exists t' \leq t \oplus (t') \land \text{state}(T, t) \models \text{time}(24) \land \forall E|\text{day_amount_eaten}(E) \models -d \leq (N - E)/E \leq d \)

IP2 (Eat stimuli)
Intermediate property IP2 expresses how the eat norm N and the amount of food eaten together determine whether or not an eat stimulus occurs. It is just the conjunction of LP1 and LP2. Formalisation: LP1 & LP2

IP3 (Day eating accumulation)
Intermediate property IP3 expresses how the day amount of eaten food is generated by following the eat stimuli during the day. Formalisation: LP3 & LP4 & LP5.

![Figure 6 Interlevel relations between the dynamic properties](image)

Intermediate Relationships Between Properties
The dynamic properties as identified in the section above describe the process at different levels of aggregation. The global properties describe the highest aggregation level: of the process as a whole. The local properties presented earlier describe the process at the lowest level of aggregation: the specific basic mechanisms. These properties are logically related in the sense that if a trace satisfies all local properties, then it also satisfies the global properties. To analyse these logical relationships between properties at different aggregation levels more systematically, properties at an intermediate aggregation level have been defined: the intermediate properties. Thus a set of properties at different aggregation levels was obtained that forms a connected set of properties with the following interlevel relationships:

- \(\text{EP1}(t_1, t_2, E_1, E_2) \land \text{GP1}(W, m) \Rightarrow \text{GP1}(W, m) \)
- \(\text{GP1}(d, e) \land \text{LP6} \Rightarrow \text{GP2}(d, e) \)
- \(\text{IP1}(d, e) \land \text{IP2} \land \text{IP3} \Rightarrow \text{IP3}(d, e) \)
- \(\text{LP7} \Rightarrow \text{IP1}(d) \)
- \(\text{LP1} \land \text{LP2} \Rightarrow \text{IP2} \)
- \(\text{LP3} \land \text{LP4} \land \text{LP5} \Rightarrow \text{IP3} \)

The interlevel relationships are depicted by an AND-tree in Figure 6. Here a property at a parent node is implied by the conjunction of the properties at its children nodes.

Diagonistics Based on Failing Analysis
The interlevel relations as depicted in Figure 6 provide a formalisation of a basis for a form of diagnostic reasoning that is sometimes applied in therapy practice. This reasoning runs as follows. Suppose the top level property GP1 fails (e.g., non-stable weight). Then due to the logical interlevel relations, one level lower in the tree either GP1 fails (e.g., strongly fluctuating metabolism) or GP2 fails. Suppose GP2 fails. Then one level lower either LP6 fails (e.g., insufficient food uptake by digestion) or GP3 fails. Suppose GP3 fails. Then either IP2 fails (e.g., no effect of eatnorm on eating) or IP3 fails (e.g., eating no adequate food in the sense of energy-content) or IP1 fails. Suppose IP1 fails. Then LP7 fails (e.g., no adequate adaptation mechanism of eat norm to energy use). Subsequently the type of failure of LP7 can be identified depending on whether weight is systematically too low or decreasing (first phase anorexia), too high, or increasing (first phase obesitas) or fluctuating (first phase bulimia).

Discussion
Two software environments have been developed to support the research reported here. First a simulation environment has been used to generate simulation traces as shown. Second, checking software has been used that takes traces and formally specified properties and checks whether a property holds for a trace.

<table>
<thead>
<tr>
<th></th>
<th>trace 1</th>
<th>trace 2</th>
<th>trace 3</th>
<th>trace 4</th>
<th>trace 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP1</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>EP2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>GP1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>GP2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>GP3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>IP1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>IP2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>IP3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>LP1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>LP2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>LP3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>LP4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>LP5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>LP6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>LP7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 1 Results of checking properties against traces
The results for checking the properties on a number of these traces are as depicted in Table 1. The parameters used were as follows: $W = 60$, $E = 8$, $m = 0.02$, $d = 0.1$ and $e = 24$. Here the first three traces are those depicted in Figures 2, 4 and 5 respectively (normal, anorexia and bulimia). In traces 2 and 3 the adaptation mechanism is malfunctioning (LP7 is the cause of the problems). Trace 4 shows a pattern in which the eating regulation in principle functions well but there is insufficient food uptake by digestion (LP6 is the cause of the problems), whereas trace 5 shows a pattern in which the response on the eat stimulus is eating food without energetic value (LP3 is the cause of the problems). Notice that indeed for all these traces the interlevel relations of Figure 6 hold.

In comparison to Temporal Logic (Barringer et al., 1996) our simulation approach has possibilities to incorporate (real or integer) numbers in state properties, and in the timing parameters e, f, g, h. Furthermore, TTL has more expressive power than temporal logic. For example, explicit reference can be made to (real) time, and variables can be used. Moreover, reference can be made to different developments of processes over time; thus statements such as ‘exercise improves skill’, which require comparison of different histories, can be formalised.

In comparison to rule-based approaches such as described by Holland (1995) and Rosenbloom, Laird and Newell (1993), our leads to format is more declarative in a temporal sense: in a built-in manner the simulation processes are explicitly related to (and have their semantics in) the (real) time dimension, and that relationship to time does not depend on the computational processes in an implicit manner, as in rule processing is usual. Furthermore, in our approach a format is available to express more complex, non-executable dynamic properties in our language TTL, and analysis methods for these dynamic properties at different aggregation levels are available as described above.

The high-level model integrates both medical and psychological aspects of the process, and has proven its value by predicting and explaining many of the patterns observed in psychotherapy practice. As one example, the development of obesitas after the age of 35 year can be explained as a lack of adaptive properties of the system with respect to decreased metabolism level. A more detailed model based on a set of differential equations for more detailed physiological processes is hard to obtain due to the lack of detailed knowledge (and parameter values) at the physiological level. Furthermore, even if such a model could be constructed, it probably would be so complex that it is hard to handle for simulation and analysis. Moreover, such mathematical techniques are not compatible with the type of reasoning within psychotherapy practice.

Further work is underway to address further phases of eating regulation disorders, especially phases when the subject’s more conscious cognitive mechanisms to cope with such a disorder becomes more dominant. One of the aims is to show how, for cases of a malfunctioning system, the types of therapy described in (Delfos, 2002) can lead to a modified dynamical system in which eating regulation is functioning well.

References

