SOURCE PROVENANCE OF OBSIDIAN ARTIFACTS FROM SITES ON COLORADO NATIONAL MONUMENT, WESTERN COLORADO

by

M. Steven Shackley, Ph.D., Director
Geoarchaeological XRF Laboratory
University of California, Berkeley

Report Prepared for

Patricia Stavish, Archaeologist
Colorado National Monument
Fruita, Colorado

22 May 2015
INTRODUCTION

The analysis here of four obsidian artifacts from various chronological contexts from Paleoindian (Clovis) to Protohistoric indicates an extremely diverse assemblage with artifacts produced from sources in northern New Mexico (El Rechuelos), Idaho (Bear Gulch/West Camas, Clark County, Idaho), and Utah (Wild Horse Canyon, Mineral Mountains). The diversity likely befits the 13,000 year time frame. The Clovis projectile point base produced from Wild Horse Canyon is not an unusual raw material for Clovis tool production in the region.

LABORATORY SAMPLING, ANALYSIS AND INSTRUMENTATION

The archaeological sample was analyzed whole. The results presented here are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984; Shackley 2011).

Trace Element Analyses

Trace element analyses were conducted to aid in the determination of rock type. All analyses for this study were conducted on a ThermoScientific Quant’X EDXRF spectrometer, located in the Geoarchaeological XRF Laboratory, Albuquerque, New Mexico. It is equipped with a thermoelectrically Peltier cooled solid-state Si(Li) X-ray detector, with a 50 kV, 50 W, ultra-high-flux end window bremsstrahlung, Rh target X-ray tube and a 76 μm (3 mil) beryllium (Be) window (air cooled), that runs on a power supply operating 4-50 kV/0.02-1.0 mA at 0.02 increments. The spectrometer is equipped with a 200 l min⁻¹ Edwards vacuum pump, allowing for the analysis of lower-atomic-weight elements between sodium (Na) and titanium (Ti). Data acquisition is accomplished with a pulse processor and an analogue-to-digital converter.
Elemental composition is identified with digital filter background removal, least squares empirical peak deconvolution, gross peak intensities and net peak intensities above background.

The analysis for mid Zb condition elements Ti-Nb, Pb, Th, the x-ray tube is operated at 30 kV, using a 0.05 mm (medium) Pd primary beam filter in an air path at 200 seconds livetime to generate x-ray intensity Kα-line data for elements titanium (Ti), manganese (Mn), iron (as Fe$_2$O$_3$), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), lead (Pb), and thorium (Th). Not all these elements are reported since their values in many volcanic rocks are very low. Trace element intensities were converted to concentration estimates by employing a least-squares calibration line ratioed to the Compton scatter established for each element from the analysis of international rock standards certified by the National Institute of Standards and Technology (NIST), the US. Geological Survey (USGS), Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994). Line fitting is linear (XML) for all elements. When barium (Ba) is analyzed in the High Zb condition, the Rh tube is operated at 50 kV and up to 1.0 mA, ratioed to the bremsstrahlung region (see Davis 2011; Shackley 2011). Further details concerning the petrological choice of these elements in Southwest obsidians is available in Shackley (1988, 1995, 2005; also Mahood and Stimac 1991; and Hughes and Smith 1993). Nineteen specific pressed powder standards are used for the best fit regression calibration for elements Ti-Nb, Pb, Th, and Ba, include G-2 (basalt), AGV-2 (andesite), GSP-2 (granodiorite), SY-2 (syenite), BHVO-2 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), BIR-1 (basalt), SDC-1 (mica schist), TLM-1 (tonalite), SCO-1 (shale), NOD-A-1 and NOD-P-1 (manganese) all US Geological Survey standards, NIST-278 (obsidian), U.S. National Institute of Standards and Technology, BE-N (basalt) from the Centre de Recherches Pétrographiques et
Géochimiques in France, and JR-1 and JR-2 (obsidian) from the Geological Survey of Japan (Govindaraju 1994).

The data from the WinTrace™ software were translated directly into Excel for Windows and SPSS software for statistical manipulation. In order to evaluate these quantitative determinations, machine data were compared to measurements of known standards during each run. RGM-1 a USGS rhyolite standard is analyzed during each sample run for obsidian artifacts to check machine calibration (Table 1). Source assignments were made by reference to Shackley (1995, 2005), Nelson and Tingey (1997), and Haarklau et al. (2005); see Table 1 and Figure 1.

REFERENCES CITED

Davis, K.D., T.L. Jackson, M.S. Shackley, T. Teague, and J.H. Hampel

Govindaraju, K.

Hampel, Joachim H.

Haarklau, L, L. Johnson, and D.L. Wagner

Hildreth, W.

Hughes, Richard E., and Robert L. Smith
Mahood, Gail A., and James A. Stimac

McCarthy, J.J., and F.H. Schamber

Nelson, F.W., and D.G. Tingey

Schamber, F.H.

Shackley, M. Steven

Table 1. Elemental concentrations and source assignments for the archaeological specimens, and USGS RGM-1 rhyolite standard. All measurements in parts per million (ppm).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ti</th>
<th>Mn</th>
<th>Fe</th>
<th>Zn</th>
<th>Rb</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
<th>Nb</th>
<th>Ba</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>936</td>
<td>422</td>
<td>7919</td>
<td>52</td>
<td>159</td>
<td>13</td>
<td>23</td>
<td>70</td>
<td>51</td>
<td>9</td>
<td>El Rechuelos, NM</td>
</tr>
<tr>
<td>43</td>
<td>118</td>
<td>363</td>
<td>9414</td>
<td>43</td>
<td>202</td>
<td>48</td>
<td>18</td>
<td>111</td>
<td>25</td>
<td>190</td>
<td>Wild Horse Canyon, Mineral Mtns, UT</td>
</tr>
<tr>
<td>187</td>
<td>174</td>
<td>317</td>
<td>1322</td>
<td>59</td>
<td>179</td>
<td>52</td>
<td>44</td>
<td>300</td>
<td>60</td>
<td>912</td>
<td>Bear Gulch.West Camas, Clark Co., ID</td>
</tr>
<tr>
<td>188</td>
<td>114</td>
<td>336</td>
<td>8910</td>
<td>35</td>
<td>195</td>
<td>43</td>
<td>23</td>
<td>111</td>
<td>25</td>
<td>170</td>
<td>Wild Horse Canyon, Mineral Mtns, UT</td>
</tr>
<tr>
<td>RGM1-S4</td>
<td>161</td>
<td>277</td>
<td>1327</td>
<td>40</td>
<td>148</td>
<td>110</td>
<td>21</td>
<td>216</td>
<td>13</td>
<td>800</td>
<td>standard</td>
</tr>
</tbody>
</table>

Figure 1. Ba versus Rb bivariate plot of the elemental concentrations for all the archaeological specimens from this study.