Title
The role of leptin, melanocortin, and neurotrophin system genes on body weight in anorexia nervosa and bulimia nervosa

Permalink
https://escholarship.org/uc/item/41969305

Journal
Journal of Psychiatric Research, 55(1)

ISSN
0022-3956

Authors
Yilmaz, Z
Kaplan, AS
Tiwari, AK
et al.

Publication Date
2014

DOI
10.1016/j.jpsychires.2014.04.005

Peer reviewed
The role of leptin, melanocortin, and neurotrophin system genes on body weight in anorexia nervosa and bulimia nervosa

Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Canada
Institute of Medical Science, University of Toronto, Toronto, Canada
Department of Psychiatry, University of Toronto, Toronto, Canada
Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada
Mood and Anxiety Program, Centre for Addiction and Mental Health, Toronto, Canada
Faculty of Medicine, University of Ottawa, Ottawa, Canada
Center for Health Sciences, SRI International, Menlo Park, CA, USA
Department of Psychiatry, University of California, San Diego, CA, USA
Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
Department of Psychiatry, University of Southern California, Los Angeles, CA, USA
Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia, PA, USA
Department of Psychiatry, Sheppard Pratt Health System, Towson, MD, USA
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
Department of Psychiatry, University of Munich (LMU), Munich, Germany
Rosenneck Hospital for Behavioral Medicine, Pren, Germany
Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
Eating Recovery Center, Denver, CO, USA
Department of Psychology, Florida State University, Tallahassee, FL, USA
Department of Psychology, Michigan State University, East Lansing, MI, USA
Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Department of Clinical Neuroscience, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
Neuropsychiatric Research Institute, Fargo, ND, USA
Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
Department of Academic Psychiatry, King's College London, Institute of Psychiatry, London, United Kingdom
Eating Disorders Program, Toronto General Hospital, Toronto, Canada

ARTICLE INFO

Article history:
Received 8 January 2014
Received in revised form 5 March 2014
Accepted 4 April 2014

Keywords:
Anorexia nervosa
Bulimia nervosa

ABSTRACT

Objective: Although low weight is a key factor contributing to the high mortality in anorexia nervosa (AN), it is unclear how AN patients sustain low weight compared with bulimia nervosa (BN) patients with similar psychopathology. Studies of genes involved in appetite and weight regulation in eating disorders have yielded variable findings, in part due to small sample size and clinical heterogeneity. This study: (1) assessed the role of leptin, melanocortin, and neurotrophin genetic variants in conferring risk for AN and BN; and (2) explored the involvement of these genes in body mass index (BMI) variations within AN and BN.
1. Background

Indifference to extreme weight loss and low motivation to restore normal body mass are the *sine qua non* of anorexia nervosa (AN) and the primary target of initial treatment (American Psychiatric Association, 2006). As the illness is often protracted, low BMI and the avoidance of eating to restore healthy weight are primary factors influencing high morbidity and mortality that distinguish this illness. Low weight (and the permissive factors involved) are of interest for additional reasons as these are key aspects of AN; moreover, low body weight is the primary distinguishing diagnostic feature separating AN from bulimia nervosa (BN; American Psychiatric Association, 2013) and is associated with other clinical phenotypes, anxiety in particular (Dellava et al., 2010; Thornton et al., 2011).

To date, the genetic risk architecture underlying eating disorders (EDs) remains largely unexplored; however, like most other psychiatric illnesses, the heritability of EDs appears to follow a non-Mendelian pattern, suggesting that large numbers of genes spanning multiple regions of the genome are involved in susceptibility. While a number of ED candidate gene studies have investigated neurotransmitter systems involved in motivated behaviors (Hinney et al., 1997; Gorwood et al., 2002; Hu et al., 2003; Ricca et al., 2004; Nisoli et al., 2007; Sorli et al., 2008; Frielings et al., 2010), the results have been unconvincing. Other studies that focused on regulators of appetite and weight have not implicated specific and replicable polymorphisms or gene—phenotype associations (Hinney et al., 1998; Vink et al., 2001; Janeckova, 2001; Quinton et al., 2004; Cellini et al., 2006; Monteleone et al., 2006a; Dardenne et al., 2007), whereas a number of genes with effects on appetite and weight regulation have yet to be examined in EDs (Table 1). Similarly, although neurotrophin system genes have also been implicated in EDs in case–control studies (Ribases et al., 2003, 2004, 2005a, 2005b; Dmitrzak-Weglarz et al., 2007; Kaplan et al., 2008; Mercader et al., 2008), a recent meta-analysis has called into question the significance and the reliability of some of these findings (Brandys et al., 2013), while the other findings await replication. Furthermore, genome-wide association studies (GWAS) of obesity have identified new genetic variants with potential implication for ED phenotypes; for instance, common variants near the melanocortin 4 receptor (*MC4R*) gene have been repeatedly associated with BMI in obesity (e.g., Loos et al., 2008; Luan et al., 2009; Thorleifsson et al., 2009; Speliotes et al., 2010; Elks et al., 2010; Scherag et al., 2010; Beckers et al., 2011; Kayal et al., 2013). Although thus far this marker has not yielded positive findings in AN (Brandys et al., 2010), it requires further investigation. *MC4R* variants have also been associated with antipsychotic medication-induced weight gain (Malhotra et al., 2012; Chowdhury et al., 2013); however, the relevance of these variants with promising findings to ED phenotype variation currently remains unknown.

A complication in genetic studies of EDs is instability of the phenotype as the crossover between ED diagnoses, in particular from AN to BN, is upwards of 34–36% (Tozzi et al., 2005; Eddy et al., 2008), and most crossovers occur within five years from time of AN onset. By contrast, the BN-to-AN crossover is less common (Fichter and Quadflieg, 1997; Tozzi et al., 2005; Eddy et al., 2008). For this reason, clearly defining AN and BN phenotypes considering longitudinal course of illness is important to the design of genetic studies, as weight histories of AN and BN often diverge, and BN patients with prior AN histories usually report significantly lower current, maximum, and minimum BMIs than BN patients without histories of AN (Kaye et al., 2004). Furthermore, premorbid obesity is more prevalent in those with BN compared with those with AN (33.2% vs. 4.6%, respectively; Villarejo et al., 2012), and a higher maximum lifetime BMI may be a predictor of AN to BN crossover (Monteleone et al., 2011).

The present study had two aims: first, to investigate single nucleotide polymorphisms (SNPs) with known or putative functions in the leptin, melanocortin, and neurotrophin system genes in individuals with AN, BN, and healthy controls; second, to explore the role of the selected candidate genes on illness-related minimum BMI, maximum lifetime BMI, and BMI at the time of ascertainment in each clinical group (AN and BN) separately.

2. Methods and materials

2.1. Sample selection

The main sample used for the selection of suitable cases was derived from the Price Foundation Consortium. All participants included in this collaborative initiative were carefully phenotyped, and these procedures and sample characteristics have been previously described in detail (Kaye et al., 2000, 2004; Jacobs et al., 2009). The present study consisted of a subgroup of female participants who either had AN with no history of BN (AN) or BN with no history of AN (BN; Supplementary Table 1). Minimum illness duration was three years for individuals in each diagnostic group to ensure stability of ED diagnosis. The AN group included individuals with the restricting (AN-R), binge/purge and purging (combined as AN-BP) subtypes. It was ensured that the individuals classified as AN-BP had no history of BN, i.e., regular binge eating and purging when not underweight.

Additional DNA samples from females with BN with no history of AN were selected from the Toronto Bulimia Nervosa Genetics Study (Supplementary Table 1), stored at the Centre for Addiction and Mental Health (CAMH) Neurogenetics Laboratory in Toronto, Canada. Recruitment criteria for this study closely followed those of the Price Foundation BN cases, and the details on recruitment have been published elsewhere (Yilmaz et al., 2011, 2012). Finally, DNA samples from female controls with no psychiatric history (as assessed by a self-report checklist) were obtained from the Toronto Centre for Applied Genomics. Since the controls were not screened for EDs, we only included individuals with a BMI between 19 kg/m².
Table 1
Rationale for the inclusion of the candidate genes and SNPs in the study.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Biological relevance</th>
<th>dbSNP#</th>
<th>SNP previously studied in EDs?</th>
<th>Rationale for SNP selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptin receptor (LEPR)</td>
<td>Important anorexigenic hormone that regulates energy intake and expenditure, appetite, metabolism, and eating behavior; primarily expressed in adipose tissue</td>
<td>rs1137100</td>
<td>Quinton et al., 2004</td>
<td>Affects plasma soluble leptin receptor levels (Sun et al., 2010); preliminary ED findings that need replication (small sample size)</td>
</tr>
<tr>
<td></td>
<td>rs1137101</td>
<td></td>
<td>Quinton et al., 2004</td>
<td>Affects plasma soluble leptin receptor levels (Sun et al., 2010); preliminary ED findings that need replication (small sample size)</td>
</tr>
<tr>
<td>Leptin (LEP)</td>
<td>Acts through the leptin receptor; a protein that controls fat-tissue mass via the hypothalamus effects on satiety and energy expenditure</td>
<td>rs7799039</td>
<td>Janas-Kozik et al., 2008</td>
<td>Affects mRNA expression and plasma leptin levels; preliminary ED findings that need replication (small sample size)</td>
</tr>
<tr>
<td>Ghrelin (GHRL)</td>
<td>Orexigenic peptide ligand of growth hormone secretagogue receptor; associated with the regulation of energy balance and food intake</td>
<td>rs696217</td>
<td>Ando et al., 2006; Dardennes et al., 2007; Cellini et al., 2006; Monteleone et al., 2006a; Monteolone et al., 2007; Kindler et al., 2011</td>
<td>Putative transcription factor-binding site; conflicting findings in EDs</td>
</tr>
<tr>
<td></td>
<td>rs4684677</td>
<td></td>
<td>Cellini et al., 2006, Dardennes et al., 2007; Kindler et al., 2011</td>
<td>Putative splicing site; conflicting findings in EDs</td>
</tr>
<tr>
<td>Histamine receptor H1 (HRH1)</td>
<td>Leptin is known to partly exert its effects through HRH1 and facilitates the release of histamine via HRH1 in the hypothalamus; central histamine signaling is involved in the regulation of food intake and body weight</td>
<td>rs12490160</td>
<td>No</td>
<td>Putative transcription factor-binding site</td>
</tr>
<tr>
<td>Brain derived neurotrophic factor (BDNF)</td>
<td>Protein that supports the growth, survival, differentiation, and assigned function of neurons; involved in appetite suppression by downstream regulation of melanocortin signaling in the hypothalamus</td>
<td>rs6265</td>
<td>Ribases et al., 2003; Ribases et al., 2005b; de Krom et al., 2005a; Monteolone et al., 2006b; Dmitrzak-Weglarz et al., 2007; Gratacos et al., 2007; Gelegen et al., 2008; Kaplan et al., 2008; Brandys et al., 2013</td>
<td>Affects the secretion and dendritic trafficking of BDNF protein (Chiaruttini et al., 2009); conflicting findings in EDs</td>
</tr>
<tr>
<td></td>
<td>rs56164415</td>
<td></td>
<td>Ribases et al., 2003; Ribases et al., 2005b; de Krom et al., 2005a; Dmitrzak-Weglarz et al., 2007; Dardennes et al., 2007; Mercader et al., 2008</td>
<td>Affects mRNA folding; possible splicing site; preliminary ED findings that need replication (small sample size); conflicting findings</td>
</tr>
<tr>
<td>Neurotrophic tyrosine kinase receptor type 2 (NTRK2)</td>
<td>Main receptor for brain derived neurotrophic factor; involved in appetite and weight regulation via its expression in the hypothalamus</td>
<td>rs1078947</td>
<td>Ribases et al., 2005a</td>
<td>Preliminary ED findings that need replication (small sample size) May affect the length and stability of the mRNA isoforms (Ribases et al., 2005a); preliminary ED findings that need replication (small sample size) Heterozygosit will may reduce expression levels (Mercader et al., 2008); preliminary ED findings that need replication (small sample size)</td>
</tr>
<tr>
<td>Neurotrophic tyrosine kinase receptor type 3 (NTRK3)</td>
<td>Major binding site and the physiologic receptor for neurotrophin 3, which affects the development of neurons expressing the BDNF gene</td>
<td>rs7180942</td>
<td>Mercader et al., 2008</td>
<td>Preliminary ED findings that need replication (small sample size)</td>
</tr>
<tr>
<td>Melanocortin 3 receptor (MC3R)</td>
<td>Similar to MC4R, heavily expressed in the hypothalamic regions of the brain; associated with increased fat mass despite decreased food intake when deficient in mice</td>
<td>rs6127698</td>
<td>No</td>
<td>Putative transcription factor-binding site Exonic; in vitro diminished functionality and expression of the receptor (Feng et al., 2003); preliminary ED findings that need replication (small sample size)</td>
</tr>
<tr>
<td>Melanocortin 4 receptor (MC4R)</td>
<td>Stimulation of brain melanocortin leads to a reduction in food intake and weight; leptin signals nutritional status to the hypothalamus by triggering melanocortin production through pro-opiomelanocortin neurons</td>
<td>rs17782313</td>
<td>Brandys et al., 2010</td>
<td>Preliminary ED findings that need replication; associated with obesity (e.g., Loos et al., 2008; Ioannou et al., 2009; Thorleifsson et al., 2009; Strojwas et al., 2010; Elks et al., 2010; Scherag et al., 2010; Beckers et al., 2011; Kvaloy et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>rs489693</td>
<td></td>
<td>No</td>
<td>Associated with antipsychotic medication-induced weight gain (Malhotra et al., 2012)</td>
</tr>
<tr>
<td></td>
<td>rs8087522</td>
<td></td>
<td>No</td>
<td>Associated with antipsychotic medication-induced weight gain (Chowdhury et al., 2013)</td>
</tr>
<tr>
<td>Agouti related protein (AGRP)</td>
<td>A neuropeptide that suppresses melanocortin receptor activity, resulting in an increase in appetite and decrease in metabolic rate and energy expenditure</td>
<td>rs5030980</td>
<td>Vink et al., 2001; Dardennes et al., 2007</td>
<td>Preliminary ED findings that need replication (small sample size) Putative transcription factor-binding site; located upstream of AGRP; possible regulatory role</td>
</tr>
<tr>
<td></td>
<td>rs13338499</td>
<td></td>
<td>No</td>
<td>(continued on next page)</td>
</tr>
</tbody>
</table>

and 28 kg/m² to avoid extreme weight phenotypes (Supplementary Table 1).

All aspects of this research study were reviewed and approved by the CAMH Research Ethics Board and conducted in accordance with the Helsinki Declaration as revised in 1989. Informed consent for providing genetic materials and inclusion of these materials in future collaborative studies was obtained from all individuals whose DNA samples were included in our analysis.

2.2. Laboratory methods

Our genetic analysis focused on 11 candidate genes in the leptin (LEPR, LEP, GHR, HRH1), melanocortin (MC3R, MC4R, AGRP, POMC), and neuropeptide Y (NPY) systems. We pursued a targeted approach that focused on SNPs with known or putative function, as assessed by in silico analysis. This approach has a number of advantages over the tag SNP approach: first, the study of functional variants helps us make more biologically meaningful discoveries as to the effects of any genetic differences associated with the phenotype being studied; second, focusing on a small number of carefully selected loci reduces multiple testing and requires less stringent statistical correction. Two in silico tools were used: the National Institute of Environmental Health Sciences (http://snpsinfo.niehs.nih.gov) and BrainArray (http://brainarray.mbi.med.umich.edu). On average, two markers per gene were selected. Priority was given to SNPs that have been studied in EDs, and a small number of SNPs without known function were also included based on the promising findings they have yielded in EDs despite small sample size (NTRK2 rs1078947, obesity (MC4R rs17782313), antisaccadic medication-induced weight gain (MC4R rs489693 and rs8087522; Table 1).

Genomic DNA was extracted from whole blood for Price Foundation samples and from lymphocytes for Toronto BN cases and healthy controls using the high salt method (Lahiri and Nurnberger, 1991). All genotyping was performed using standard protocols for Applied Biosystems OpenArray® and ViIA™ 7 platforms at CAMH, blind to diagnosis.

2.3. Statistical analysis

Chi-square, t-test, and analysis of variance on anthropometric, demographic, and disease characteristics across AN, BN, and controls were performed using SPSS Statistics v17 (SPSS Inc., Chicago, USA, 2008). Quality control (QC) steps prior to data analysis consisted of checking for deviations from Hardy–Weinberg Equilibrium (HWE; cutoff p < 0.01), removal of SNPs with low minor allele frequency (MAF < 0.03) and low genotyping rate (<90%), and exclusion of individuals with low genotyping rate (<90%). For case–control analysis, genotype and ED diagnosis were treated as categorical variables. The chi-square test was performed for the case–control comparisons using PLINK (Purcell et al., 2007). Power calculations were carried out using Quanto v1.2.4 (http://hydra.usc.edu/gxe), and we have over 90% power to detect an odds ratio as low as 1.5 (alpha = 0.05, two-tailed, MAF = 0.10, log additive model).

For the quantitative phenotypic analysis, we investigated the role of the genetic polymorphisms on three BMI measures: BMI at recruitment (curBMI), maximum lifetime BMI (maxBMI), and lowest illness-related BMI (minBMI). Quantitative data were analyzed separately in AN and BN using linear regression in PLINK. Age, age of onset, AN subtype (for AN only) and source (Price Foundation versus Toronto; for BN only) were entered as covariates, where appropriate, and we have over 80% power to detect a mean change of 0.6 kg/m² in BMI for the AN group (alpha = 0.05, two-tailed, MAF = 0.10, log additive model).

We corrected for multiple testing using Single Nucleotide Polymorphism Spectral Decomposition (SNPSpD; Nyholt, 2004; Li and Ji, 2005). This method calculates the effective number of independent loci for the SNPs on the same gene using linkage disequilibrium (LD) information (Nyholt, 2004; Li and Ji, 2005). Once the effective number of independent loci was determined per gene, the adjusted alpha was calculated by dividing the uncorrected p-value of 0.05 by the effective number of independent SNPs. In our study, the effective number of independent SNPs was determined to be 18.75, setting the adjusted p < 0.0027. All statistical analyses were two-tailed.

3. Results

After applying the selection criteria, 787 AN cases, 267 BN cases, and 322 healthy controls were included. Following QC, 42 AN cases, 22 BN cases, and one control were removed due to low genotyping rate, bringing the final sample to 745 AN, 245 BN, and 321 controls. Of the AN cases, 369 had AN-R (49.5%), whereas 376 had AN-BP (50.5%). All AN and 128 BN cases (52.2%) came from the Price Foundation Consortium, and 117 BN cases (47.8%) came from the Toronto Bulimia Nervosa Genetics Study. Individuals removed due to low genotyping rate did not differ from those who passed QC in terms of demographic, anthropometric, and disease characteristics (results not shown).

In terms of sample characteristics (Table 2), controls were significantly older than AN and BN cases (p < 0.0001), whereas AN

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Characteristics of AN, BN, and control participants.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AN (n = 745)</td>
</tr>
<tr>
<td>**Age (years)**a</td>
<td>26.1 ± 8.5</td>
</tr>
<tr>
<td>**CurBMI (kg/m²)**b</td>
<td>18.05 ± 2.71</td>
</tr>
<tr>
<td>**MaxBMI (kg/m²)**b</td>
<td>13.82 ± 1.95</td>
</tr>
<tr>
<td>**MaxBMI (kg/m²)**b</td>
<td>21.07 ± 2.42</td>
</tr>
</tbody>
</table>

a Age data missing for one AN and one BN case.
b Control > AN = BN.
c BMI data missing for four BN cases.
d Because miniBMI and maxBMI information was not available for controls, independent t-test was run to compare AN and BN groups, and the statistic reported here is the F-value.
cases had a significantly lower mean curBMI compared with the other two groups ($p < 0.0001$). There were also significant differences between AN and BN groups in minBMI ($p < 0.0001$) and maxBMI ($p < 0.0001$).

We also observed a number of differences between AN-R and AN-BP subtypes. Cases in the AN-R group were younger (\(M_{AN-R} = 25.0 \pm 8.5\), \(M_{AN-BP} = 27.2 \pm 8.4\), $p < 0.0001$), weighed less at recruitment (\(M_{AN-R} = 17.85 \pm 2.79\), \(M_{AN-BP} = 18.25 \pm 2.62\), $p = 0.042$), and reported both lower minBMI and lower maxBMI (\(M_{AN-R} = 13.66 \pm 1.89\), \(M_{AN-BP} = 13.98 \pm 1.99\), $p = 0.025$; \(M_{AN-R} = 20.86 \pm 2.42\), \(M_{AN-BP} = 21.29 \pm 2.40\), $p = 0.013$; respectively). Age of onset for AN did not differ between subtypes (\(M_{AN-R} = 16.2 \pm 3.2\), \(M_{AN-BP} = 16.2 \pm 2.9\), $p = 0.758$). When BN cases were stratified by source, Price Foundation cases were older at recruitment (\(M_{Price} = 29.0 \pm 9.6\), \(M_{Toronto} = 25.2 \pm 6.7\), $p < 0.0001$) and had an earlier age of onset compared with Toronto cases (\(M_{Price} = 17.0 \pm 3.7\), \(M_{Toronto} = 18.0 \pm 4.2\), $p = 0.015$).

The minimum SNP genotype completion rate was 93%, with the majority of the SNPs reaching over 98%. None of the SNPs deviated from HWE in any of the three groups, and most of the SNPs were not correlated except for the SNPs in LEPR and MC4R, which were in moderate LD ($r^2 < 0.62$ and 0.77, respectively).

The results of the case-control comparisons are summarized in Supplementary Table 2. We did not find any evidence for differences in allele frequencies between AN and BN cases, AN and controls, or BN and controls. For the within-AN analysis of BMI, we entered age, age of onset of AN, and AN subtype as covariates. Although age of onset was comparable between subtypes, we chose to control for it since AN onset and weight suppression at an earlier age may act as a confounder in the analysis. Table 3 summarizes our findings involving curBMI, minBMI, and maxBMI in AN. None of the markers included in our analysis were linked to any of the two markers in LEPR and MC4R, which were in moderate LD ($r^2 < 0.62$ and 0.77, respectively).

4. Discussion

The case–control comparisons in the present study were designed to genotype a select number of SNPs with known or putative function in the leptin, melanocortin, and neurotrophin system genes in individuals with AN, BN, and healthy controls. Despite the methodological strengths of this study in maximizing phenotypic differences between AN and BN, we did not observe differences between the two ED groups in terms of frequencies of genetic variants included in the analysis. Furthermore, there were no differences in allele frequencies between AN, BN, and control groups.

One possible reason for this lack of significant difference is that the control and BN sample sizes were too small and that these sample size limitations may have resulted in an underpowered analysis. In addition, it is also possible that the differences among AN, BN, and control groups may not be a function of vulnerability to sustained weight suppression, and future research should focus on different gene systems and ED-related phenotypes based on different a priori phenotypic hypotheses. Finally, it is possible that leptin-melanocortin-neurotrophin system genes may not confer risk for AN or BN.

In the AN group, \(AGRP\) rs13338499 was significantly associated with lowest illness-related BMI. To our knowledge, although the \(AGRP\) gene has been previously associated with body weight (Bonilla et al., 2006; Li et al., 2013) and AN (Vink et al., 2001; Dardennes et al., 2007), this is the first time this particular polymorphism has been studied in reference to BMI and EDs, and it is not in LD with any other \(AGRP\) locus previously investigated in EDs. This finding is intriguing on mechanistic and translational grounds, given that the \(Agp\) knockout mouse is one of the earliest animal models of obesity, and \(AGRP\) administration ameliorates self-starvation and hyperactivity in rats (Kas et al., 2003; Hillebrand et al., 2006). In the case of acute AN, plasma \(AGRP\) levels are reported to be elevated (Moriya et al., 2006; Merle et al., 2011) and inversely correlated with BMI (Moriya et al., 2006). According to in silico analysis, rs13338499 is a putative transcription factor-binding site, and since it is located upstream of the \(AGRP\) gene, it may play a regulatory role. Considering the key orexigenic role \(AGRP\) plays through the hypothalamus, this finding further highlights the potential importance of the melanocortin system in weight regulation.

In the BN group, \(NTRK2\) rs1078947 T allele was associated with higher maximum lifetime BMI, a finding that is not in agreement with the previous report that the C allele is linked to a higher maximum BMI in AN (Ribases et al., 2005b). A few possible explanations exist for this discrepancy. First, since rs1078947 did not yield any significant associations with any of the three BMI measures in our 745 AN cases, the association reported in the first study might have been a false positive related to small sample size ($N = 83$). Second, it is possible that the AN group in the previous study may have included individuals with a history of BN, which may have led to the difference in the reported findings due to phenotypic heterogeneity. Furthermore, since the previous study was conducted using Spanish ancestry cases, the results could also be ancestry-specific. Replication studies are needed to understand the relationship between this particular marker and BMI in EDs. Via its expression in the hypothalamus, \(NTRK2\) is involved in appetite and weight regulation; furthermore, peripheral and central administrations of \(NTRK2\) agonists lead to appetite and weight suppression in animals and reduced obesity in \(Bdnf\) knockout mice (Xu et al., 2003). This marker is not predicted to have function in \(AGRP\) and was included in our study due to a previous preliminary association reported in AN (Ribases et al., 2005b), and our results combined with the previous findings further highlight the need for functional studies involving rs1078947.

Since a GWAS has been performed by the Price Foundation on the larger AN sample ($N = 1033$; Wang et al., 2011), we compared our results with the GWAS p-values for the SNPs included in our study. Out of the 20 SNPs analyzed in this study, only six overlapped with the GWAS, none of which was in the top 100 hits in the GWAS case–control analysis. It is also important to note that the GWAS included AN-R cases with and without BN history and did not look at quantitative traits such as BMI.

Despite the significant methodological strengths of this study, a number of limitations also merit consideration. For instance, controls were significantly older than AN and BN cases. However, it can be argued that the older age of the controls does not pose a risk to our findings since DNA sequence is independent of age. Another possible shortcoming involving controls is the lack of ED-specific screening; however, considering the low prevalence of EDs and that the AN and BN groups are enriched for any genetic risk factor for EDs, this is a conservative bias. We also did not have any lifetime BMI measures for controls, and although we only included controls within a certain BMI range, we cannot rule out history of obesity or underweight in this group. In the case of the ED groups, although AN sample size was one of the largest in ED candidate gene studies,
BN and control groups were smaller, which may have reduced statistical power. Despite all individuals included in the study being of European ancestry, we did not genotype ancestry informative markers to control for population substructures. Finally, although we believe that one of the strengths of this study is the utilization of functional variants, genotyping a small number of SNPs and not using tag SNPs could be another criticism; it is possible that the risk loci for EDs located in these candidate genes are outside of the markers selected and that a tag SNP approach could provide better coverage of the genes.

If replicated, the present findings may have translational implications. For example, AGRF is the inverse agonist of melanocortins, and data suggest that melanocortin signaling may play a role in the regulation of circulating cholesterol: in rodents,
inhibition of melanocortin system in the central nervous system leads to an increase in high-density lipoprotein cholesterol in a manner independent of food intake or body weight (Perez-Tilve et al., 2010). Interestingly, the top hit in the recent Price Foundation AN high-throughput sequencing study was in the EPHX2 gene, known to influence cholesterol function (Scott-Van Zeelant et al., 2013). Considering that patients with AN often present with elevated cholesterol levels (Ohwada et al., 2006; Matzkin et al., 2006; Rigaud et al., 2009; Jauregui-Garrido et al., 2012), this clinical abnormality could be at least partially a sign of a disruption in the melanocortin system. Furthermore, future research on the possible use of AGRP and exogenous MC4R competitive antagonists
in the treatment of AN is needed. Our results also suggest a possible role for NTRK2 receptor agonists for individuals with BN who are overweight or obese. BDNF is the natural NTRK2 agonist, and we are not aware of any clinical studies investigating BDNF administration in BN or obesity. Interestingly, N-acetylserinotonin, endogenous chemical intermediate of melatonin and serotonin, has been shown to mediate the antidepressive effects of selective serotonin reuptake inhibitors (SSRIs) through NTRK2 agonism (Jang et al., 2010). Considering that fluoxetine is approved for the treatment of BN and leads to a reduction in binge eating and purging (American Psychiatric Association, 2006), our findings are in line with the clinical evidence for SSRI use in the treatment of BN, and if replicated, these results may provide an alternate, non-serotonergic mechanism of action of SSRIs in BN through neurotrophin agonism.

Role of funding source

The present study was funded by research grants from the Ontario Mental Health Foundation (awarded to Drs. Kaplan and Levitan) and Province of Ontario Academic Health Science Centres Academic Funding Plan Innovation Fund (awarded to Drs. Kaplan and Kennedy). Dr. Yilmaz was funded by a Canadian Institutes of Health Research Doctoral Research Award (200901CSG-248658-174637) and is currently supported by the National Institutes of Health (NIH) Grant T32MH076694 (PI: Bulik). Dr. Tiwari is supported by the Brain & Behavior Research Foundation Young Investigator Award. None of these funding agencies had any influence on the design or results of the study.

Contributors

Drs. Kaplan, Levitan, Yilmaz, Kennedy, Bergen, Kaye, Berrettini, Brandt, Bulik, Crawford, Crow, Fichter, Halmi, Johnson, Keel, Klop, Magistretti, Mitchell, Strober, Thornton, Treasure and Woodside were involved in the recruitment of the eating disorder cases, biospecimen collection and DNA extraction. Drs. Yilmaz, Kaplan and Kennedy designed the present study and wrote the study protocol. Dr. Tiwari assisted with the marker selection and in silico analysis. With the help of Ms. Piran, Dr. Yilmaz prepared and genotyped the DNA samples. Drs. Hakonarson and Wang provided p-values from the previous Price Foundation-Children’s Hospital of Pennsylvania GWAS for comparison of results. Drs. Yilmaz and Kennedy were involved in the statistical analysis, and Dr. Yilmaz prepared the manuscript. All authors contributed to and have approved the final manuscript.

Conflict of interest

Dr. Kennedy has received honoraria from Eli Lilly and Roche, whereas Dr. Levitan has received honorarium from Astra-Zeneca. Dr. Bergen is an employee of SRI International, and has received research, salary and travel support from the National Institutes of Health, from the Price Foundation, Ltd., and from the University of California, San Diego, through grants, study section service, and through professional service agreements. Dr. Bulik is a consultant for Shire Pharmaceuticals. Other authors have no financial interests to disclose.

Acknowledgments

The authors would like to thank the individuals who contributed DNA samples for genetic research, Ms. Sarah Gagliano for her assistance with statistical analysis, Ms. Natalie Freeman, Ms. Maria Tampakeras and Mr. Sadij Shaikh for their contributions to DNA preparation, and Ms. Misti Dowell for her help with the shipment of Price Foundation DNA samples.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jpsychires.2014.04.005.

References

Gratatos M, Gonzalez JR, Mercader JM, de Cid R, Urreiztizcayaza M, Estivill X. Brain-derived neurotrophic factor Val66Met and psychiatric disorders: meta-analysis
of case-control studies confirm association to substance-related disorders, eating disorders, and schizophrenia. Biol Psychiatry 2007;61:911–22.

