GAMMA-RAY CALIBRATION STANDARDS

Leslie J. Jardine

April 1971

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
GAMMA-RAY CALIBRATION STANDARDS

Leslie J. Jardine
Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

April 1971

ABSTRACT

A collection of γ-ray energies and intensities is given that are suitable for use in the calibration of high resolution γ-ray spectrometers. The energy range included in this tabulation is 25 keV < Eγ < 3452 keV. Adopted values are given for gamma-ray energies based on weighted averages of the author's stated uncertainties. Relative γ-ray intensities are also given for 133Ba, 182Ta, and 56Co. No attempt was made to establish weighted averages for the intensity values.
I. INTRODUCTION

With the development of high resolution Ge(Li) detectors coupled with highly stabilized linear electronics and computer photopeak analysis of data, it has become possible to measure gamma-ray energies to a precision of better than 0.1 keV. However, to do this, it is necessary to have available a large number of standards known to tens of eV. Marion1 compiled a list of such standards in 1968, but since that time there have been improvements in the measurements of standards, and their number has increased substantially. Because the newer information is scattered in the literature, it is the purpose of this report to collect and tabulate those measurements and references for standards that are routinely being used in our nuclear spectroscopy research. In the recent literature, the most extensive work has been that of Gunnink et al.2,13

Gamma-ray energies are listed by source in Table I. The original data are shown along with the reference. The "adopted values" that are given represent weighted averages (weighted inversely as the square of the author's stated uncertainties). The errors given are the larger of the \(\sigma \) values as defined below. \(E_i \) and \(\sigma_i \) are the author's stated energy and error, respectively.

\[
\sigma^2 = \frac{1}{\sum \frac{1}{\sigma_i^2}} \quad \quad \quad \sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (E_m - E_i)^2 \quad \quad \quad E_m = \frac{\sum E_i / \sigma_i^2}{\sum 1 / \sigma_i^2}
\]

Marion's1 values, which are also tabulated, often represent weighted averages of several measurements. In these cases the original measurements reported by Ref.1 were used in obtaining the new weighted set of adopted values.
Table II lists gamma-ray energy and intensity measurements for 133Ba, 182Ta, and 56Co. No attempt was made to establish a weighted set of intensity values. The energy values of Gunnink et al.2 are used for 56Co while weighted sets are given for 133Ba and 182Ta.

The 182Ta low energy (84–265 keV) γ-ray intensity measurements18 were made using a calibrated 10 cm3 Ge(Li) detector. Details of these measurements are to be published later.
FOOTNOTES AND REFERENCES

*Work performed under the auspices of the U. S. Atomic Energy Commission.

1. J. B. Marion, Nucl. Data A4, 301 (1968).

Table I. Gamma-ray energies used as calibration standards listed by source.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-Life</th>
<th>γ-Ray Energy</th>
<th>Refs.</th>
<th>Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{241}Am</td>
<td>432.9 ± 0.8y</td>
<td>26.348 ± 0.010</td>
<td>1</td>
<td>26.346 ± 0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.345 ± 0.010</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>59.536 ± 0.010</td>
<td>13</td>
<td>59.538 ± 0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59.543 ± 0.015</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>^{170}Tm</td>
<td>120d</td>
<td>84.2572 ± 0.0026</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>84.257 ± 0.003</td>
<td>12</td>
<td>84.257 ± 0.002</td>
</tr>
<tr>
<td>^{109}Cd</td>
<td>453d</td>
<td>88.034 ± 0.010</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>88.035 ± 0.006</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>88.036 ± 0.008</td>
<td>11</td>
<td>88.035 ± 0.004</td>
</tr>
<tr>
<td>^{57}Co</td>
<td>271.6 ± 0.5d</td>
<td>122.046 ± 0.020</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>122.055 ± 0.013</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>122.061 ± 0.010</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>122.04 ± 0.02</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>136.465 ± 0.020</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>136.471 ± 0.010</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>136.47 ± 0.02</td>
<td>14</td>
<td>136.470 ± 0.008</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-Life</th>
<th>γ-Ray Energy (keV)</th>
<th>Refs.</th>
<th>Adopted (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{203}Hg</td>
<td>$46.8 \pm 0.2d$</td>
<td>279.191 ± 0.008</td>
<td>1</td>
<td>279.186 ± 0.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>279.179 ± 0.010</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>^{113}Sn</td>
<td>$115.2 \pm 0.8d$</td>
<td>391.688 ± 0.010</td>
<td>9</td>
<td>391.692 ± 0.018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>391.71 ± 0.02</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>^{198}Au</td>
<td>$2.7d$</td>
<td>411.795 ± 0.009</td>
<td>1</td>
<td>411.793 ± 0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>411.792 ± 0.008</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>^{137}Cs</td>
<td>$30.5 \pm 0.3y$</td>
<td>661.635 ± 0.076</td>
<td>1</td>
<td>661.618 ± 0.028</td>
</tr>
<tr>
<td></td>
<td></td>
<td>661.615 ± 0.030</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>^{54}Mn</td>
<td>$312.6 \pm 0.3d$</td>
<td>834.81 ± 0.03</td>
<td>1</td>
<td>834.81 ± 0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>834.84 ± 0.05^c</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>^{88}Y</td>
<td>$107.4 \pm 0.8d$</td>
<td>898.04 ± 0.04</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>898.023 ± 0.065</td>
<td>13</td>
<td>898.021 ± 0.023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>898.010 ± 0.030</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1836.13 ± 0.040</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1836.127 ± 0.050</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1836.030 \pm 0.030^{b,c}$</td>
<td>10</td>
<td>1836.129 ± 0.031</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-Life</th>
<th>γ-Ray Energy</th>
<th>Refs.</th>
<th>Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Co</td>
<td>$5.28 \pm 0.01\text{y}$</td>
<td>1173.23 ± 0.04</td>
<td>1</td>
<td>1173.23 ± 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1173.231 ± 0.030</td>
<td>13</td>
<td>1173.231 ± 0.024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1332.49 ± 0.04</td>
<td>1</td>
<td>1332.501 ± 0.021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1332.505 ± 0.025</td>
<td>2</td>
<td>1332.505 ± 0.021</td>
</tr>
<tr>
<td>22Na</td>
<td>$2.602 \pm 0.005\text{y}$</td>
<td>511.006 ± 0.002^c</td>
<td>1</td>
<td>511.0041 ± 0.0016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>511.0041 ± 0.0016</td>
<td>15</td>
<td>511.0041 ± 0.0016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1274.55 ± 0.04</td>
<td>1</td>
<td>1274.55 ± 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1274.550 ± 0.040^c</td>
<td>13</td>
<td>1274.55 ± 0.04</td>
</tr>
<tr>
<td>24Na</td>
<td>15h</td>
<td>1368.526 ± 0.044</td>
<td>1</td>
<td>1368.526 ± 0.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1731.91 ± 0.12^c</td>
<td>1</td>
<td>1732.130 ± 0.060</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1732.130 ± 0.060^a</td>
<td>2</td>
<td>1732.130 ± 0.060</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2753.92 ± 0.12</td>
<td>1</td>
<td>2754.098 ± 0.183</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2754.142 ± 0.060</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-Life</th>
<th>γ-Ray Energy</th>
<th>Refs.</th>
<th>Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹⁴⁶⁰K</td>
<td>1.26 × 10⁹y</td>
<td>1460.75 ± 0.06</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1460.9 ± 0.3</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1460.95 ± 0.07</td>
<td>23</td>
<td>1460.836 ± 0.11</td>
</tr>
<tr>
<td>²⁰⁷⁷Bi</td>
<td>30y</td>
<td>569.653 ± 0.020</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>569.62 ± 0.06</td>
<td>1</td>
<td>569.650 ± 0.030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1063.63 ± 0.030</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1063.44 ± 0.090</td>
<td>1</td>
<td>(1063.611 ± 0.172)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1769.71 ± 0.13°</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1770.22 ± 0.040°</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1770.06 ± 0.07</td>
<td>7</td>
<td>1770.06 ± 0.07</td>
</tr>
<tr>
<td>¹⁹²Ir</td>
<td>74.2d</td>
<td>295.938 ± 0.009</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>295.938 ± 0.010</td>
<td>2</td>
<td>295.938 ± 0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>308.429 ± 0.010</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>308.440 ± 0.010</td>
<td>2</td>
<td>308.435 ± 0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>316.486 ± 0.010</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>316.490 ± 0.010</td>
<td>2</td>
<td>316.488 ± 0.007</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-Life</th>
<th>γ-Ray Energy</th>
<th>Refs.</th>
<th>Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td>192Ir</td>
<td></td>
<td>468.053 ± 0.014</td>
<td>1</td>
<td>468.058 ± 0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>468.060 ± 0.010</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>588.557 ± 0.017</td>
<td>1</td>
<td>588.557 ± 0.017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>604.385 ± 0.017</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>604.378 ± 0.020</td>
<td>2</td>
<td>604.382 ± 0.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>612.435 ± 0.017</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>612.430 ± 0.020</td>
<td>2</td>
<td>612.433 ± 0.013</td>
</tr>
<tr>
<td>110Ag</td>
<td>253d</td>
<td>446.77 ± 0.04</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>446.790 ± 0.020</td>
<td>10</td>
<td>446.786 ± 0.020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>620.22 ± 0.03</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>620.310 ± 0.020</td>
<td>10</td>
<td>620.282 ± 0.068</td>
</tr>
<tr>
<td></td>
<td></td>
<td>657.71 ± 0.03</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>657.720 ± 0.020</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>657.75 ± 0.04</td>
<td>14</td>
<td>657.722 ± 0.022</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-Life</th>
<th>γ-Ray Energy</th>
<th>Refs.</th>
<th>Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{110m}_{\text{Ag}}$ (continued)</td>
<td></td>
<td>677.55 ± 0.03</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>677.580 ± 0.020</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>677.58 ± 0.05</td>
<td>14</td>
<td>677.572 ± 0.017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>686.80 ± 0.03</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>686.950 ± 0.030</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>686.95 ± 0.05</td>
<td>14</td>
<td>686.886 ± 0.088</td>
</tr>
<tr>
<td></td>
<td></td>
<td>706.68 ± 0.04</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>706.650 ± 0.020</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>706.63 ± 0.06</td>
<td>14</td>
<td>706.654 ± 0.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>744.19 ± 0.04</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>744.260 ± 0.030</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>744.23 ± 0.07</td>
<td>14</td>
<td>744.234 ± 0.036</td>
</tr>
<tr>
<td></td>
<td></td>
<td>763.88 ± 0.04</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>763.920 ± 0.030</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>763.93 ± 0.07</td>
<td>14</td>
<td>763.908 ± 0.027</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-Life</th>
<th>γ-Ray Energy</th>
<th>Ref's.</th>
<th>Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td>110mAg (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>818.00 ± 0.04</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>817.995 ± 0.030</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>817.95 ± 0.08</td>
<td>14</td>
<td>817.993 ± 0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td>884.67 ± 0.04</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>884.650 ± 0.030</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>884.68 ± 0.04</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>884.69 ± 0.05</td>
<td>14</td>
<td>884.667 ± 0.019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>937.48 ± 0.04</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>937.450 ± 0.030</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>937.48 ± 0.04</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>937.54 ± 0.07</td>
<td>14</td>
<td>937.472 ± 0.042</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1384.22 ± 0.04</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1384.240 ± 0.040</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1384.26 ± 0.05</td>
<td>6</td>
<td>1384.237 ± 0.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1475.73 ± 0.04</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1475.710 ± 0.040</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1475.76 ± 0.07</td>
<td>6</td>
<td>1475.726 ± 0.027</td>
</tr>
</tbody>
</table>

(continued)
Table I. (continued)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-Life</th>
<th>γ-Ray Energy</th>
<th>Refs.</th>
<th>Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>keV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{110m}Ag (continued)</td>
<td>1504.9 ± 0.08</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1504.945 ± 0.040</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1505.01 ± 0.07</td>
<td>6</td>
<td>1504.951 ± 0.055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1562.22 ± 0.06</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1562.255 ± 0.050</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1562.35 ± 0.08</td>
<td>6</td>
<td>1562.261 ± 0.069</td>
<td></td>
</tr>
<tr>
<td>^{108m}Ag</td>
<td>127 ± 7y</td>
<td>434.0 ± 0.10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>433.94 ± 0.06</td>
<td>14</td>
<td>433.956 ± 0.051</td>
<td></td>
</tr>
<tr>
<td></td>
<td>614.37 ± 0.10</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>722.95 ± 0.08</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>722.87 ± 0.06</td>
<td>14</td>
<td>722.899 ± 0.059</td>
<td></td>
</tr>
<tr>
<td>^{228}Th</td>
<td>1.910yd</td>
<td>39.85 ± 0.01</td>
<td>1$^{(212}\text{Bi})$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>238.624 ± 0.009</td>
<td>1$^{(212}\text{Po})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>510.723 ± 0.020</td>
<td>1$^{(208}\text{Tl})$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-Life</th>
<th>γ-Ray Energy</th>
<th>Refs.</th>
<th>Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td>228Th (continued)</td>
<td>583.139 ± 0.023</td>
<td>1(208Tl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>727.1 ± 0.1</td>
<td>1(212Bi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>727.08 ± 0.07</td>
<td></td>
<td>727.09 ± 0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>785.37 ± 0.08</td>
<td>7(212Bi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>763.13 ± 0.08</td>
<td>7(208Tl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>860.37 ± 0.08</td>
<td>7(208Tl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>893.43 ± 0.09</td>
<td>7(212Bi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1078.62 ± 0.10</td>
<td>7(212Bi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1592.696 ± 0.050</td>
<td>2(208Tl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1620.50 ± 0.10</td>
<td>7(212Bi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2614.47 ± 0.10</td>
<td>1(208Tl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2614.708 ± 0.050</td>
<td>2</td>
<td>2614.66 ± 0.20</td>
<td>(continued)</td>
</tr>
</tbody>
</table>
Table I. (continued)

-14- UCRL-20476

a	Since these values are for double-escape pair peaks, care, as warned by Gunnink et al., should be employed if using them.
b	The calibration is from the double-escape peak. See Ref. 10.
c	This is not included in the adopted value given.
d	Th energies listed are from daughters in Th decay chain.

-228
Table II. Gamma-ray energies and intensities used as calibration standards listed by source.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>133Ba</td>
<td>7.2y</td>
<td>53.18 ± 0.04</td>
<td>1</td>
<td></td>
<td>3.78 ± 0.09</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53.17 ± 0.01</td>
<td>8</td>
<td>53.171 ± 0.010</td>
<td>3.81 ± .10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>79.60 ± 0.05</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>79.63 ± 0.03</td>
<td>8</td>
<td>4.50 ± .40</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80.997 ± 0.006</td>
<td>1</td>
<td></td>
<td>55.3 ± 3.0<sup>e</sup></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80.99 ± 0.01</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80.998 ± 0.008</td>
<td>9</td>
<td></td>
<td>0.803 ± 0.042</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160.66 ± 0.06</td>
<td>1</td>
<td>1.21 ± 0.05</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160.63 ± 0.02</td>
<td>8</td>
<td>160.633 ± 0.027</td>
<td>1.12 ± 0.05</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>223.37 ± 0.23<sup>e</sup></td>
<td>1</td>
<td></td>
<td>0.803 ± 0.042</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>223.12 ± 0.01</td>
<td>8</td>
<td>223.12 ± 0.01</td>
<td>0.78 ± 0.04</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>276.46 ± 0.2<sup>e</sup></td>
<td>1</td>
<td></td>
<td>11.61 ± 0.17</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>276.45 ± 0.02</td>
<td>8</td>
<td>11.6 ± 0.2</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>276.397 ± 0.012</td>
<td>9</td>
<td>276.411 ± 0.041</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>133Ba (continued)</td>
<td></td>
<td>303.08 ± 0.2</td>
<td>1</td>
<td>29.75 ± 0.29</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>302.93 ± 0.03</td>
<td>8</td>
<td>29.6 ± 0.3</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>302.851 ± 0.015</td>
<td>9</td>
<td>302.867 ± 0.065</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>356.27 ± 0.14</td>
<td>1</td>
<td></td>
<td>100.</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>356.09 ± 0.04</td>
<td>8</td>
<td></td>
<td>100.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>356.005 ± 0.017</td>
<td>9</td>
<td>356.018 ± 0.073</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>384.10 ± 0.16</td>
<td>1</td>
<td>14.18 ± 0.26</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>383.83 ± 0.03</td>
<td>8</td>
<td>14.1 ± 0.3</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>383.851 ± 0.020</td>
<td>9</td>
<td>383.845 ± 0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182Ta</td>
<td>115d</td>
<td>84.257 ± 0.003</td>
<td>12</td>
<td>7.6 ± 0.4</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>84.678 ± 0.003</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.106 ± 0.003</td>
<td>12</td>
<td>40.2 ± 1.0</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.104 ± 0.002</td>
<td>3 d</td>
<td>100.105 ± 0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>152.435 ± 0.003</td>
<td>3 d</td>
<td>20.5 ± 0.51</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>156.387 ± 0.003</td>
<td>3 d</td>
<td>7.63 ± 0.19</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>179.393 ± 0.004</td>
<td>3 d</td>
<td>8.81 ± 0.22</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>198.358 ± 0.008</td>
<td>17</td>
<td>4.15 ± 0.11</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table II. (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>keV</td>
<td></td>
<td></td>
<td>Relative</td>
<td></td>
</tr>
<tr>
<td>182Ta (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>222.109 ± 0.005</td>
<td>3</td>
<td></td>
<td>21.30 ± 0.56</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>229.322 ± 0.008</td>
<td>3</td>
<td></td>
<td>10.27 ± 0.27</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>264.072 ± 0.009</td>
<td>3</td>
<td></td>
<td>10.10 ± 0.26</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>891.982 ± 0.015</td>
<td>4</td>
<td></td>
<td>0.15 ± 0.02</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>927.995 ± 0.015</td>
<td>4</td>
<td></td>
<td>1.79 ± 0.09</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>959.730 ± 0.015</td>
<td>4</td>
<td></td>
<td>1.02 ± 0.06</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1001.694 ± 0.015</td>
<td>4</td>
<td></td>
<td>5.98 ± 0.3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1044.409 ± 0.015</td>
<td>4</td>
<td></td>
<td>0.69 ± 0.08</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1113.398 ± 0.052</td>
<td>4</td>
<td></td>
<td>1.13 ± 0.10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1121.298 ± 0.013</td>
<td>4</td>
<td></td>
<td>100</td>
<td>4,18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1121.28 ± 0.12</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1121.31 ± 0.04</td>
<td>6</td>
<td>1121.299 ± 0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1157.311 ± 0.013</td>
<td>4</td>
<td></td>
<td>1.84 ± 0.35</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1158.080 ± 0.015</td>
<td>4</td>
<td></td>
<td>0.99 ± 0.28</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1189.046 ± 0.013</td>
<td>4</td>
<td></td>
<td>47.4 ± 0.7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1189.03 ± 0.2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1189.06 ± 0.04</td>
<td>6</td>
<td>1189.047 ± 0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>182Ta (continued)</td>
<td></td>
<td>1221.399 ± 0.013</td>
<td>4</td>
<td>79.3 ± 1.2</td>
<td>1221.401 ± 0.019</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1221.42 ± 0.10</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1221.42 ± 0.04</td>
<td>6</td>
<td>1221.42 ± 0.04</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1231.010 ± 0.013</td>
<td>4</td>
<td>33.4 ± 0.5</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1257.412 ± 0.013</td>
<td>4</td>
<td>4.33 ± 0.07</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1273.725 ± 0.013</td>
<td>4</td>
<td>1.90 ± 0.04</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1289.147 ± 0.013</td>
<td>4</td>
<td>4.05 ± 0.07</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1342.714 ± 0.051</td>
<td>4</td>
<td>0.75 ± 0.02</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1373.825 ± 0.013</td>
<td>4</td>
<td>0.66 ± 0.02</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1387.396 ± 0.013</td>
<td>4</td>
<td>0.217 ± 0.01</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1410.100 ± 0.100</td>
<td>4</td>
<td>0.117 ± 0.008</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1453.115 ± 0.013</td>
<td>4</td>
<td>0.123 ± 0.010</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>56Co</td>
<td>77d</td>
<td>846.79 ± 0.030</td>
<td>20</td>
<td>100.</td>
<td>846.782 ± 0.060</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>846.782 ± 0.060</td>
<td>2</td>
<td>100.</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>846.76 ± 0.05</td>
<td>1</td>
<td>100.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>846.741 ± 0.025</td>
<td>21</td>
<td>846.782 ± 0.060</td>
<td>100.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1037.91 ± 0.030</td>
<td>20</td>
<td>14.302 ± 0.170</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1037.851 ± 0.060</td>
<td>2</td>
<td>13.08 ± 0.35</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1037.97 ± 0.07</td>
<td>1</td>
<td>13.02 ± 0.35</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1037.84 ± 0.05</td>
<td>21</td>
<td>1037.851 ± 0.060</td>
<td>12.9 ± 0.5</td>
<td>21</td>
</tr>
</tbody>
</table>

(continued)
Table II. (continued)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-Life</th>
<th>γ-Ray Energy</th>
<th>γ-Ray Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>56Co (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1175.13 ± 0.050 keV</td>
<td>Refs. 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1175.085 ± 0.070</td>
<td>1.73 ± 0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1175.026 ± 0.13</td>
<td>1.86 ± 0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1175.1 ± 0.1</td>
<td>2.26 ± 0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1175.085 ± 0.070b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1238.30 ± 0.020</td>
<td>67.638 ± 0.680</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1238.290 ± 0.040</td>
<td>68.3 ± 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1238.34 ± 0.09</td>
<td>69.35 ± 1.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1238.28 ± 0.06</td>
<td>67.8 ± 1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1360.22 ± 0.030</td>
<td>4.340 ± 0.045</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1360.219 ± 0.040</td>
<td>4.15 ± 0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1360.35 ± 0.090</td>
<td>4.38 ± 0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1360.26 ± 0.04</td>
<td>4.16 ± 0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1771.41 ± 0.030</td>
<td>15.778 ± 0.160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1771.33 ± 0.06</td>
<td>14.95 ± 0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1771.57 ± 0.10</td>
<td>15.30 ± 0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1771.38 ± 0.15</td>
<td>16.5 ± 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2015.36 ± 0.030</td>
<td>3.095 ± 0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2015.33 ± 0.07</td>
<td>2.78 ± 0.14</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>^{56}Co (continued)</td>
<td></td>
<td>2015.49 ± 0.20</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2015.24 ± 0.12</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2034.92 ± 0.030</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2034.90 ± 0.06</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2035.03 ± 0.12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2034.82 ± 0.10</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2598.58 ± 0.030</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2598.52 ± 0.05</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2598.80 ± 0.12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2598.53 ± 0.06</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3202.30 ± 0.080</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3202.18 ± 0.07</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3202.25 ± 0.19</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3202.1 ± 0.2</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3253.62 ± 0.040</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3253.61 ± 0.06</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3253.82 ± 0.15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3253.5 ± 0.2</td>
<td>21</td>
</tr>
</tbody>
</table>

(continued)
Table II. (continued)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-Life</th>
<th>γ-Ray Energy</th>
<th>γ-Ray Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{56}Co (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3273.26 ± 0.08</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3273.16 ± 0.07</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3273.38 ± 0.18</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3273.08 ± 0.10</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3451.56 ± 0.20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3451.29 ± 0.10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3452.18 ± 0.22</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3451.5 ± 0.3</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1576.561 ± 0.050a</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2180.17 ± 0.07a</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2231.60 ± 0.06a</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2251.15 ± 0.07a</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2429.28 ± 0.10a</td>
<td>2</td>
</tr>
</tbody>
</table>

Ref.

- **a**: Since these values are for double-escape pair peaks, care, as warned by Gunnink et al., should be employed if using them.
- **b**: This not a weighted value, but that of Ref. 2.
- **c**: This is an adopted value from previous works. See Ref. 8 for details.
- **d**: These energy values are averaged results of Refs. 17, 24 as calculated in Ref. 3.
- **e**: This not included in the adopted value given.
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.