Title
Finding the hidden valence band of N=7 armchair graphene nanoribbons with angle-resolved photoemission spectroscopy

Permalink
https://escholarship.org/uc/item/41x0x9t5

Journal
2D MATERIALS, 5(3)

ISSN
2053-1583

Authors
Senkovskiy, BV
Usachov, DY
Fedorov, AV
et al.

Publication Date
2018-07-01

DOI
10.1088/2053-1583/aabb70

Peer reviewed
Finding the hidden valence band of N = 7 armchair graphene nanoribbons with angle-resolved photoemission spectroscopy

To cite this article: Boris V Senkovskiy et al 2018 2D Mater. 5 035007
1. Introduction

When a two-dimensional (2D) material is scaled down to a quasi-one-dimensional (1D) ribbon, its electronic structure changes dramatically due to the quantum confinement of the electron wave functions. Graphene nanoribbons (GNRs) have a band gap and a tunable electronic structure, and therefore they are a promising material for opto-electronic applications. After the discovery of bottom-up synthesis which allows atomically precise fabrication [1], there is a boom in design and study of GNRs [2–21]. The first reported [1] and the most studied system is the semiconducting armchair graphene nanoribbons of N = 7 carbon atoms width (7-AGNRs). The conductance of individual 7-AGNRs was measured [22] and the field-effect transistor was fabricated [23]. A wide tunability of the electronic and optical properties of 7-AGNRs was demonstrated. Particularly, it was shown that the decoupling of 7-AGNRs from the metal substrate affects the band gap [15, 24]. The 7-AGNRs can be efficiently functionalized by edge groups [20], by periodically incorporated boron atoms along the ribbon backbone [6, 7] and transformed to a metal by Li-doping [25]. Excitonic effect [3] and defect-induced photoluminescence [16] were observed. Atomically
precise heterojunctions with 7-AGNRs have been also studied [5, 19, 26, 27]. Thus, electronic band structure of this material seems to be well understood.

However, this is not the case. The electronic band structure of 7-AGNRs consists of 1D sub-bands with parabolic energy-momentum relation $E(\mathbf{k})$ at the valence band maximum characterized by the effective mass $m_{VB}^* = \hbar^2 (\partial^2 E / \partial k^2)^{-1}$. The effective mass is an important parameter characterizing a semiconductor and there is a large discrepancy in the value of m_{VB}^* as determined by different experimental techniques. Linden et al [28] demonstrated that the synthesis on a vicinal surface Au(7 8 8) provides long-range alignment of 7-AGNRs, since the surface-assisted assembling of the ribbons from molecular precursors is confined within narrow (≈ 3.8 nm) Au(1 1 1) terraces. This alignment allowed to perform first experimental investigation of the energy band dispersion of 7-AGNRs by means of angle-resolved photoemission spectroscopy (ARPES). Two valence sub-bands with ≈ 0.3 eV energy separation and the same effective mass approximately equal to the free electron mass m_e were extracted from the spectra [28]. The work of Ruffieux et al [29] demonstrated ARPES measurements of a better quality and revealed three frontier sub-bands with $m_{VB}^* \approx 0.2 \ m_e$. Similar energy band dispersion was later reported by other authors [25, 30, 31]. On another hand, Fourier-transformed scanning tunneling spectroscopy (FT-STS), where the $E(\mathbf{k})$ is determined from the interference pattern of the electronic waves reflected form the ribbon edges, found $m_{VB}^* \approx 0.4 \ m_e$ [32]. The recent ARPES results of various groups agree to one another, [25, 29–31] making erroneous measurements an unlikely explanation. The discrepancy between ARPES and STS is quite surprising, since both methods actually should lead to identical results. For example, for 9-AGNRs it was found that ARPES and STS reveal the same value of the effective mass of $m_{VB}^* \approx 0.1 \ m_e$ [31, 33]. It is important to understand this issue, since ARPES is a widely used technique to examine the 1D band structure of GNRs [25, 28–31, 33] and self-assembled polymeric nanowires [34–36].

The present manuscript resolves this discrepancy by revealing strong anisotropy in the photoemission intensity of aligned 7-AGNRs, which makes it impossible to identify all sub-bands in a single ARPES scattering geometry. We demonstrate experimentally, that the photoemission matrix element in 1D nanoribbons is a peaked function of the two-dimensional (2D) electron momentum in the ribbon plane. This knowledge allows us to visualize the highest three valence sub-bands and determine important parameters for the transport and optical properties, such as effective masses, energy band offsets and the charge carrier velocities. In previous ARPES data the second-highest sub-band of 7-AGNRs was mistakenly considered as the highest one [25, 29–31]. Our results highlight that proper application of the ARPES technique for probing the electronic structure of confined systems requires careful consideration of photoemission matrix elements.

2. Results and discussion

The 1D electronic structure of graphene nanoribbons in tight-binding (TB) model is given by cutting the 2D graphene band structure along confinement lines in momentum space (zone-folding approximation). We introduce the parallel (k_\parallel) and the transverse component (k_\perp) in the 2D momentum space. Each cutting line at fixed k_\perp determines the allowed momentum for a N-AGNR and leads to 1D bands below and above the Fermi level with band indices $n = 1, \ldots, N$, where $N = 7$ is the number of atoms along the width of nanoribbon, as it is shown for 7-AGNRs in figure 1. ARPES directly reveal energy band dispersion along the defined direction in k-space. If the ribbons are oriented along the vertical slit of analyzer, the scans will be acquired in some range of k_\parallel (figure 1). Using the tilt angle one can move the center of the scan along k_\parallel, for example, from the Γ (tilt $= 0^\circ$) to the M point of graphene’s BZ, which corresponds to moving from the center of the first to the center of the second 1D BZ of 7-AGNR. By rotating the sample around the polar axis we can change k_\perp.

Due to quantum confinement the amplitude of the wave function in the direction perpendicular to nanoribbon axis is changing as $\sin(q_\perp^* a/2)$, where $q_\perp^* = q_\perp/\sqrt{N}$ is the quantized value of k_\perp and a is the lattice constant of graphene [37–39]. If the final state in the photoemission process is assumed to be a plane wave, then the photoemission matrix element for the π states of GNR in the dipole approximation can be expressed as [31]

$$M(\mathbf{k}) \propto \sum_{j} e^{-ik_\perp R_{j,\perp}} C_j(\mathbf{k}_j),$$ \hspace{1cm} (1)

where $R_{j,\perp}$ are the transverse components of atomic coordinates and $C_j(\mathbf{k}_j)$ are the Bloch wave function amplitudes for the π states. Here, we neglected the factors related to the photon polarization direction and to the photoionization cross section of $2p_z$ atomic orbitals. The coefficients in equation (1) in TB model can be written as [37]

$$C_A \propto \sin\left(\frac{mq_\perp^* a}{2}\right), \hspace{1cm} C_B = \pm C_A \left(\frac{f_A(\mathbf{k}_j)}{f_A(\mathbf{k}_j)}\right),$$ \hspace{1cm} (2)

where C_A and C_B refers to the graphene sub-lattices A and B, \pm stands for the conduction and valence bands, correspondingly, m is the number of atomic row along the ribbon width, $f_A(\mathbf{k}_j) = -\gamma (2\delta_{j,0}/\sqrt{N} \cos(q_\perp^* a/2) + e^{-i\mathbf{k}_\parallel a/\sqrt{N}})$ and $\gamma \approx 2.8$ eV is the absolute value of the hopping integral. Within TB approximation the sum in equation (1) is a Fourier transform of the sine-like wave confined along the ribbon width. Therefore, the intensity $I(\mathbf{k}) \propto |M(\mathbf{k})|^2$ must have strong maxima when the
projection of the photoelectron wave vector onto the direction perpendicular to the ribbon axis and parallel to the surface matches the values of $\pm q_n^\perp$. It is similar to the momentum quantization in the ARPES spectra of ordered molecular systems [40–42]. The photoemission intensity modulation with a change in the emission angle is also well known for the 1D quantum well electronic states confined within nm-scale terraces of stepped noble metal surfaces [43, 44]. Substituting the coefficients equation (2) in the equation (1) and taking into account the lifetime broadening, we can qualitatively describe the photoemission intensity of the valence sub-band \(n \) by the following analytical expression

\[
I_n(E, k_\parallel, k_\perp) \propto \beta (E + |f_n(k_\parallel)|)^2 + \beta^2 \sum_{m=1}^N e^{-imk_\perp a/2} \sin \frac{ma_n a}{2} \left(1 - \frac{|f_n(k_\parallel)|}{|f_m(k_\parallel)|} \right)^2.
\]

where β is the lifetime broadening of bands. The last factor in the sum is related to a phase shift between the wave functions of electrons emitted from the two different sub-lattices and accounts for anisotropic intensity in the ARPES studies of graphene [45–51].

To probe the intensity variation of 1D sub-bands we set up the ARPES geometry as depicted in figure 1. The Au(7 8 8) crystal with aligned ribbons is oriented to measure the ARPES spectra along the GNR axis. Figure 2 shows the ARPES scans along k_\parallel at different k_\perp, as it is illustrated in the inset of each panel. We start with a scan at $k_\perp = 0$ \(\text{Å}^{-1} \) (figure 2(a)), that is along the ΓM direction of the graphene’s BZ, where the parabolic sub-band VB3 is observed with the maximal intensity. As we will show later that is the third 1D sub-band of 7-AGNRs (here we count sub-bands from the Fermi level onwards). The next sub-band VB2 is hard to see in this geometry and its intensity rises when we increase k_\perp (figure 2(b)). At higher values of k_\perp (figure 2(c)), the third sub-band loses its intensity and the highest sub-band VB1 appears, which determines the VB maximum. This sub-band acquires the intensity in the first 1D BZ when we move the scans along the transverse momentum component further, as it is displayed in the panel (d) of figure 2. Thus, the photoemission intensity of sub-bands is strongly dependent on k_\perp. This effect is similar to the intensity oscillations of π-bands of multilayer graphene, where the out-of-plane momentum is quantized [52].

Figure 3(a) shows the distribution of photoemission intensity in k-space obtained from the TB model using the analytical equation (3) at the constant binding energy (1.89 eV). The energy of the valence band maximum in TB calculations is aligned to the experimental energy of VB1 apex. The orientation of k_\perp axis is horizontal in accordance with the experimental geometry (figure 1). The labeled cutting lines indices \(n = 5, 6 \) and 7 of 7-AGNRs (see figure 1) correspond to the three highest valence sub-bands VB5, VB2 and VB3, respectively. Similar picture of the ARPES intensity is obtained with equation (1) based on the DFT wave functions of freestanding 7-AGNR (figure 3(b)). Both theoretical approaches indicate that for each 1D sub-band of 7-AGNR there is a narrow range of k_\perp where we expect a strong photoemission intensity. Figure 3(c) shows the experimental constant energy slice of the ARPES map of 7-AGNRs on Au(7 8 8), which demonstrates an excellent agreement of the experiment and
the theory. In supplementary information (stacks.iop.org/TDM/5/035007/mmedia) we present the theoretical and experimental constant energy cuts of the ARPES map at energies close to the valence band maximum of 7-AGNRs. The peaked distribution of the photoemission intensity for GNRs is different from the case of 2D graphene, where the intensity of π-band changes smoothly in ARPES map around the K point [46–50].

Note that the TB approach is also applicable to the FT-STS measurements and predicts that it is difficult to resolve those sub-bands for which the wave function changes its sign once per unit cell along the ribbon axis [33]. This could be the reason why for 7-AGNRs the second valence sub-band was not visible in FT-STS data [32].

Now we compare the experimental and the calculated band dispersion. Figure 4(a) shows the scan, where the two sub-bands VB$_2$ and VB$_3$ can be simultaneously observed. The black dots indicate the TB approximation and corresponding sub-bands VB$_2$, VB$_3$ and VB$_4$ are shown. The calculated bands were broadened with $\beta = 0.1$ eV to compare with the experiment.
Since the first valence sub-band VB1 is resolved in the first 1D BZ, it can be measured with a tilt $\theta = 0^\circ$, as shown in figure 4(b), and its effective mass as well as the energy position of the maximum can be reliably extracted. The white curve shows the fitting points obtained from the energy distribution curves (EDCs). The highest sub-band can be fitted by a parabola only in the vicinity (≈ 60 meV) of the apex, where we obtain an effective mass of $m^*_{VB1} = 0.40 \pm 0.04$ me and an energy of $E_{VB1} = 0.87 \pm 0.03$ eV for the VB maximum. It can be seen in table 1 that these values are in good agreement with the reported FT-STS data for 7-AGNRs/Au(1 1 1) [32]. We also found that already at ≈ 250 meV below the maximum, the dispersion of the first sub-band becomes linear. From the linear slope we extract the charge carrier velocity $v = \hbar^{-1} \partial E / \partial k_\parallel = 0.63 \pm 0.05 \times 10^6$ m s$^{-1}$, which is smaller than the experimental value for freestanding (1.05 $\times 10^6$ m s$^{-1}$) [54] and Au(1 1 1) supported (1.2 $\times 10^6$ m s$^{-1}$) [55] graphene, as well as the value determined for the second sub-band of 7-AGNRs in ARPES data (0.82 $\times 10^6$ m s$^{-1}$) [29].

The small separation between the first and the second sub-band of ≈ 60 meV suggests that in the case of hole doping both of them may play a role in the transport properties of the material, while the third sub-band is too low to contribute. This is in a qualitative agreement with the DFT data, revealing small energy separation between the two highest valence sub-bands. It should be noted that the values of the extracted effective masses for the first and second valence sub-bands are very close to the values for the corresponding conduction sub-bands obtained from FT-STS measurements, $m^*_{CB1} = 0.40 \pm 0.18$ me and $m^*_{CB2} = 0.20 \pm 0.03$ me [32]. Taking into account that theory predicts approximately symmetric band structure for the valence and conduction bands, it also testifies to the validity of our results.

Finally, we would like to address the possible reasons why the frontier sub-band VB1 was not captured in previous ARPES experiments. As we demonstrated, the full k-space ARPES map of a high resolution is needed to assign the experimentally observed sub-bands of GNRs to the theoretical ones. Here we used hemispherical analyzer with the vertical slit (parallel to the manipulator) to measure scan along the direction of 7-AGNRs alignment and the polar angle to tune k_\perp. Similar approach can be realized by the analyzer with horizontal slit (most commonly used in ARPES setups) and GNRs aligned along the slit. Then the tilt or azimuthal angle for mapping in 2D k-space can be used. As it is shown in figures 2(a) and 3, if one measure strictly along the

Table 1. Energies of the band maxima regarding to the Fermi level and the effective masses for the first (VB1) and the second (VB2) valence sub-bands of 7-AGNRs on Au(1 1 1) or Au(7 8 8).

<table>
<thead>
<tr>
<th></th>
<th>ARPESa</th>
<th>DFTb</th>
<th>FT-STS [32]</th>
<th>previous ARPESc</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{VB1} (eV)</td>
<td>0.87 \pm 0.03</td>
<td>0.87</td>
<td>0.84 \pm 0.03</td>
<td>—</td>
</tr>
<tr>
<td>m^*_{VB1} (me)</td>
<td>0.40 \pm 0.04</td>
<td>0.33</td>
<td>0.41 \pm 0.08</td>
<td>—</td>
</tr>
<tr>
<td>E_{VB2} (eV)</td>
<td>0.93 \pm 0.03</td>
<td>1.09</td>
<td>—</td>
<td>0.7 [29], 0.9 [30], 0.88 [25], 0.95 [31]</td>
</tr>
<tr>
<td>m^*_{VB2} (me)</td>
<td>0.20 \pm 0.04</td>
<td>0.15</td>
<td>—</td>
<td>0.21 [29], 0.23 [25], 0.22 [31]</td>
</tr>
</tbody>
</table>

a This work. The binding energy of VB1 in DFT calculations was chosen equal to the experimental value (0.87 eV).

b We assume that in previous works the second sub-band was erroneously assigned as the first one.
ribbons axis \((k_\perp = 0)\) or slightly off (if there is a small deviation in tilt or azimuthal angle for horizontal orientation) the VB\(_2\) and VB\(_3\) should be seen. Indeed, such a picture was observed in previous data [25, 29, 30]. It is intuitive to measure along the ribbon axis, but in this case VB\(_3\) is not visible. When VB\(_1\) is well observed in the scan, the third sub-band VB\(_3\) loses its intensity (figures 2(c) and 3). Note, that to measure VB\(_1\) in first 1D BZ, as shown in figure 2(d), in horizontal orientation one have to apply large tilt angle \((\approx 25^\circ)\) for photon energy of 45 eV), which demands specially designed sample manipulator in ARPES setup. In additional to the experimental configuration, the important issue is the sample itself. Previously, an additional feature was observed in ARPES and taken for the second sub-band VB\(_3\) [25, 29, 30]. However, this feature is energetically closer to the lowest measured band (VB\(_3\)) than to the topmost one, while theory predicts relatively small \((\approx 0.2 \text{ eV})\) energy separation between VB\(_2\) and VB\(_1\) (see table 1) and large separation between VB\(_2\) and VB\(_3\) \((\approx 1 \text{ eV})\) [1, 28]. Moreover, as we mentioned above, theory and FT-STS data are in good agreement with respect to the conduction sub-bands [32]. Thus, it is unlikely that the observed feature belongs to 7-AGNRs. We suppose that this additional band may be attributed to the electronic states of conjugated 7-AGNRs, particularly \(N = 14\) and \(N = 21\) AGNRs (two and three fused 7-AGNRs, correspondingly). Indeed, when 7-AGNRs are placed close to each other on Au(1 1 1) substrate, their wide derivatives at evaluated temperatures [26] or during the long annealing time [19] can be produced. Note, that prior to the ARPES measurements the samples should be degassed by annealing after the transfer from ambient conditions. To avoid possible fusion of 7-AGNRs and appearance of additional bands in our spectra, we synthesized our samples \textit{in situ} and carefully performed the last step of the synthesis (cyclodehydrogenation) of 7-AGNRs on Au(7 8 8) at 380 ± 10 °C for 15 min.

3. Conclusions

In summary, we have measured ARPES maps of 7-AGNRs and revealed a strong dependence of photoemission matrix elements for 1D valence sub-bands with respect to the experimental geometry. The experimental results together with DFT and tight binding calculations demonstrate that each of the three topmost sub-bands can be selectively visualized by measuring along the ribbon axis with properly chosen transverse momentum. It is shown that the frontier valence sub-band is very close \((\approx 60 \text{ meV})\) to the second one and can be probed in the first BZ of 7-AGNRs, that allows reliable extraction of the effective mass value for the charge carriers in 7-AGNRs of \(m^*_{\text{eff}} \approx 0.4 m_e\), thus eliminating the old discrepancy between ARPES and STS data. The experimental approach used should be also applied for ARPES studies of other types of atomically precise GNRs and nanoribbons of other 2D materials to unambiguously reveal their band structure, which is a key to electronic and optical properties.

4. Experimental details

The measurements have been performed at synchrotron HZB BESSY-II at UE112-PGM2 beamline using the \(^2\)-ARPES endstation, which is equipped with the 6 axes manipulator and the hemispherical Scienta R8000 analyzer with a vertical slit parallel to the manipulator. All spectra are taken at room temperature with \(p\) (horizontally) polarized light using the photon energy of 45 eV. During the experiment the base pressure was below 2 × 10\(^{−10}\) mbar. The aligned 7-AGNRs on Au(7 8 8) were synthesized \textit{in situ} using the bottom-up approach [28].

5. Theoretical details

The photoemission intensity was calculated using the dipole approximation for matrix element and the plane wave as a final state [31]. Density-functional-theory (DFT) calculations were carried out using the FPLO-14.00-48 code (improved version of the original FPLO code by Koepernik and Eschrig [56]) utilizing the generalized gradient approximation (GGA) to the exchange-correlation potential. The ribbons were assumed freestanding and hydrogen-terminated. A k-point grid of 12 × 1 × 1 was used to sample the BZ. Atomic positions were relaxed until the forces on each atom were less than 10\(^{−7}\) eV Å\(^{-1}\).

Acknowledgments

BVS, AVF and AG acknowledge the ERC grant no. 648589 ‘SUPER-2D’, funding from DFG projects CRC 1238 (project A1) and GR 3708/2-1. DYU, BVS and AVF acknowledge Saint Petersburg State University for research Grant No. 11.65.42.2017. Research supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award no. DE-SC0010409 (design, synthesis and characterization of molecular building blocks) and the Center for Energy Efficient Electronics Science NSF Award 0939514 (SPM imaging and spectroscopy). The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n.312284 (CALIPSO). The authors thank HZB BESSY II for the beamtime allocation. This work has been supported by the University of Cologne through the Institutional Strategy of the University of Cologne within the German Excellence Initiative.

ORCID iDs

Boris V Senkovskiy 🌐 https://orcid.org/0000-0003-1443-6780
References

[18] Liu M et al 2017 Graphene-like nanoribbons periodically embedded with four- and eight-membered rings Nat. Commun. 8 14924
[27] Carbonell-Sanromà E et al 2017 Quantum dots embedded in graphene nanoribbons by chemical substitution Nano Lett. 17 50–6
[31] Senkovskiy B V, Haberer D, Usachov D Y and Fedorov A V 2015 Atomically precise graphene nanoribbons Science 349 1378–81
[43] Liu M et al 2017 Graphene-like nanoribbons periodically embedded with four- and eight-membered rings Nat. Commun. 8 14924
B V Senkovskiy et al

[54] Elias D C et al 2011 Dirac cones reshaped by interaction effects in suspended graphene Nat. Phys. 7 701704

[55] Tesch J, Leicht P, Blumenschein E, Gragnaniello L, Fonin M, Steinkasserer I E M, Paulus B, Voloshina E and Dedkov Y 2016 Structural and electronic properties of graphene nanoflakes on Au(1 1 1) and Ag(1 1 1) Sci. Rep. 6 23439