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Frequency Response Enhancement of Optical
Injection-Locked Lasers

Erwin K. Lau, Member, IEEE, Hyuk-Kee Sung, Member, IEEE, and Ming C. Wu, Fellow, IEEE

Abstract—The modulation response of injection-locked lasers
has been carefully analyzed, theoretically and experimentally,
with a focus on the strong optical injection regime. We derive
closed-form solutions to the relaxation oscillation (resonance) fre-
quency and damping term, as well as the low-frequency damping
term, and discuss design rules for maximizing resonance fre-
quency and broadband performance. A phasor model is described
in order to better explain the enhancement of the resonance
frequency. Experimental curves match closely to theory. Record
resonance frequency of 72 GHz and broadband results are shown.

Index Terms—Amplitude modulation, frequency response, in-
jection locking, semiconductor lasers.

I. INTRODUCTION

OPTICAL telecommunications systems rely on the conver-
sion of electrical modulation into an optical format. The

efficiency of this conversion is of great importance. There are a
wide variety of needs; for example, many applications require a
large modulation bandwidth, others require high link gain (con-
version efficiency), while others require narrowband responses
centered at high frequencies [1]–[3]. The injection-locked laser
system has been shown to enhance all of these functionalities
beyond that of a directly modulated laser [4]–[8]. In order to
push the frequency limits of injection-locked laser systems, it
is important to understand the physical mechanisms that govern
its dynamics. The basic theory has been developed by several
groups and can describe a wide array of benefits from the in-
jection-locked laser, including RIN reduction [9]–[15], suppres-
sion of nonlinear effects [16]–[18], and relaxation oscillation
(RO) frequency enhancement [19]–[23]. Recently, the devel-
opment of ultrastrong injection locking has greatly enhanced
these effects while also introducing special considerations. In
this paper, we systematically analyze the established differen-
tial equation theory, focusing on the effects of ultrastrong injec-
tion on the frequency response. Recently, Wieczorek used bi-
furcation analysis and explained the effect of the linewidth en-
hancement factor on the modulation response [24]. Here, our
purpose is to simplify the complex rate equations by using a
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small-signal approach, in order to bring physically intuitive so-
lutions to each of the features in the frequency response of di-
rectly modulated injection-locked laser systems. We discover
the physical parameters that dominate the RO (resonance) fre-
quency and also the low-frequency drop-off of ultrastrong injec-
tion-locked lasers. We then specify design rules for maximizing
resonance frequency and enhancing bandwidth. We discover a
new design rule for increasing the bandwidth such that it ex-
ceeds the enhanced resonance frequency.

II. THEORY

The most common model for injection-locked lasers uses a
set of three differential equations, as published by several au-
thors [25]–[28]. The differential equation governing the com-
plex field of an injection-locked laser is similar to that of a
free-running laser, with the addition of an injection term

(1)

where is the slave laser’s complex field. This model
ignores spontaneous emission and noise. This equation can
be split into the field magnitude and phase by assuming that

. The split equation, along with the
carrier rate equation, constitute the three differential equations
of injection-locked lasers [28]

(2)

(3)

(4)

where , , and are the slave laser’s field magnitude,
field phase, and carrier number. is normalized as

, where is the photon number. is the phase differ-
ence between master and slave: ,

, , , , and are the slave laser’s linear gain coeffi-
cient, threshold carrier number, linewidth enhancement factor,
current, carrier recombination rate, and photon decay rate, re-
spectively. The injection terms, , , and are the cou-
pling rate, injected field magnitude, and detuning frequency, re-
spectively. The detuning frequency is defined as the difference
between master and free-running slave frequencies.

0018-9197/$25.00 © 2007 IEEE
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A. Steady State Solutions

Murakami solves the differential equations for the steady-
state field magnitude, phase, and carrier number, defined here
as , , and , respectively [28]. Solving for the free-run-
ning field magnitude, , in (4), we can set the above-threshold
carrier number, , to zero, obtaining

(5)

Using this and solving for the steady-state values of the in-
jection-locked laser, we obtain

(6)

(7)

(8)

The most convenient solution method is to choose a phase value
and injection ratio (defined as ), knowing that the
bounds of the phase across the locking range are approximately

to , from the negative to positive frequency de-
tuning edges, respectively [25]. Knowing and substituting
(8) into (6) yields

(9)
whose roots, , can be easily solved by a numerical root-
solving program. Then, (8) solves for and we rearrange
(7) to solve for

(10)

B. Small-Signal Solutions

The linearized form of (2)–(4) can be placed in matrix form

(11)
where the matrix terms are

(12)

TABLE I
INJECTION-LOCKED LASER PARAMETERS

where . The magnitude of the frequency response
is then

(13)

where

(14)

Therefore, the frequency response can be easily determined
by (13) and its auxiliary equations.

In order to elucidate the trends found in (13), we simulate the
frequency response for different values of detuning frequency
and injection ratio. Table I lists the parameters used in the sim-
ulations in this paper, unless otherwise noted. Using the steady-
state solutions found in (6)–(10) and the small-signal response
in (12)–(14), we can plot the state variables across the locking
range map, as shown in Fig. 1. From Fig. 1(a), we see that the
positive frequency detuning edge is described by the smallest
phase. Fig. 1(b) shows that the resonance frequency increases
with detuning and injection ratio. Fig. 1(c) shows that, at the
positive edge of the locking range, the field starts at its free-run-
ning value at the positive detuning edge and for low injection ra-
tios. It increases with decreasing detuning and higher injection
ratios. Fig. 1(d) shows that the carrier density is at threshold on
the positive edge of the detuning range. It gradually decreases
with decreasing detuning and increasing injection ratio. The re-
gions marked as “n.s.” signifies the unstable locking regime
[29]–[31]. This demonstrates that the resonance frequency, in-
ternal field, and carrier number deviate only at strong injection

dB regimes.
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Fig. 1. Locking map versus (a) phase, (b) resonance frequency, (c) normalized field, and (d) normalized carrier density.

Fig. 2. Locking map. Dotted line highlights the fixed injection ratio, R =

1:25 dB.

If we plot the frequency response shown in (13) for fixed in-
jection ratio across the detuning range, as shown in the dotted
line in Fig. 2, we obtain a family of frequency response curves,
as shown in Fig. 3. Note that the resonance peak is enhanced
as the detuning frequency increases. Additionally, the low-fre-
quency gain for the negatively detuned curves is higher than the
free-running gain, and will be discussed in Section II-E. These
regimes are experimentally described in greater detail in [8].
Fig. 4 shows the accompanying pole/zero diagram of the in-
jection-locked system. Note that it is a single-zero, three-pole
system. The two complex conjugate poles determine the reso-
nance frequency. As the detuning increases, the poles’ imagi-
nary parts increase in magnitude while their real parts decrease.
This causes an enhanced resonance frequency and decreased
damping, as described in Section II-C and D, respectively. As
also can be seen in Fig. 3, the response between dc and reso-
nance for the positive detuning cases “dips” down quite dramat-
ically. This is a large factor in determining the 3-dB bandwidth

Fig. 3. Theoretical waterfall plot showing frequency response versus detuning,
for fixed injection ratio, R = 1:25 dB, normalized to dc free-running response.
The slices represent frequency response curves across the dotted line in Fig. 2.

of these positively detuned cases. The cause of the dip is dis-
cussed in Section II-F.

C. Resonance Frequency

The concept of resonance frequency enhancement by injec-
tion locking has been known for a decade [5], [26], [32]. The
two major parameters that affect the resonance frequency are
injection ratio and frequency detuning. The determinant of the
frequency response can be used to determine the resonance fre-
quency

(15)

The roots of this equation will be a pair of complex conjugate
roots, , and a real, negative root, . As with a
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Fig. 4. Pole/zero diagram across detuning range of Fig. 2, for R = 1:25 dB.
There are 2 complex conjugate poles, 1 real pole, and 1 real zero. Solution is
stable if poles remain in the negative real region. Arrows indicate direction of
increasing detuning frequency. The sets of poles and zeros correspond to the
frequency response slices shown in Fig. 3. The 2 plus marks indicate the com-
plex conjugate poles of the free-running laser.

free-running laser, the imaginary part of the complex conjugate
pair gives us the resonance frequency. We can approximate this
value as follows.

To find the resonance frequency, we look for the complex
roots of the determinant, . For resonance frequencies in the
gigahertz range and above, the last term, , can be neglected

(16)

In this range, the value of only affects the magnitude of the
resonance peak, not its frequency. Solving for a pure driving
frequency

(17)

The determinant is proportional to that of a classic damped os-
cillator and takes the form

(18)

where the resonance frequency is

(19)

and whose damping is

(20)

The first three terms of , shown in (14), contain only diagonal
matrix terms in (11) and are typically weak. Therefore, under
typical conditions, we can consider the last two nondiagonal
terms in to dominate, yielding

(21)

The first term is the resonance attributed to the photons and car-
riers

(22)

where is the relaxation oscillation of the
free-running laser, using the equality in (6). The second term in
(22) is much smaller than unity and therefore

. Using (12) and (22) to expand (21), we get

(23)

where we have defined the resonance frequency enhancement
term as the second term in (21)

(24)

which describes the resonance enhancement attributed to the
photon field and phase coupling. The steady-state condition of
(3) is

(25)

Using (24) and (25), we obtain a more physical formula

(26)

As described by Murakami, the resonance frequency enhance-
ment is equal to the difference between the master laser fre-
quency and that of the slave laser’s natural cavity mode fre-
quency [28]. This cavity mode is shifted by via the first term
in (26). Equation (23) is similar to Henry’s formulation [26], but
derived differently. It also improves upon Murakami’s approx-
imate formula [28], which does not include the absolute value
sign and also approximates the resonance frequency as zero for
negative detuning frequencies or small injection ratios, when the
frequency enhancement is small. In these two regimes, (23) re-
duces to the original free-running resonance frequency, which
is closer to experiment. When the enhancement is much larger
than the free-running resonance frequency, the total resonance
frequency approximates to the enhancement term, .

The implications of (26) is that the resonance frequency is
roughly proportional to the detuning frequency. In fact, it will
tend to be larger by the -parameter enhancement. The larger
the detuning, the larger the resonance frequency will become.
The limit to the resonance frequency is proportional to the mode
spacing. Since this paper focuses on a single-mode theory of the
slave laser, the effects of multiple modes has not been taken in
account. Practically, if the master laser detunes far enough away
from the primary mode such that it approaches the frequency of
an adjacent slave mode, it will lock to the adjacent mode. Hence,
the practical limit to the frequency detuning will be a function
of the mode spacing of the slave laser. The larger the spacing,
the larger the potential resonance frequency enhancement. For
a Fabry–Perot laser, this may only be 100 GHz, whereas a DFB
could be 200 GHz and a vertical-cavity surface-emitting laser
(VCSEL) even larger. Therefore, it is important to either sup-
press adjacent modes or increase the free-spectral range of the
Fabry–Perot laser cavity. With proper laser cavity engineering,
the resonance frequency can be made to be several hundreds of
gigahertz.
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D. Damping of the Enhanced Resonance

Here, we describe an approximate term for the damping co-
efficient. This is useful for describing the gain of the resonance
peak. We can expand the damping term, using (12), (14), and
(20)

(27)

Using the steady-state solution for (2), we can replace the
second term on the right-hand side (RHS) to a more physical
term

(28)

where is the free-running damping term. There-
fore, the injection-locked laser’s damping is the free-running
damping, enhanced by the reduction of gain below threshold.
The injection-locked laser resonance is primarily due to energy
oscillating between the slave field and the slave phase inter-
fering with the injected master light. The reduced gain allows
a portion of this oscillating energy to be lost to the carriers. We
can make an analogy to a RLC circuit oscillator, where the field,
phase, and carriers are the energy in the capacitor, inductor, and
heat lost through the resistor. The capacitor and inductor en-
ergies oscillate between each other, while increasing the resis-
tance causes more energy to be leaked into heat, thus damping
the oscillations.

Equation (28) is accurate if is negligible. In the previous
section, this was a suitable approximation, when we only needed
to find the frequency of resonance. However, when modulated
with frequencies near the resonance, the approximate determi-
nant in (18) becomes small and becomes important in deter-
mining the magnitude of the determinant

(29)

In this case, near resonance, we can assume that the damping at
resonance is

(30)

This can be viewed as a modified damping term, where

(31)

When the laser is near the positive detuning frequency edge
, the frequency response exhibits a pronounced

resonance. Solving for at this edge, we obtain

(32)

From (24) and the definition of , we can approximate
, so that

(33)

The carrier number must be sufficiently below threshold for the
damping term to be positive and the solution to remain in the
region of convergence.

One important point to note is that as the frequency detuning
increases, the model predicts that the damping will approach
zero. As the peak gain at resonance increases, the output mod-
ulation eventually exceeds the small-signal limit. The small-
signal analysis used in this paper would no longer be valid in this
strong peak regime. In our experiments, near this point, the two
lasers typically become unlocked before the modulation power
becomes larger than the free-running slave laser cavity mode.

E. Low-Frequency Gain

The low-frequency modulation response can oftentimes be
higher than the free-running response. As shown in Fig. 3, this
typically occurs near the negative detuning frequency edge of
the locking range, where the resonance frequency is very low.
Intuitively, when the laser is near the negative detuning edge, the
extremely low resonance frequency contributes to increasing the
dc gain. We can derive an analytical formula for this.

At zero frequency, (13) reduces to

(34)

Expanding this into laser parameters yields (35), shown at the
bottom of the page. We know to look for the peak dc response
near the negative detuning frequency edge. However, when the
system is locked exactly at the negative detuning frequency
edge, , which would make the numerator term,

, leading to poor dc response. From
this, we deduce that the peak is near, but not at, the negative
detuning edge.

When modulation is detected by a photodetector, the modu-
lation sideband beats with the main laser line to determine the
magnitude of modulation. Hence, when we calculate the RF re-
sponse, we must multiply the response, , with the dc op-
tical field magnitude, . This favors the negative detuning side
since the field increases above free-running as the system ap-
proaches this edge [Fig. 1(c)]. Additionally, we can claim that

(36)

(35)



LAU et al.: FREQUENCY RESPONSE ENHANCEMENT OF OPTICAL INJECTION-LOCKED LASERS 95

since the carrier recombination rate is much slower than the ex-
cess above-threshold stimulated emission rate, as long as the
laser is sufficiently above threshold. This inequality is further
amplified near the negative detuning edge, since the field is
again higher than free-running at this edge. This reduces the re-
sponse to

(37)

One can solve this function by noting that depends on
and , the latter which depends on . This function is compli-
cated to maximize; however some general trends can be noted.
In general, this function is maximized when is larger, since
the response is proportional to (which is large for negative
detuning and larger injection ratios). The function also grows
with increasing and decreasing .

F. Frequency Response: The Real Pole

The value of the third, real pole factors greatly in the size
of the dip between dc and resonance. The smaller the pole’s
magnitude, the earlier the dip appears in the frequency response,
leading to poor 3-dB bandwidth. Here, we attempt to extract
some trends for mitigating this effect. Effectively, we wish to
maximize the third pole frequency.

The full determinant, when expanded, takes on a value of

(38)

where is defined as the value of the third, real pole. Com-
paring it to the determinant equation in (15), we see that the final
term in both equations can be equated, giving us

(39)

For sufficiently positive detuning and large injection ratios, the
resonance frequency easily dominates over the damping value.
It is clear that the higher the resonance frequency, the smaller the
pole (and therefore, larger dip), which corresponds to the trend
seen in the pole/zero diagram shown in Fig. 4 and the frequency
response curves in Fig. 3.

We approximate as being dominated by the second and
third terms in (14): . Since
the pole is approximately from (39), and by using the
fact that , we can approximate the pole as
being simply

(40)

The carrier recombination rate is small and therefore (40) is
dominated by the last term, and is proportional to the stimulated
recombination rate. This causes a low-frequency drop-off that
is proportional to the stimulated recombination rate. Physically,

Fig. 5. Frequency response of OIL for various bias conditions, for a constant
value of injection ratio and resonance frequency (R = 4; f = 50 GHz). The
lines correspond to different current bias levels in units of multiples of threshold
current [J=J ]. The bold portions correspond to the response within the 3-dB
frequency.

this can be interpreted as the carrier injection rate is no longer
directly coupled to the relaxation oscillation dynamics, which
now correspond to the resonance created by energy exchange
between the slave field amplitude and phase. This is in contrast
to a free-running laser, whose carrier injection rate is directly
coupled to the free-running RO dynamics, which corresponds
to the resonance created by energy exchange between carriers
and photons. Hence, while the free-running laser exhibits in-
creased carrier injection rates proportional to the RO frequency,
the injection-locked laser injection rates are limited, in part, by
the stimulated recombination rate, which is on the order of a few
GHz, even when enhanced by the increased stimulated emission
of the laser cavity. Mainly, the most effective way to increase
this is to increase the photon density of the cavity by increased
bias current, as shown in Fig. 5, or by negative detuning (since
the photon density rises with negative detuning). In Fig. 5, we
show the effect of the photon density on the frequency response.
We fix the RO frequency at 50 GHz and increase the bias cur-
rent. The values of the real pole frequencies are: 0.8, 2.7, 7.8,
12.9, 17.8, and 22.7 GHz for the bias conditions 1.3 , 2 , 4 ,
6 , 8 , and , respectively. Here, we see that the 3-dB
bandwidth can be extended to beyond the resonance frequency
only when the real pole has been enhanced to sufficiently high
frequencies. The bias conditions for and above result in
3-dB responses 60 GHz.

G. Frequency Response: The Zero

The zero of the frequency response solution in (13) is

(41)

After expanding this with (12) and reducing, the zero’s value is
simply

(42)

Hence, across the detuning range, from the negative to positive
edges, the zero takes on a value of to . In terms
of optimizing the bandwidth of the frequency response, the zero
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Fig. 6. Graphic representation of method for maximizing bandwidth. The
dash-dot line corresponds to the response of the real pole. The dashed line
corresponds to the response of the resonance frequency. The 3-dB point (dotted
line) of both lines must meet to maximize the total bandwidth, shown as the
solid line.

should be minimized, so that once the modulation frequency ex-
ceeds the zero’s value, the numerator will scale roughly with the
modulation frequency. This corresponds to bias points close to
the negative detuning edge. Unfortunately, the zero scales with
injection ratio, which is necessary for increasing bandwidth.
Fortunately, a large zero frequency doesn’t hurt the modula-
tion bandwidth, since the numerator looks like a constant for
modulation frequencies much smaller than the zero frequency.
A small zero value would only serve to mitigate the effects of
the dip caused by the third (real) pole. The approximate optimal
point would be when the zero value equals the third pole value,
thereby canceling the effect of both. This would leave an ap-
proximately two-pole system, which we know from classic laser
physics does not dip before hitting the resonance frequency.
However, this point would correspond to a very low resonance
frequency, and would gain scant benefits from the enhanced res-
onance. Otherwise, reducing the parameter may serve to re-
duce the zero. Still, the effect of lowering the third pole is more
dominant than reducing the value of the zero.

H. Optimizing Bandwidth

The broadband regime, as explained in [8] is a delicate bal-
ance between the dc-to-resonance dip, the damping factor, and
the resonance frequency. In general, these values are complex
analytical functions. Although it is difficult to derive an intu-
itive analytical formula to assist in optimization of the injec-
tion-locked system for maximum broadband performance, we
can make some general observations and trends. As stated in
Section II-F, the bias current, injection ratio, and photon decay
rate should be increased.

We can estimate the maximum bandwidth point (across the
detuning range) by following a few approximations. The dip,
caused by the real pole, should not go 3 dB below dc before the
modulation frequency reaches the 3-dB bandwidth determined
by the 2 complex poles of the resonance frequency. The inter-
section of these two points, shown as circled in Fig. 6, represents
this condition. The resonance frequency is then the approximate
maximum bandwidth point.

Taking into consideration the zero and the real pole, we at-
tempt to find its 3-dB point by solving for the circled point in
Fig. 6

(43)

which yields

(44)

The 3-dB bandwidth of the 2-pole resonance peak (dashed) is
simply . Setting these two points equal yields

(45)

One can numerically solve for the that will satisfy this equa-
tion. This yields the approximate bandwidth as simply .

Although there is no specific quantitative condition of in-
jection ratio or detuning frequency that will determine the
maximum bandwidth point, we can draw some conclusions.
First, the real pole frequency must be maximized. This can
be done by reducing the detuning frequency, increasing the
injection ratio, and increasing the photon density (via bias
current). Second, the RO frequency can be increased, but not
too far beyond the frequency of the real pole. Increasing the
RO frequency can be accomplished by increasing the injection
ratio or detuning frequency. Third, the RO damping must be
sufficiently small enough to enhance the response reduction
caused by the real pole, but not too small that the resonance
enhancement is too narrowband that the real pole fall-off is not
sufficiently enhanced. Hence, the detuning frequency should be
somewhere in the middle of the locking range. It is important to
reiterate that simply increasing the injection ratio and detuning
frequency will increase the RO frequency, but the bandwidth
will eventually be limited by the real pole frequency. Therefore,
as stated above, increasing the photon density (via bias current)
and/or injection ratio are the best ways to increase the 3-dB
response.

I. Phasor Diagram

Substituting into the complex field rate equation, (1), yields

(46)

where we have included the shift of the cavity mode with the
frequency detuning term and is simply a signed version of
(26)

(47)

Henry developed a phasor diagram model for injection-locked
lasers that shows the effects of injected light on the slave field
[26]. In Fig. 7, we introduce a phasor diagram that shows the
mechanisms to achieve a steady-state injection-locked system.
The phasor is in the frame-of-reference of the master laser fre-
quency. Therefore, if the slave were lasing at the master laser
frequency, the phasor would be static and would not rotate with
time. To be locked, we desire the dynamic phasor vectors to sum
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Fig. 7. Phasor model for injection locking, showing phasor perturbation in a
time interval, �t. Vector 1 corresponds to the free-running slave angular rota-
tion, with respect to the frame-of-reference of the master laser frequency. Vector
2 is the vector addition of the injected master light at phase �. Vector 3 is the
reduction in amplitude due to the reduced gain.

to zero, resulting in a slave laser that is locked to the master. The
angle of the phasor is the phase between master and slave .
However, the slave, even when locked, will lase at a frequency

away from the master, and therefore will rotate in a
time interval as shown in the last term in (46) and in vector 1
of Fig. 7. Since the injected master laser light has a phase equal
to 0 in this frame-of-reference, the injected term is represented
as a real vector, as shown in the second term on the RHS of (46)
and in vector 2. Finally, the gain must reduce to lower the am-
plitude so that the slave field will return to steady-state, shown
in the first term of the RHS of (46) and vector 3.

This clearly shows that, despite being injection-locked, the
slave continues to lase at its cavity mode frequency. The injected
light serves to continually shift the phase of the slave so that it
appears to lase at the frequency of the master. Therefore, fre-
quency-filtering effects of the slave’s mirrors or laser structure
(within the single-mode regime) will not affect the theory as we
detune the master away from the slave. This allows us to use
the same theory for Fabry-Perots, distributed feedback lasers
(DFBs), distruged Bragg reflectors (DBRs), and VCSELs alike.

III. EXPERIMENT

In this section, we attempt to verify the theory via experi-
ments. The experimental setup is shown in Fig. 8. The slave laser
used for the experiments was a 1550-nm capped-mesa buried
heterostructure DFB laser [33]. The length was 500 m, width
was 1 m, and a threshold of 8 mA and was typically biased to
3.5 times threshold. The grating strength, (grating coupling
coefficient times laser length), was 3–4. The laser was heat-sunk
and temperature controlled at 289 K. The master laser (SDL
8610) was amplified by an erbium-doped fiber amplifier (EDFA)
made by Calmar Optcom. The polarization is matched to the
slave laser via a polarization controller (PC). A circulator is used
to ensure isolation between slave output and master input. The
slave output is sent to either an optical spectrum analyzer (OSA)
or a photodetector followed by an electrical spectrum analyzer
(ESA). In order to measure frequencies above 50 GHz (the limit

Fig. 8. Experimental optical injection locking setup with optional heterodyne
detection.

Fig. 9. Experimental waterfall plots showing frequency response versus de-
tuning, for R = 8 dB.

of our direct detection setup), we used a heterodyne detection
scheme [34]. When using direct detection, the local oscillator is
simply turned off.

A. Resonance Frequency Evolution

Fig. 6 shows the experimental frequency response across the
frequency detuning range. The waterfall plot shows a family of
frequency responses from GHz to GHz. The
injection ratio was fixed at dB. The enhancement of
the resonance frequency can be easily seen as the frequency de-
tuning increases, starting from a few GHz at the negative de-
tuning edge to 34 GHz at the positive detuning edge. The three
selected frequency responses of Fig. 8 show the three regimes of
modulation, as explained in [8]. Fig. 9 is in good agreement with
the theoretical curves calculated in Fig. 3. The injection ratios
are different due to the difficulties of measuring the exact injec-
tion ratio within the actual slave laser cavity. Nevertheless, the
general trends are consistent, as are the quantitative resonance
frequency evolution.

Fig. 10 experimentally shows the resonance frequency depen-
dence on detuning and injection ratio, demonstrating the theory
described in Fig. 1(b). The trend for increasing the resonance
frequency is apparent when increasing the frequency detuning
and/or injection ratio.
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Fig. 10. Experimental mapping of resonance frequency versus locking map
parameters (injection ratio and detuning frequency).

Fig. 11. Experimental frequency response curve showing resonance frequen-
cies of 59 and 72 GHz. R = +16 dB.

B. 72-GHz Resonance Frequency and 44-GHz Broad-band
Results

Using the trends of the resonance frequency described in the
theory and shown in the experiments above, we optimized the
system for achieving the highest resonance frequency possible.
A resonance frequency of 72 GHz was obtained and is shown
in Fig. 11. Response above 50 GHz was measured by the het-
erodyne detection technique described in [34]. The results were
calibrated for cable loss, photodetector loss, and bias-T loss, but
electrical losses above 50 GHz and losses from laser parasitics
and microwave probe were not included.

Optimizing for broadband performance, we obtain the results
shown in Fig. 12. The 3-dB frequency is 44 GHz. Again, elec-
trical loss and photodetector loss was calibrated, but laser para-
sitic loss and loss from the microwave probe could not be cali-
brated.

IV. CONCLUSION

The classic differential equations for injection-locked lasers
are used to describe the resonance frequency and damping evo-
lution. Trends for the evolution of RO frequency, field ampli-
tude and phase, and carrier density are shown for different in-
jection ratios and detuning frequencies. A comprehensive study
of the pole/zero evolution is performed. Closed-form solutions
for the relaxation oscillation frequency and damping, as well
as for the low-frequency damping, are described. Trends for

Fig. 12. Experimental frequency response curve showing a broadband, 3-dB
response of 44 GHz. R = +18 dB, �f = �60:5 GHz.

optimizing the relaxation oscillation frequency and bandwidth
are discussed. We find that the relaxation oscillation is the root
sum square of the free-running slave RO frequency and the
injection-locked enhanced resonance frequency. The enhanced
resonance frequency is roughly proportional to the frequency
detuning between master and slave. The maximum detuning,
and, therefore, RO frequency, obtainable is proportional to the
frequency spacing between adjacent modes. Lasers with large
free spectral ranges (DFBs and VCSELs) can potentially ex-
hibit RO frequencies of several hundreds of gigahertz.We also
show that although we can increase the RO frequency, damping
typically dominates, causing a narrowband response. Although
this may be useful for some applications, we discuss methods
of increasing the broadband performance. The bandwidth is ul-
timately limited by the real pole damping frequency, distinct
from the RC parasitics. It can be enhanced by increasing the
real pole frequency, notably by increasing the photon density
of the slave laser (mainly via the bias current). A phasor model
is introduced that explains the coherent dynamics of injection
locking. Experimental curves match closely to theory. A record
resonance frequency of 72 GHz and broadband response of 44
GHz are shown.
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