Title

Permalink
https://escholarship.org/uc/item/43b0615m

Journal
JAMA, 319(6)

ISSN
0098-7484

Authors
Henderson, JT
Webber, EM
Sawaya, GF

Publication Date
2018-02-01

DOI
10.1001/jama.2017.21421

Peer reviewed
IMPORTANCE Ovarian cancer is relatively rare but the fifth-leading cause of cancer mortality among United States women.

OBJECTIVE To systematically review evidence on benefits and harms of ovarian cancer screening among average-risk women to inform the United States Preventive Services Task Force.

STUDY SELECTION Randomized clinical trials of ovarian cancer screening in average-risk women that reported mortality or quality-of-life outcomes. Interventions included transvaginal ultrasound, cancer antigen 125 (CA-125) testing, or their combination. Comparators were usual care or no screening.

DATA EXTRACTION AND SYNTHESIS Independent critical appraisal and data abstraction by 2 reviewers. Meta-analytic pooling of results was not conducted because of the small number of studies and heterogeneity of interventions.

MAIN OUTCOMES AND MEASURES Ovarian cancer mortality, false-positive screening results and surgery, surgical complications, and psychological effects of screening.

RESULTS Four trials (N = 293 587) were included; of these, 3 (n = 293 038) assessed ovarian cancer mortality, and 1 (n = 549) reported only on psychological outcomes. Evaluated screening interventions included transvaginal ultrasound alone, transvaginal ultrasound plus CA-125 testing, and CA-125 testing alone. Test positivity for CA-125 was defined by a fixed serum level cutpoint or by a proprietary risk algorithm based on CA-125 level, change in CA-125 level over time, and age (risk of ovarian cancer algorithm [ROCA]). No trial found a significant difference in ovarian cancer mortality with screening. In the 2 large screening trials (PLCO and UKCTOCS, n = 271 103), there was not a statistically significant difference in complete intention-to-screen analyses of ovarian, fallopian, and peritoneal cancer cases associated with screening (PLCO: rate ratio, 1.18 [95% CI, 0.82-1.71]; UKCTOCS: hazard ratio [HR], 0.91 [95% CI, 0.76-1.09] for transvaginal ultrasound and HR, 0.89 [95% CI, 0.74-1.08] for CA-125 ROCA). Within these 2 trials, screening led to surgery for suspected ovarian cancer in 1% of women without cancer for CA-125 ROCA and in 3% for transvaginal ultrasound or without CA-125 screening, with major complications occurring among 3% to 15% of surgery. Evidence on psychological harms was limited but nonsignificant except in the case of repeat follow-up scans and tests, which increased the risk of psychological morbidity in a subsample of UKCTOCS participants based on the General Health Questionnaire 12 (score ≥4) (odds ratio, 1.28 [95% CI, 1.18-1.39]).

CONCLUSIONS AND RELEVANCE In randomized trials conducted among average-risk, asymptomatic women, ovarian cancer mortality did not significantly differ between screened women and those with no screening or in usual care. Screening harms included surgery (with major surgical complications) in women found to not have cancer. Further research is needed to identify effective approaches for reducing ovarian cancer incidence and mortality.

© 2018 American Medical Association. All rights reserved.
Although ovarian cancer is uncommon, it is the fifth-leading cause of cancer mortality among US women. Based on data from 2010-2014, the estimated annual incidence rate was 11.4 per 100,000 and the mortality rate was 7.4 per 100,000, with a projected 14,080 deaths from ovarian cancer in 2017. More than 60% of cases are diagnosed after the cancer has metastasized. Screening trials have shown no effect on mortality and have documented harms; positive test results from screening asymptomatic women often reveal benign pelvic conditions or normal ovaries on surgical investigation, and cancer cases are often missed with screening. In 2012, the US Preventive Services Task Force (USPSTF) concluded that there was at least moderate certainty that the harms of screening for ovarian cancer outweighed the benefits, and it issued a D grade recommendation against screening in asymptomatic women. The current review was undertaken to update the evidence on population-based screening for ovarian cancer for an updated recommendation on this topic.

Methods

Scope of Review
This evidence review addresses 2 key questions (KQs) related to benefits and harms of screening for ovarian cancer in asymptomatic women (Figure 1). Methodological details regarding search strategies, detailed study inclusion criteria, quality assessment, excluded studies, and description of data analyses, as well as detailed results, are publicly available in the full evidence report at https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/ovarian-cancer-screening.

Data Sources and Searches
A search of MEDLINE, PubMed publisher-supplied records, and the Cochrane Collaboration Registry of Controlled Trials for studies published between January 2003 and January 2017 built on a previous search conducted on behalf of the USPSTF (eMethods in the Supplement). Studies also were identified from previous reviews, meta-analyses, and reference lists. ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. Since January 2017, ongoing surveillance to identify new studies that might affect the review conclusions or interpretation of the evidence was conducted using article alerts and targeted searches of journals with high impact factors. The last surveillance, conducted on November 22, 2017, identified an additional publication reporting secondary analyses of one of the included trials.

Study Selection
Two reviewers independently reviewed titles, abstracts, and full article text to identify studies meeting predetermined review inclusion and exclusion criteria (eTable 1 in the Supplement). Discrepancies were resolved by discussion. Randomized clinical trials of screening compared with no screening or usual care comparisons that enrolled asymptomatic, average-risk women 45 years and older were included. Trials focused on screening explicitly among high-risk populations (eg, BRCA mutation carriers, individuals with first-degree relatives with ovarian cancer), and those addressing only the accuracy of screening or cancer detection rates without reporting morbidity, mortality, or quality-of-life data, were not included.

Data Extraction and Quality Assessment
Two reviewers independently assessed the methodological quality of all eligible studies, using criteria outlined by the USPSTF (eTable 2 in the Supplement), and resolved discordant ratings through discussion. Good-quality randomized clinical trials had adequate randomization procedures and allocation concealment, blinded outcome assessment, reliable outcome measures, similar baseline characteristics between groups, and low attrition. Good-quality trials also used intention-to-screen analysis and reported diagnostic criteria for outcome ascertainment. Fair-quality studies were assessed as not meeting all of the quality criteria but did not have critical limitations that could invalidate study findings. Trials were rated poor quality if attrition was greater than 40% or differed between groups by 20% or if there were other study design or implementation flaws that would seriously undermine internal validity.

Data Synthesis and Analysis
One reviewer abstracted data into standard evidence tables, and the second reviewer checked them for accuracy. Descriptive synthesis was conducted, with results reported and discussed by screening strategy. Meta-analytic pooling of results was not conducted because of the small number of studies and heterogeneity of interventions. Some outcomes were calculated from raw data reported in study publications to adhere to task force priorities or to facilitate comparability across trials and thus may differ from the findings highlighted in the main results of the original publications. As per definitions endorsed by the 2014 World Health Organization and the Fédération Internationale de Gynécologie Obstétrique, ovarian cancer includes ovarian, tubal, and peritoneal cancers. This definition recognizes that the clinical presentation and treatment of peritoneal cancers is not readily distinguished from advanced ovarian or fallopian tube cancers; pathological distinctions are also challenging. Cancer cases were abstracted or calculated using this definition when possible, even if it was not the primary trial outcome reported. Screening false-positive rates were calculated as the percentage of women not diagnosed with ovarian cancer who experienced a positive screening result that led to follow-up testing. False-positive surgery rates were calculated as the percentage of women without an ovarian cancer diagnosis who were referred to surgery for investigation of suspected ovarian cancer based on positive screening and follow-up test results. Because each definition provides different insights, false-positive rates based on both definitions were calculated for all included studies that reported the pertinent data.

When multiple statistical tests were presented in publications, the prespecified statistical analyses from trial protocols were prioritized, as were complete intention-to-screen analyses and clinically meaningful mortality outcomes for ovarian cancer as defined above. The strength of the overall body of evidence for each key question was graded as high, moderate, low, or insufficient based on established methods and addressed the consistency, precision, and limitations of the body of evidence related to each outcome. For more details on review methods, see the full report.
A total of 1381 titles and abstracts and 74 articles were reviewed. After full text review and critical appraisal, 4 trials (N = 293 587) in 17 publications were included (Figure 2). Three trials reported health outcomes (KQ1), and all 4 trials reported potential harms of screening (KQ2) (Table 1). Two of the trials were conducted in the United States, and 2 in the United Kingdom. The UK Pilot and UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) were limited to postmenopausal women 45 years and older and 50 to 74 years; the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial included women aged 55 to 74 years, and the Quality of life, Education, and Screening Trial (QUEST) included women 30 years and older. Data on false-positive rates, surgical harms, and psychological harms of screening were obtained from the 3 good-quality trials and the fair-quality QUEST trial (n = 549).

The largest (n = 202 546), most recent trial is UKCTOCS, which enrolled participants through 13 National Health Service centers in England, Wales, and Northern Ireland. The smaller (n = 21 935) UK Pilot trial, conducted by the same research group in preparation for UKCTOCS, recruited women who had participated in a previous ovarian cancer screening study. The PLCO trial (n = 68 557) was conducted at 10 clinical screening centers in the United States.
<table>
<thead>
<tr>
<th>Source</th>
<th>Quality</th>
<th>Study Dates</th>
<th>No. Randomized</th>
<th>No. Analyzed</th>
<th>White, %</th>
<th>Family History of Breast or Ovarian Cancers, %</th>
<th>Recruitment Source</th>
<th>Inclusion and Exclusion Criteria</th>
<th>Key Outcomes Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKCTOCS, 31 2016 United Kingdom</td>
<td>Good</td>
<td>2001-2004</td>
<td>202 638</td>
<td>202 546</td>
<td>96</td>
<td>1.6 (ovarian) 6.4 (breast)</td>
<td>National Health Service catchments of 13 regional centers in Wales, England, and Northern Ireland; women recruited from 27 primary care service groups in the regions</td>
<td>Inclusion: Postmenopausal, aged 50-74 y Exclusion: Self-reported history of bilateral oophorectomy or ovarian malignancy, increased risk of familial ovarian cancer, active nonovarian malignancy</td>
<td>KQ1: Ovarian cancer (ovarian, fallopian tube, and peritoneal cancer) incidence and mortality KQ2: Screening false-positive rates, surgery, and surgical complications</td>
</tr>
<tr>
<td>PLCO, 21 2011 United States</td>
<td>Good</td>
<td>1993-2010</td>
<td>78 216</td>
<td>68 557</td>
<td>88</td>
<td>17.4 Community volunteers from the catchment areas of 10 screening centers</td>
<td>Community volunteers from the catchment areas of 10 screening centers</td>
<td>Inclusion: Aged 55-74 y Exclusion: Previous bilateral oophorectomy; history of lung, colorectal, or ovarian cancer; current treatment for cancer other than nonmelanoma skin cancer; colonoscopy, sigmoidoscopy, or barium enema in past 3 y; previous surgical removal of lung or entire colon; participation in other screening trial</td>
<td>KQ1: Ovarian cancer (ovarian, fallopian tube, and peritoneal cancer) incidence and mortality KQ2: Screening false-positive rates, surgery, and surgical complications</td>
</tr>
<tr>
<td>QUEST, 25 2007 United States</td>
<td>Fair</td>
<td>NR</td>
<td>592</td>
<td>549</td>
<td>95</td>
<td>17.1 Population volunteers, physician referral</td>
<td>Population volunteers, physician referral</td>
<td>Inclusion: aged ≥30 y Exclusion: High risk of ovarian cancer; cancer diagnosis in past year; plans to become pregnant in the following 2 y</td>
<td>KQ2: Psychological harms of screening program participation</td>
</tr>
</tbody>
</table>

Abbreviations: NR, not reported; PLCO, Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; QUEST, Quality of Life, Education, and Screening Trial; UKCTOCS, UK Collaborative Trial of Ovarian Cancer Screening.

* Methodological quality of each study using predefined criteria developed by the US Preventive Services Task Force.12

** Ovarian cancer was defined according to the 2014 World Health Organization and Fédération Internationale de Gynécologie Obstétrique definitions, which include ovarian, tubal, and peritoneal cancers.13,14 Cancer cases were abstracted or calculated using this definition when possible, even if cancer was not the primary outcome reported in the trial. The PLCO21 and UKCTOCS31 trials reported cases of ovarian, fallopian, and primary peritoneal cancer cases. Data from the earlier UK Pilot trial did not report cases of peritoneal cancer;33 therefore, those results are limited to primary cancer of the ovary and fallopian tubes.

Adapted from a UCSI LIBRARY User on 02/13/2018
Table 2. Screening Protocols for Trials Addressing Ovarian Cancer Mortality (Key Question 1)*

<table>
<thead>
<tr>
<th>Source</th>
<th>Screening Intervention</th>
<th>Abnormal Test Result Definitions</th>
<th>Follow-up Protocol for Screen-Positive Women</th>
<th>Comparison Group</th>
<th>Screening Frequency</th>
<th>Maximum No. of Screening Rounds</th>
<th>Follow-up, (Median, Range), y</th>
<th>Ovarian Cancer Cases During Follow-up, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKCTOCS, 31, 2016</td>
<td>Group 1: CA-125 testing with ROCA algorithm used to determine risk-based protocol for follow-up6</td>
<td>Intermediate risk (risk ≥1/1818); elevated risk (risk ≥1/500)5</td>
<td>Clinical assessment and surgical investigation conducted by trial clinicians according to a specified protocol depending on screening result</td>
<td>No screening</td>
<td>Annual 11a</td>
<td>11 (0-13.6)</td>
<td>1332 (0.65) (group 1 and group 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: TVU</td>
<td>One or both ovaries with complex morphology, simple cysts ≥60 cm3, or ascites</td>
<td>Clinical assessment and surgical investigation conducted by trial clinicians</td>
<td>No screening</td>
<td>Annual 11</td>
<td>11 (0-13.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLCO, 21, 2011</td>
<td>TVU and CA-125</td>
<td>CA-125: ≥35 U/mL; TVU: Ovarian volume >10 cm3; cyst volume >10 cm3; any solid area or papillary projection extending into the cavity of a cystic ovarian tumor of any size; or any mixed (solid and cystic) component within a cystic ovarian tumor</td>
<td>Notification of patients and their primary care physicians; follow-up through community care</td>
<td>Standard community care</td>
<td>Annual CA-125: 6 TVU: 4</td>
<td>12.4 (NR)</td>
<td>388 (0.57)</td>
<td></td>
</tr>
<tr>
<td>UK Pilot, 33, 1999</td>
<td>CA-125 testing; follow-up included ultrasound for elevated CA-125 levelsa</td>
<td>CA-125: ≥30 U/mL</td>
<td>Referral through family physician to a gynecologist for surgical investigation</td>
<td>No screening</td>
<td>Annual 3h</td>
<td>NR (0-8)</td>
<td>36 (0.16)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CA-125, cancer antigen 125; IQR, interquartile range; NR, not reported; PLCO, Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; ROCA, risk of ovarian cancer algorithm; TVU, transvaginal ultrasound; UKCTOCS, UK Collaborative Trial of Ovarian Cancer Screening.

a All studies were good quality.

b No evidence of a difference in incidence of ovarian cancer between the study groups.

c Follow-up included repeat CA-125 test (intermediate risk) or repeat CA-125 and TVU (elevated risk) based on ROCA.

d CA-125 levels were changed in 2005 to maintain the percentage in each risk level (intermediate, ≤1/3500; elevated, ≥1/1000); 84.6% of screens were classified using pre-2005 cutoffs.

e Extended from original protocol of 6 screening rounds based on interim analysis.

f Annual bimanual clinical examination of the ovaries discontinued in 1998 because no cases were identified solely with this screening test.

g During the first screen, ultrasonography was performed transabdominally. Transvaginal ultrasonography was used in the second and third screens.

h All women in this trial (including the control group) had undergone a previous round of screening approximately 10 years prior.

The PLCO21 and UKCTOCS31 trials reported cases of ovarian, fallopian, and primary peritoneal cancer. Data from the earlier UK Pilot trial did not report cases of peritoneal cancer21; therefore, those results are limited to primary cancer of the ovary and fallopian tubes.

Benefits of Screening

Key Question 1. Does screening for ovarian cancer in asymptomatic women using single tests or combined algorithms (such as, but not limited to, cancer antigen 125 [CA-125] and ultrasound) reduce all-caus or disease-specific morbidity and mortality?

Three good-quality trials (n = 293 038) met the inclusion criteria for KQ1 (Table 1).

In the UKCTOCS and UK Pilot trials, the racial or ethnic composition of the study population was more than 95% white,31,33 and in the PLCO trial 88% of women were white and non-Hispanic. In the UKCTOCS trial, women considered at “high risk” of familial ovarian cancer were explicitly excluded, but 1.6% of women reported maternal history of ovarian cancer and 6.4% a maternal history of breast cancer. In the PLCO trial,21 17% of women reported any family history of breast or ovarian cancer.

All 3 trials evaluated annual screening for ovarian cancer with CA-125 testing, transvaginal ultrasound, or both (Table 2). The UKCTOCS trial had 2 intervention groups and a no-screening control group (randomized 1:1:2, respectively). Women were originally randomized to receive annual screening for 6 years, but the protocol was modified to extend screening. Women randomized to the intervention group received 7 to 11 rounds of annual screening using CA-125 serum testing (with triage and follow-up determined by the risk of ovarian cancer algorithm [ROCA])39,40 or yearly transvaginal ultrasound testing with a median of 11.1 years of follow-up.31 The CA-125 ROCA screening group was described as multimodal screening in the UKCTOCS trial publications and included a standard protocol for all follow-up testing. The ROCA is more complex than single-cutpoint CA-125 testing because it incorporates changes in CA-125 level over time for individual women.

The UK Pilot33 trial compared 3 rounds of annual CA-125 screening tests having a fixed cutpoint (≥30 U/mL) with no screening over 8 years of follow-up.33 Women in the screening intervention group of the PLCO trial received both CA-125 testing with a fixed cutpoint (≥35 U/mL) and CA-125 and TVU testing (elevated risk) based on ROCA.
ultrasoundography.20,21 Bimanual palpation of the ovaries was also included in the screening intervention during the first 4 years of study enrollment but was discontinued because no cancers were identified only on the basis of this examination.41 A protocol modification also extended screening to a maximum of 6 screening rounds (4 with CA-125 and transvaginal ultrasound, 2 with CA-125 alone), with a median of 12.4 years of follow-up.

Overall, screening adherence was high, follow-up rates were variable but balanced, and contamination across groups was minimal. Ovarian cancer was diagnosed in 0.6% of women (388 cases) in the PLCO trial, 0.7% of women (1323 cases) in the UKCTOCS trial, and 0.2% of women (36 cases) in the UK Pilot trial. Across all trials, incidence did not differ by study group.

CA-125 Screening

In the UKCTOCS trial, ovarian cancer mortality (including fallopian tube and peritoneal cancer) with the CA-125 ROCA screening program was similar in the intervention and control groups (0.32% for intervention vs 0.35% for control), and in survival analysis there were 2.9 ovarian cancer deaths per 10 000 person-years in the intervention group and 3.3 ovarian cancer deaths per 10 000 person-years in the control group. This difference was not statistically significant (hazard ratio, 0.89 [95% CI, 0.74-1.08]) (Table 3). In the smaller UK Pilot trial (n = 21 935), there were 9 ovarian cancer (peritoneal cancer not reported) deaths in the intervention group (0.08%) and 18 in the no-screening comparison group (0.16%); the difference was not statistically significant (relative risk, 0.50 [95% CI, 0.22-1.11]). A statistically significant difference in survival between women with index cancers in the intervention and control groups was observed when computed from the date of randomization (median, 72.9 months for intervention group vs 41.8 months for control group; P = .01). This finding was based on a small number of events, and survival in the control group was noted by the study authors as being “unexpectedly poor,” with only 2 of 20 women who developed an index cancer surviving.

Transvaginal Ultrasound Screening

In the UKCTOCS trial,31 transvaginal ultrasound screening did not reduce ovarian cancer mortality compared with no screening (0.32% for intervention group vs 0.35% for control group) (Table 3). In survival analyses, ovarian cancer mortality was 3.0 per 10 000 person-years in the intervention group and 3.3 per 10 000 person-years in the comparison group (hazard ratio, 0.91 [95% CI, 0.82-1.09]).31

Combined CA-125 and Transvaginal Ultrasound Screening

The incidence of ovarian cancer mortality in the PLCO trial21 was 3.1 per 10 000 person-years in the intervention group and 2.6 per 10 000 person-years in the usual care comparison group (Table 3). There were 118 deaths in the intervention group (0.34%) and 100 deaths in the control group (0.29%), a statistically nonsignificant difference (rate ratio, 1.18 [95% CI, 0.82-1.71]). Survival with ovarian cancer did not differ significantly between study groups.31

Harms of Screening

Key Question 2. What are the harms of screening for ovarian cancer, including harms of the screening test and of diagnostic evaluation?

Evidence on false-positive rates and surgical harms of screening were included from the 3 trials21,31,33 included for KQ1 (Table 4).

CA-125 Screening

Across all incidence rounds (ranging from 2 to 11) of the UKCTOCS trial, 44.2% (20 340/46 067) of women without cancer screened in the CA-125 ROCA group had at least 1 false-positive test result, meaning that at least 1 of their annual CA-125 screening measurements generated an elevated-risk ROCA result requiring further protocol-defined follow-up.34 This protocol-defined follow-up included retesting with CA-125 in 6 months, clinical examinations depending on the ROCA risk level, or both. Approximately 1% of women (n = 488) screened with the CA-125 ROCA strategy underwent surgery and did not have cancer found.31 Major complications occurred in 3.1% of these operations (15/488), including infection, injury to hollow viscus, anesthetic complications, and cardiovascular and pulmonary events.31

Across 3 rounds of the UK Pilot trial, 4.2% (462/10 942) of women without cancer screened with CA-125 received a false-positive test result, and 0.2% eventually underwent surgery.31 No surgical complications were reported in the UK Pilot trial.31 The CA-125 screening tests resulted in minor complications (eg, fainting or bruising from blood draws), ranging from 0.86% in the UKCTOCS trial to 58.3 per 10 000 women in the PLCO trial.21,31

Table 3. Effects of Ovarian Cancer Screening on Ovarian Cancer Mortality (Key Question 1)

<table>
<thead>
<tr>
<th>Source</th>
<th>Screening Method</th>
<th>No. Analyzed</th>
<th>Ovarian Cancer Deaths, No. (%)</th>
<th>Ovarian Cancer Mortality per 10 000 Person-Years</th>
<th>Between-Group Difference in Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKCTOCS, 2016</td>
<td>CA-125 ROCA</td>
<td>50 624</td>
<td>101 299</td>
<td>Intervention: 160 (0.32) Control: 358 (0.35)</td>
<td>0.30 (95% CI, 0.22-1.11); P = .31c</td>
</tr>
<tr>
<td>TVU</td>
<td>50 623</td>
<td>101 299</td>
<td>163 (0.32)</td>
<td>Intervention: 358 (0.35) Control: 3.0 (95% CI, 3.3)</td>
<td>Relative risk, 1.18 (95% CI, 0.82-1.71); P = .08f</td>
</tr>
<tr>
<td>PLCO, 2011</td>
<td>CA-125 + TVU</td>
<td>34 253</td>
<td>34 304</td>
<td>Intervention: 118 (0.34) Control: 100 (0.29)</td>
<td>Rate ratio, 1.18 (95% CI, 0.82-1.71); P = .08f</td>
</tr>
<tr>
<td>UK Pilot, 1999</td>
<td>CA-125</td>
<td>10 958</td>
<td>10 977</td>
<td>Intervention: 9 (0.08) Control: 18 (0.16)</td>
<td>Relative risk, 0.50 (95% CI, 0.22-1.11); P = .08f</td>
</tr>
</tbody>
</table>

Abbreviations: CA-125, cancer antigen 125; HR, hazard ratio; NR, not reported; PLCO, Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; TVU, transvaginal ultrasonography; UKCTOCS, UK Collaborative Trial of Ovarian Cancer Screening.

* Cox model.
+ Sequentially adjusted.
* Does not include peritoneal cancer.
1 Calculated (article reports relative risk calculated in terms of increased relative risk).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UKCTOCS, 201622,31,34 (CA-125 ROCA)</td>
<td>Good</td>
<td>2034/46067 (44.2) across 2-11 rounds of screening*</td>
<td>0.86 per 10000 screens⁰</td>
<td>488/50270 (0.97)</td>
<td>15/488 (3.07)⁰</td>
</tr>
<tr>
<td>UKCTOCS, 201622,31 (TVU)</td>
<td>Good</td>
<td>NR</td>
<td>1.86 per 10000 screens¹</td>
<td>1634/50299 (3.25)</td>
<td>57/1634 (3.49)⁰</td>
</tr>
<tr>
<td>PLCO, 201120,21,27</td>
<td>Good</td>
<td>3285/34041 (9.6) across 1-6 rounds of screening</td>
<td>CA-125: 58.3 per 10000 women⁴</td>
<td>1080/34041 (3.17)</td>
<td>163/1080 (15.09)⁴</td>
</tr>
<tr>
<td>UK Pilot, 199933</td>
<td>Good</td>
<td>462/10942 (4.2) across 1-3 rounds of screening</td>
<td>NR</td>
<td>23/10942 (0.2)⁴</td>
<td>0</td>
</tr>
<tr>
<td>QUEST, 200729</td>
<td>Fair</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviations: CA-125, cancer antigen 125; NA, not applicable; NR, not reported; PLCO, Prostate, Lung, Colorectal and Ovarian cancer screening trial; TVU, transvaginal ultrasound; UKCTOCS, UK Collaborative Trial of Ovarian Cancer Screening.

*Includes ovarian, fallopian, and primary peritoneal cancers.

¹Methodological quality of each study using predefined criteria developed by the US Preventive Services Task Force ¹⁵.

²Patient experience of first positive screening test result leading to additional triage or follow-up (including repeated testing because of unsatisfactory results).

₃Among women with false-positive results (benign findings) who underwent surgery.

⁴The false-positive rate from the baseline screening round was 9.0% (4513/50031). False-positives from baseline screening could not be combined with rates from screening rounds 2 to 11 because of differences in denominators. Cumulative data reported for women screened in rounds 2 to 11 were based on a denominator of women who continued screening after the first round.

⁵Includes anesthetic complications (1), injury to hollow viscus (2 gastrointestinal, 1 bladder), hemorrhage (2), deep vein thrombosis (1), bowel obstruction (4), wound breakdown (1), significant ileus (1), uterine perforation (1), infection (1).

⁶Data reported only for prevalence round: 11.9% (5734/48177).

⁷Includes pain (20), cystitis or infection (1), discomfort (5), bruising (2), fainting (1), other (22).

⁸Includes injury to hollow viscus (4 gastrointestinal, 3 bladder, 1 ureter), hemorrhage (11), anesthetic complication or myocardial infarction (3), hemia (6), deep vein thrombosis or pulmonary embolism (3), wound breakdown (6), bowel obstruction (4), wound or supravaginal hematoma (4), infection (6), pain with readmission or further operation (3).

⁹Minor complications (eg, fainting, bruising).

¹⁰Total of 222 complications in 163 patients. Includes infection (89), direct surgical harms (63), cardiovascular or pulmonary events (31), other (39).

¹¹Does not include peritoneal cancers.
Transvaginal Ultrasound Screening

The number of women receiving a false-positive test result after transvaginal ultrasound testing over the course of all screening rounds of the UKCTOCS trial was not reported; however, for the initial round of screening a false-positive rate of 11.9% was reported. Across the trial, 3.2% (1634/50 299) of women assigned to the UKCTOCS transvaginal ultrasound screening intervention underwent surgery and did not have cancer found. Major complications were reported for 3.5% of the operations, including infection, wound breakdown, anesthetic complication or myocardial infarction, deep vein thrombosis or pulmonary embolism, and injury to hollow viscus. The screening tests resulted in minor complications (e.g., pain, discomfort, infection, bruising), ranging from 1.86 per 10 000 women in the UKCTOCS trial to 3.3 per 10 000 women in the PLCO trial.

Combined CA-125 and Transvaginal Ultrasound Screening

Across all rounds of screening (ranging from 1 to 6) in the PLCO trial, 9.6% (3285/34 041) of the women not found to have cancer received at least 1 positive screening result from CA-125 or transvaginal ultrasound testing. After additional follow-up in their usual care settings, 3.2% (1080/34 041) of women in the trial who did not have cancer underwent diagnostic surgery. Major complications occurred in 15.1% of these operations, including infection, direct surgical harms, cardiovascular or pulmonary events, and other unspecified adverse events.

Psychological Outcomes

A study of the psychological morbidity associated with ovarian cancer screening was undertaken within the UKCTOCS trial using an annual survey of a random sample of women drawn at baseline from each trial group (n = 1339) and surveys of all women in the screening groups who were recalled for follow-up testing (eTable 3 in the Supplement). No statistically significant differences in anxiety or risk of psychological morbidity were observed between the control and intervention groups who were recalled for follow-up testing. The smaller UK Pilot trial was designed to assess feasibility and performance of screening and was not powered to test mortality differences. The UKCTOCS trial assessed a proprietary screening and follow-up intervention that led to fewer women without cancer undergoing surgery and experiencing complications in comparison to the PLCO trial. Nevertheless, in both trials the operations and complications occurred in the absence of a mortality benefit for the screened population.

Trail results from the complete intention-to-treat analysis of ovarian cancer mortality defined according to clinically relevant international standards are applicable to the implementation of a screening program and its cumulative effects. Both of the large trials also provided additional analyses to explore effects and generate hypotheses. Additional published analyses of UKCTOCS data suggested a mortality benefit for CA-125 ROCA screening when peritoneal cancer cases were excluded and a statistical test assigning greater weight to later years of the trial was used. In the UKCTOCS trial, a greater proportion of cancers was identified as peritoneal in the CA-125 ROCA group than in the no screening group (5% vs 2%). Excluding cases with high mortality could heighten differences between the CA-125 ROCA and control groups. Excluding peritoneal cancers and relying on protocol-specified statistical testing, there was no a statistical difference in ovarian cancer mortality. Another planned analysis of UKCTOCS aimed to remove certain prevalent ovarian cancer cases selected based on stored CA-125 test results, data imputation, and statistical modeling. Results of that analysis are potentially hypothesis generating but are more subject to bias than the full intention-to-treat analysis of the trial.

Additional analyses of PLCO trial data include a recently published analysis adding up to 6 years of posttrial mortality data (mean, 2.3 years) to the PLCO trial and did not find evidence of a longer-term benefit of screening.

The high mortality and low 5-year survival among all women diagnosed with ovarian cancer may be attributable to continued challenges detecting the disease at an early stage. In PLCO, there was no statistically significant difference in the proportion of cases identified at the localized stage in the intervention vs usual care group (15% vs 10%, respectively; P = .08). Comparisons by stage and group also were not statistically different when comparing localized and regional cancer cases with more advanced cancers. In the UKCTOCS trial, a greater proportion of cases was identified at the localized stage (stage I) with CA-125 ROCA screening (36%) and transvaginal ultrasound screening (31%) compared with the control group (23%) (P < .005). The overall differences by group and stage were also statistically significant when comparing localized and regional cancers (stages I and II) with more advanced cancers (stages III and IV). Although no overall mortality benefit was associated with these observed stage shifts, these comparisons are relevant because of clinical differences in treatment strategies between stage I and higher-stage ovarian cancer (i.e., need for adjuvant radiation therapy); treatment outcomes in the UKCTOCS trial have not yet been published.

Cancer type is also important, as it defines 2 broad categories of epithelial ovarian cancer with shared clinical and histological features that represent distinct models of epithelial ovarian carcinogenesis. Type I tumors include low-grade, generally indolent tumors, which are often associated with somatic mutations in a number of genes (e.g., KRAS, BRAF, ERBB2) and develop from benign extraovarian lesions implanted on the ovary. Type II tumors are more likely to derive from the fallopian tube or ovarian surface epithelium. These cancers are generally high grade and are genetically unstable, including high rates of TP53 and BRCA mutations. The UKCTOCS trial reported cancer types diagnosed...
Table 5. Summary of Evidence

<table>
<thead>
<tr>
<th>KQ1: Benefits of Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
</tr>
<tr>
<td>Annual screening with CA-125 testing</td>
</tr>
<tr>
<td>Annual TVU examination</td>
</tr>
<tr>
<td>Annual CA-125 testing + TVU examination</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KQ2: Harms of Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
</tr>
<tr>
<td>Annual screening with CA-125 testing</td>
</tr>
<tr>
<td>Annual TVU examination</td>
</tr>
</tbody>
</table>

(continued)
Table 5. Summary of Evidence (continued)

<table>
<thead>
<tr>
<th>Test</th>
<th>No. of Studies (No. of Participants)</th>
<th>Summary of Findings</th>
<th>Consistency and Precision</th>
<th>Limitations (Includes Reporting Bias)</th>
<th>Overall Study Quality</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual CA-125 testing + TVU examination</td>
<td>2 RCTs (n = 68,849)</td>
<td>A false-positive screening rate of 10% over the course of the screening program. False-positive surgery occurred in 3% of women that did not have ovarian cancer; complications occurred in 15% of these operations. Women with abnormal test results (n = 32) compared with women with no abnormal results more likely to report cancer worry at 2-y follow-up (OR, 2.8 [95% CI, 1.1-7.2]).</td>
<td>Consistency: Consistency NA Precision: Reasonably precise (except psychological harms imprecise)</td>
<td>Psychological harms measured only for subsets of trial participants Reporting bias undetected</td>
<td>Fair to Good</td>
<td>US-based, multisite trial Pragmatic trial with usual-care control condition and referral to community clinicians for women screening positive Majority white, non-Hispanic participants</td>
</tr>
</tbody>
</table>

Abbreviations: FDA, US Food and Drug Administration; HR, hazard ratio; NA, not applicable; OR, odds ratio; PLCO, Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; QUEST, Quality of life, Education, and Screening Trial; RCT, randomized clinical trial; ROCA, risk of ovarian cancer algorithm; RR, risk ratio; TVU, transvaginal ultrasound; UKCTOCS, UK Collaborative Trial of Ovarian Cancer Screening.

Evidence from a recent systematic review reported on health effects associated with bilateral salpingo-oophorectomy at the time of benign hysterectomy.49 Removal of the ovaries, in the absence of medical indication, may affect cardiovascular health, all-cause mortality, mental health, and sexual function. In addition to potential surgical complications that could accompany the removal of women's ovaries, fallopian tubes, or both at the time of a surgical investigation for a false-positive screening test, harms from ovary removal without indication cannot be ruled out.49-51 At the same time, there is evidence that having an oophorectomy, salpingectomy, or tubal ligation may reduce risk of ovarian cancer.49,51 Further research is needed to assess net effects on women's future health of the removal of ovaries and fallopian tubes in the context of screening trials and other medical procedures.

No ongoing randomized trials of ovarian cancer screening using new screening tools were identified. While some tools in development may hold promise for the future (eg, microRNA),47 currently there are no new screening tools (ie, biomarkers, instruments) exhibiting levels of test performance beyond what is observed for the screening tools evaluated in trials. Efforts to improve on the ROCA algorithm by adding more protein markers along with CA-125 are under way using data from the UKCTOCS trial. Given the absence of a single marker or screening device that is effective for ovarian cancer, research is likely to increasingly aim to identify new markers and combinations of markers for use in prediction models.52

Limitations
This review has limitations related to the types of evidence considered. Observational evidence was not included, owing to the availability of adequately powered trials that can estimate the mortality reduction from screening relative to an unscreened group. These trial comparisons summarize the net effect of screening, detection, and treatment and are considered by the USPSTF to be the highest level of evidence for screening recommendations.6 Given the low incidence of ovarian cancer, very large trials are necessary to determine whether benefits of a screening program outweigh harms, which for ovarian cancer include surgery and ovarian removal.

The strict inclusion and exclusion criteria related to study design and outcome reporting excluded evidence from 2 large studies: the Shizuoka Cohort Study of Ovarian Cancer Screening (SCSOCS)
In randomized trials conducted among average-risk, asymptomatic women, ovarian cancer mortality did not differ between screened women and those with no screening or in usual care. Screening harms included surgery (with major surgical complications) in women found to not have cancer. Further research is needed to identify effective approaches for reducing ovarian cancer incidence and mortality.

