Measurement of the branching fractions of exclusive $B \to D(\ast)(\pi)l-\bar{\nu}l$ decays in events with a fully reconstructed B meson

Permalink
https://escholarship.org/uc/item/43b865qd

Journal
Physical Review Letters, 100(15)

ISSN
0031-9007

Authors
Aubert, B
Bona, M
Karyotakis, Y
et al.

Publication Date
2008-04-16

DOI
10.1103/PhysRevLett.100.151802

License
CC BY 4.0

Peer reviewed
Measurement of the Branching Fractions of Exclusive $\bar{B} \to D^{(*)}(\pi^{-})\tilde{\nu}_l$ Decays in Events with a Fully Reconstructed B Meson

B. Aubert, 1 M. Bona, 1 Y. Karyotakis, 1 J. P. Lees, 1 V. Poireau, 1 X. Prudent, 1 V. Tisserand, 1 A. Zghiche, 1 J. Garra Tico, 2 E. Grauges, 2 L. Lopez, 3 A. Palano, 3 M. Pappagallo, 3 G. Eigen, 4 B. Stugu, 4 L. Sun, 4 G. S. Abrams, 5 M. Battaglia, 5 D. N. Brown, 5 J. Button-Shafer, 5 R. N. Cahn, 5 R. G. Jacobsen, 5 J. A. Kadyk, 5 L. T. Kerth, 5 Yu. G. Kolomensky, 6 G. Kukartsev, 3 G. Lynch, 5 I. L. Osipenkov, 5 M. T. Ronan, 5, 6 K. Tackmann, 3 T. Tanabe, 5 W. A. Wenzel, 5

151802 (2008) PHYSICAL REVIEW LETTERS week ending 18 APRIL 2008
1Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Física, Departament ECM, E-08028 Barcelona, Spain
3Università di Bari, Dipartimento di Fisica e INFN, I-70126 Bari, Italy
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6University of Birmingham, Birmingham, B15 2TT, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, California 92697, USA
13University of California at Los Angeles, Los Angeles, California 90024, USA
14University of California at Riverside, Riverside, California 92521, USA
15University of California at San Diego, La Jolla, California 92093, USA
16University of California at Santa Barbara, Santa Barbara, California 93106, USA
17University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
18California Institute of Technology, Pasadena, California 91125, USA
19University of Cincinnati, Cincinnati, Ohio 45221, USA
20University of Colorado, Boulder, Colorado 80309, USA
21Colorado State University, Fort Collins, Colorado 80523, USA
22Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
23Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
24Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
25University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
26Università di Ferrara, Dipartimento di Fisica e INFN, I-44100 Ferrara, Italy
27Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
28Università di Genova, Dipartimento di Fisica e INFN, I-16146 Genova, Italy
29Harvard University, Cambridge, Massachusetts 02138, USA
30Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
We report a measurement of the branching fractions for $B \rightarrow D^{(*)}(\pi)\ell^-\bar{\nu}_\ell$ decays based on 341.1 fb$^{-1}$ of data collected at the $\Upsilon(4S)$ resonance with the BABAR detector at the SLAC PEP-II e^+e^- storage rings. Events are tagged by fully reconstructing one of the B mesons in a hadronic decay mode. We obtain $\mathcal{B}(B^- \rightarrow D^{0}\ell^-\bar{\nu}_\ell) = (2.33 \pm 0.09_{\text{stat}} \pm 0.09_{\text{syst}})\%$, $\mathcal{B}(B^- \rightarrow D^{*0}\ell^-\bar{\nu}_\ell) = (5.83 \pm 0.15_{\text{stat}} \pm 0.30_{\text{syst}})\%$, $\mathcal{B}(B^0 \rightarrow D^{*+}\ell^-\bar{\nu}_\ell) = (2.21 \pm 0.11_{\text{stat}} \pm 0.12_{\text{syst}})\%$, $\mathcal{B}(B^0 \rightarrow D^{*0}\pi^+\ell^-\bar{\nu}_\ell) = (4.43 \pm 0.08_{\text{stat}} \pm 0.03_{\text{syst}})\%$, and $\mathcal{B}(B^\pm \rightarrow D^{*0}\pi^\pm\ell^-\bar{\nu}_\ell) = (0.48 \pm 0.08_{\text{stat}} \pm 0.04_{\text{syst}})\%$.
Measurement of B semileptonic decays are used to determine the magnitude of two fundamental parameters of the standard model, the Cabibbo-Kobayashi-Maskawa [11] matrix elements $|V_{cb}|$ and $|V_{ub}|$. The length of the side of the unitary triangle opposite to the well-measured angle β is proportional to the ratio $|V_{ub}|/|V_{cb}|$, making its determination an important test of the standard model description of CP symmetry violation.

Improvement in the knowledge of the individual exclusive branching fractions of $\bar{B} \to X_c e^- \bar{\nu}_e$ decays [2] is important to reduce the systematic uncertainty in the measurements of these matrix elements. For example, one of the leading sources of systematic uncertainty in the extraction of $|V_{cb}|$ from the exclusive decay $\bar{B} \to D^* \ell^- \bar{\nu}_\ell$ is the limited knowledge of the background due to $\bar{B} \to D^* \pi^- \bar{\nu}_\ell$. Improved measurements of $\bar{B} \to X_c e^- \bar{\nu}_e$ decays will also benefit the accuracy of the extraction of $|V_{ub}|$, as analyses are extending into kinematic regions in which these decays represent a sizable background.

Based on current measurements [3–7] the rate of inclusive semileptonic B decays exceeds the sum of the measured exclusive decay rates [8]. While $\bar{B} \to D^0 \ell^- \bar{\nu}_\ell$ and $D^* \ell^- \bar{\nu}_\ell$ decays account for about 70% of this total, the contribution of other states, including resonant and nonresonant D($^s\pi^-\bar{\nu}_\ell$) (denoted by $D^{*+}\ell^-\bar{\nu}_\ell$), is not yet well measured and may help to explain the inclusive-exclusive discrepancy.

In this Letter, we present measurements of the branching fractions for $\bar{B} \to D^{*(s)}(\pi^-\bar{\nu}_\ell)$ decays, separately for charged and neutral B mesons.

The analysis is based on data collected with the BABAR detector [9] at the PEP-II asymmetric-energy e^+e^- storage rings. The data consist of a total of 341.1 fb$^{-1}$ recorded at the Y(4S) resonance, corresponding to 378×10^6 BB pairs. An additional 36 fb$^{-1}$ off-peak data sample, taken at a center-of-mass (c.m.) energy 40 MeV below the Y(4S) resonance, is used to study background from $e^+e^- \to f\bar{f}$, ($f = u, d, s, c, \tau$) events (continuum production). A detailed GEANT4-based Monte Carlo (MC) simulation [10] of BB and continuum events is used to study the detector response, its acceptance, and to test the analysis techniques. The simulation models $\bar{B} \to D^{*(s)}\ell^-\bar{\nu}_\ell$ decays using calculations based on heavy quark effective theory [11], $\bar{B} \to D^{*+}(\to D^{++}\pi^-)\ell^-\bar{\nu}_\ell$ decays using the ISG2 model [12], and $\bar{B} \to D^{*(s)}\pi^-\bar{\nu}_\ell$ decays using the Goity-Roberts model [13].

We select semileptonic B decays in events containing a fully reconstructed B meson (B_{tag}), which allows us to constrain the kinematics, reduce the combinatorial background, and determine the charge and flavor of the signal B meson.

We first reconstruct the semileptonic B decay, selecting a lepton with momentum p_ℓ^+ in the center-of-mass frame higher than 0.6 GeV/c. Electrons from photon conversions and π^0 Dalitz decays are removed by searching for pairs of oppositely charged tracks that form a vertex with an invariant mass compatible with a photon conversion or a π^0 Dalitz decay. Candidate D^{*} mesons, having the correct charge-flavor correlation with the lepton, are reconstructed in the $K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^-\pi^0$, $K^0_S\pi^+\pi^-\pi^0$, $K^0_S\pi^0$, $K^-\pi^-$, and $K^0_S K^0_L$ channels, and D^+ mesons in the $K^-\pi^+$, $K^-\pi^+\pi^0$, $K^0_S\pi^+\pi^-\pi^0$, $K^0_S\pi^0$, $K^-\pi^-$, $K^0_S K^0_L$ channels. In events with multiple $\bar{B} \to D^\ell^-\bar{\nu}_\ell$ candidates, the candidate with the best $D-\ell$ vertex fit is selected. Candidate D^* mesons are reconstructed by combining a D candidate with a pion or a photon in the $D^{*+}\to D^0\pi^+$, $D^{*+}\to D^+\pi^0$, $D^0\to D^0\pi^0$, and $D^0\to D^0\gamma$ channels. In events with multiple $\bar{B} \to D^\ell^-\bar{\nu}_\ell$ candidates, we choose the candidate with the smallest χ^2 based on the deviations from the nominal values of the D invariant mass and the invariant mass difference between the D^* and the D, using the measured resolution.

We reconstruct B_{tag} decays of the type $\bar{B} \to DY$, where Y represents a collection of hadrons with a total charge of ± 1, composed of $n_1 \pi^+ + n_2 K^\pm + n_3 K^0_S + n_4 \pi^0$, where $n_1 + n_2 \leq 5$, $n_3 \leq 2$, and $n_4 \leq 2$. Using $D^{0\ell}(D^+)$ and $D^{0\ell}(D^{++})$ as seeds for $B^{(-)}(\bar{B})$ decays, we reconstruct about 1000 different decay chains.

The kinematic consistency of a B_{tag} candidate with a B meson decay is evaluated using two variables: the beam-energy substituted mass $m_{ES} = \sqrt{s/4 - |p_B^*|^2}$, and the energy difference $\Delta E = E^* - \sqrt{s}/2$. Here \sqrt{s} refers to the total c.m. energy, and p_B^* and E_B^* denote the momentum and energy of the B_{tag} candidate in the c.m. frame. For correctly identified B_{tag} decays, the m_{ES} distribution peaks at the B meson mass, while ΔE is consistent with zero. We select a B_{tag} candidate in the signal region defined as $5.27 \text{ GeV}/c^2 < m_{ES} < 5.29 \text{ GeV}/c^2$, excluding B_{tag} candidates with daughter particles in common with the charm meson or the lepton from the semileptonic B decay. In the case of multiple B_{tag} candidates in an event, we select the one with the smallest $|\Delta E|$ value. The B_{tag} and the $D^{*(s)}\ell$ candidates are required to have the correct charge-flavor correlation. Mixing effects in the \bar{B} sample are accounted for as described in [14]. Cross-feed effects, i.e., $B_{tag}(\bar{B}_{tag})$ candidates erroneously reconstructed as a neutral (charged) B, are subtracted using estimates from the simulation.

For $\bar{B} \to D^{*(s)}X\ell^-\bar{\nu}_\ell$ decays, $D(D^*)$ candidates are selected within 2σ (1.5–2.5σ, depending on the D^* decay mode) of the D mass ($D^* - D$ mass difference), with σ typically around 8(1–7) MeV/c^2. We also require the cosine of the angle between the directions of the $D^{*(s)}$ candi-
date and the lepton in the c.m. frame to be less than zero, to reduce background from non-B semileptonic decays.

We reconstruct $B^{-} \rightarrow D^{(*)+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$ and $\bar{B}^{0} \rightarrow D^{(*)0} \pi^{+} \ell^{-} \bar{\nu}_{\ell}$ decays starting from the corresponding $B \rightarrow D^{(*)} X \ell^{-} \bar{\nu}_{\ell}$ samples and selecting events with only one additional reconstructed charged track that has not been used for the reconstruction of the B_{tag}, the signal $D^{(*)}$, or the lepton. For the $\bar{B}^{0} \rightarrow D^{(*)0} \pi^{+} \ell^{-} \bar{\nu}_{\ell}$ and the $B^{0} \rightarrow D^{(*)0} \pi^{+} \ell^{-} \bar{\nu}_{\ell}$ decays, we additionally require the invariant mass difference $M(D\pi) - M(D)$ to be greater than 0.18 GeV/c2 to veto $\bar{B}^{0} \rightarrow D^{(*)} \ell^{-} \bar{\nu}_{\ell}$ events. To reduce the combinatorial background in the $\bar{B}^{0} \rightarrow D^{(*)0} \pi^{+} \ell^{-} \bar{\nu}_{\ell}$ mode, we also require the total extra energy in the event, obtained by summing the energy of all the showers in the electromagnetic calorimeter that have not been assigned to the B_{tag} or the $D^{(*)} \ell^{-} \bar{\nu}_{\ell}$ candidates, to be less than 1 GeV.

The exclusive semileptonic B decays are identified by the missing mass squared in the event, $m_{\text{miss}}^2 = (p(Y(4S)) - p(B_{\text{tag}}) - p(D^{(*)}(\pi)) - p(\ell))^2$, defined in terms of the particle four-momenta in the c.m. frame of the reconstructed final states. For correctly reconstructed signal events, the only missing particle is the neutrino, and

![Image of graphs](image_url)

FIG. 1 (color online). Fit to the m_{miss}^2 distribution for (a) $B^{-} \rightarrow D^{0} \ell^{-} \bar{\nu}_{\ell}$, (b) $B^{-} \rightarrow D^{0*} \ell^{-} \bar{\nu}_{\ell}$, (c) $\bar{B}^{0} \rightarrow D^{+} \ell^{-} \bar{\nu}_{\ell}$, (d) $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$, (e) $B^{-} \rightarrow D^{*0} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$, (f) $B^{-} \rightarrow D^{*+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$, (g) $\bar{B}^{0} \rightarrow D^{0} \pi^{+} \ell^{-} \bar{\nu}_{\ell}$, and (h) $\bar{B}^{0} \rightarrow D^{*0} \pi^{+} \ell^{-} \bar{\nu}_{\ell}$: the data (points with error bars) are compared to the results of the overall fit (sum of the solid histograms). The PDFs for the different fit components are stacked and shown in different colors.
m_{miss}^2 peaks at zero. Other B semileptonic decays, where one particle is not reconstructed (feed-down) or is erroneously added (feed-up) to the charm candidate, exhibit higher or lower values in m_{miss}^2. To obtain the B semileptonic signal yields, we perform a one-dimensional extended binned maximum likelihood fit [15] to the m_{miss}^2 distributions. The fitted data samples are assumed to contain four different types of events: $\bar{B} \rightarrow D^{(*)}(\pi)\ell^-\bar{\nu}_\ell$ signal events, feed-down or feed-up from other B semileptonic decays, combinatoric $B\bar{B}$ and continuum background, and hadronic B decays (mainly due to hadrons misidentified as leptons). For the fit to the m_{miss}^2 distributions of the $\bar{B} \rightarrow D^{(*)}\pi\ell^-\bar{\nu}_\ell$ channel, we also include a component corresponding to other misreconstructed $\bar{B} \rightarrow D^{(*)}(D^*)\ell^-\bar{\nu}_\ell$ decays. We use the MC predictions for the different B semileptonic decay m_{miss}^2 distributions to obtain the probability density functions (PDFs). The combinatoric $B\bar{B}$ and continuum background shape is also estimated by the MC simulation, and we use the off-peak data to provide the continuum background normalization. The shape of the continuum background distribution predicted by the MC simulation is consistent with that obtained from the off-peak data.

The m_{miss}^2 distributions are compared with the results of the fits in Fig. 1 for each of the $\bar{B} \rightarrow D^{(*)}(\pi)\ell^-\bar{\nu}_\ell$ channels. The fitted signal yields and the signal efficiencies, accounting for the B_{tag} reconstruction, are listed in Table I.

To reduce the systematic uncertainty, the exclusive $B(\bar{B} \rightarrow D^{(*)}(\pi)\ell^-\bar{\nu}_\ell)$ branching fractions relative to the inclusive semileptonic branching fraction are measured. A sample of $\bar{B} \rightarrow X\ell^-\bar{\nu}_\ell$ events is selected by identifying a charged lepton with c.m. momentum greater than 0.6 GeV/c and the correct charge-flavor correlation with the B_{tag} candidate. In the case of multiple B_{tag} candidates in an event, we select the one reconstructed in the decay channel with the highest purity, defined as the fraction of signal events in the m_{ES} signal region. Background components peaking in the m_{ES} signal region include cascade B meson decays (i.e., the lepton does not come directly from the B) and hadronic decays, and are subtracted by using the corresponding MC distributions. The total yield for the inclusive $\bar{B} \rightarrow X\ell^-\bar{\nu}_\ell$ decays is obtained from a maximum likelihood fit to the m_{ES} distribution of the B_{tag} candidates using an ARGUS function [16] for the description of the combinatorial $B\bar{B}$ and continuum background, and a Crystal Ball function [17] for the signal. Additional Crystal Ball and ARGUS functions are used to model a broad-peak component, included in the signal definition, due to real $\bar{B} \rightarrow X\ell^-\bar{\nu}_\ell$ decays for which, in the B_{tag} reconstruction, neutral particles have not been identified or have been interchanged with the semileptonic decays.

Figure 2 shows the m_{ES} distribution of the B_{tag} candidates in the $\bar{B} \rightarrow X\ell^-\bar{\nu}_\ell$ and $\bar{B}^0 \rightarrow X\ell^-\bar{\nu}_\ell$ sample. The fit yields $159\,896 \pm 1361$ events for the $\bar{B} \rightarrow X\ell^-\bar{\nu}_\ell$ sample and $96\,771 \pm 968$ events for the $\bar{B}^0 \rightarrow X\ell^-\bar{\nu}_\ell$ sample.

The relative branching fractions $B(\bar{B} \rightarrow D^{(*)}(\pi)\ell^-\bar{\nu}_\ell)/B(\bar{B} \rightarrow X\ell^-\bar{\nu}_\ell)$ are obtained by correcting the signal yields for the reconstruction efficiencies (estimated from $B\bar{B}$ MC events) and normalizing to the inclusive $\bar{B} \rightarrow X\ell^-\bar{\nu}_\ell$ signal yield, following the relation $B(\bar{B} \rightarrow D^{(*)}(\pi)\ell^-\bar{\nu}_\ell)/B(\bar{B} \rightarrow X\ell^-\bar{\nu}_\ell) = \frac{N_{\text{sig}}}{N_{\text{sig}}} \frac{\epsilon_{\text{sig}}}{\epsilon_{\text{ES}}}$. Here, N_{sig} is the number of $\bar{B} \rightarrow D^{(*)}(\pi)\ell^-\bar{\nu}_\ell$ signal events.

![FIG. 2](color online). m_{ES} distributions of the (a) $\bar{B} \rightarrow X\ell^-\bar{\nu}_\ell$, and (b) $\bar{B}^0 \rightarrow X\ell^-\bar{\nu}_\ell$ samples. The data (points with error bars) are compared to the result of the fit (solid line). The dashed lines show the broad-peak component and the sum of the combinatorial and continuum background.
corresponding reconstruction efficiencies ϵ_{sig}, N_{sel} is the $B \to X \ell^+ \bar{\nu}_\ell$ signal yield, and ϵ_{reco} is the corresponding reconstruction efficiency including the B_{tag} reconstruction, equal to 0.36% and 0.23% for the $B^- \to X \ell^- \bar{\nu}_\ell$ and $B^0 \to X \ell^- \bar{\nu}_\ell$ decays, respectively. The absolute branching fractions $\mathcal{B}(B \to D^{(*)}(\pi^0)\ell^- \bar{\nu}_\ell)$ are then determined using the semileptonic branching fraction $\mathcal{B}(B \to X \ell^- \bar{\nu}_\ell) = (10.78 \pm 0.18)\%$ and the ratio of the B^0 and the B^+ lifetimes $\tau_{B^+}/\tau_{B^0} = 1.071 \pm 0.009$ [8].

Numerous sources of systematic uncertainties have been investigated. The uncertainties due to the detector simulation are established by varying, within bounds given by data control samples, the tracking efficiency of all charged tracks (resulting in 1.2%–2.7% relative systematic uncertainty among the different decay modes), the calorimeter efficiency (0.5%–1.8%), the lepton identification efficiency (0.4%–3%), and the reconstruction efficiency for low momentum charged (1.2%) and neutral pions (1.3%). We evaluate the systematic uncertainties associated with the MC simulation of various signal and background processes: photon conversion and π^0 Dalitz decay (0.04%–0.4%), B cascade decay contamination (0.6%–1%), and flavor cross-feed (0.2%–0.3%). We vary the $B \to D^+ \ell^- \bar{\nu}_\ell$ and $B \to D^+ \ell^- \bar{\nu}_\ell$ form factors within their measured uncertainties [11] (0.4%–0.8%) and we include the uncertainty on the branching fractions of the reconstructed D and D^* modes (2.3%–4.4%), and on the absolute branching fraction $\mathcal{B}(B \to X \ell^- \bar{\nu}_\ell)$ used for the normalization (1.9%). We also include a systematic uncertainty due to differences in the efficiency of the B_{tag} selection in the exclusive selection of $B \to D^{(*)}(\pi^0)\ell^- \bar{\nu}_\ell$ decays and the inclusive $B \to X \ell^- \bar{\nu}_\ell$ reconstruction (0.9%–5.6%), and the extraction of the $B \to D^{(*)}(\pi^0)\ell^- \bar{\nu}_\ell$ (0.4%–1.8%) and $B \to X \ell^- \bar{\nu}_\ell$ (0.5%–0.9%) signal yields. The complete set of systematic uncertainties is given in Ref. [18].

We measure the following branching fractions

$$\mathcal{B}(B^- \to D^0 \ell^- \bar{\nu}_\ell) = (2.33 \pm 0.09_{\text{stat}} \pm 0.09_{\text{syst}})\%$$

$$\mathcal{B}(B^- \to D^{*0} \ell^- \bar{\nu}_\ell) = (5.83 \pm 0.15_{\text{stat}} \pm 0.30_{\text{syst}})\%$$

$$\mathcal{B}(B^0 \to D^+ \ell^- \bar{\nu}_\ell) = (2.21 \pm 0.11_{\text{stat}} \pm 0.12_{\text{syst}})\%$$

$$\mathcal{B}(B^0 \to D^{*+} \ell^- \bar{\nu}_\ell) = (5.49 \pm 0.16_{\text{stat}} \pm 0.25_{\text{syst}})\%$$

$$\mathcal{B}(B^- \to D^{*+} \pi^- \ell^- \bar{\nu}_\ell) = (0.42 \pm 0.06_{\text{stat}} \pm 0.03_{\text{syst}})\%$$

$$\mathcal{B}(B^0 \to D^{*+} \pi^- \ell^- \bar{\nu}_\ell) = (0.59 \pm 0.05_{\text{stat}} \pm 0.04_{\text{syst}})\%$$

$$\mathcal{B}(B^0 \to D^{*0} \pi^0 \ell^- \bar{\nu}_\ell) = (0.43 \pm 0.08_{\text{stat}} \pm 0.03_{\text{syst}})\%$$

$$\mathcal{B}(B^0 \to D^{*0} \pi^- \ell^- \bar{\nu}_\ell) = (0.48 \pm 0.08_{\text{stat}} \pm 0.04_{\text{syst}})\%$$.

The accuracy of the branching fraction measurements for the $B \to D^{(*)}\ell^- \bar{\nu}_\ell$ decays is comparable to that of the current world average [8]. We compute the total branching fractions of the $B \to D^{(*)}\pi^0\ell^- \bar{\nu}_\ell$ decays assuming isospin symmetry, $\mathcal{B}(B \to D^{(*)}\pi^0\ell^- \bar{\nu}_\ell) = \frac{1}{2}\mathcal{B}(B \to D^{(*)}\ell^- \bar{\nu}_\ell)$, to estimate the branching fractions of $D^{(*)}\pi^0$ final states, obtaining

$$\mathcal{B}(B^- \to D^{(*)}\ell^- \bar{\nu}_\ell) = (1.52 \pm 0.12_{\text{stat}} \pm 0.10_{\text{syst}})\%$$

$$\mathcal{B}(B^0 \to D^{(*)}\ell^- \bar{\nu}_\ell) = (1.37 \pm 0.17_{\text{stat}} \pm 0.10_{\text{syst}})\%$$,

where we assume the systematic uncertainties on the $B \to D \pi \ell^- \bar{\nu}_\ell$ and $B \to D^* \pi \ell^- \bar{\nu}_\ell$ modes to be completely correlated. These results are consistent with, but have smaller uncertainties than, recent results from the Belle Collaboration [7].

By comparing the sum of the measured branching fractions for $B \to D^{(*)}(\pi)\ell^- \bar{\nu}_\ell$ with the inclusive $B \to X \ell^- \bar{\nu}_\ell$ branching fraction [8], a (11 ± 4)% discrepancy is observed, which is most likely due to $B \to D^{(*)}n\pi^- \ell^- \bar{\nu}_\ell$ decays with $n > 1$.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.

*Deceased.
†Present address: Temple University, Philadelphia, PA 19122, USA.
‡Present address: Tel Aviv University, Tel Aviv, 69978, Israel.
§Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
¶Also with Università di Sassari, Sassari, Italy.
[2] Here X_t refers to any charm hadronic state, X_u to any charmless hadronic state, $X = X_t + X_u$ and $\ell = e, \mu$. The charge conjugate state is always implied unless stated otherwise.