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Optimization Under Constraints by Applying

an Asymmetric Entropy Measure

David V. Lindberg and Herbert K.H. Lee

Complex functions, such as the output of computer simulators, can be difficult to opti-
mize. The task becomes even more difficult when only some of the function evaluations return
real numbers and others simply fail to return a value. We combine statistical emulation, clas-
sification, sequential design, and optimization with an asymmetric entropy measure to solve
the thorny problem of finding an optimum along a constraint boundary. This approach is
demonstrated on simulated examples and a real problem in groundwater remediation.

Key words: Emulator, Expected Improvement, Gaussian Process, Hidden Constraints,
Sequential Design.

1. INTRODUCTION

One recurring but difficult problem that arises in many contexts is constrained optimization.

We want to find the minimum or maximum of a function f(x) ∈ R where x ∈ R
m subject

to hidden constraints where the output of f is only defined for x ∈ Ω ⊂ R
m where Ω might

be a non-convex subset. When x /∈ Ω, then f(x) is not defined. This is a critical distinction

from the case subject to unknown constraints where the function can be evaluated outside

the valid region. When f is expensive to evaluate, such as for a computer simulator, it is

critical to use as few evaluations as possible that are outside the valid region, as they are a

complete waste of computational efforts. Thus one needs to have a good understanding of

both the function and the boundary of the valid region. Statistical models can approximate

both the function and the boundary, and can then guide the optimization.

We propose herein an approach that combines statistical emulation, statistical classifica-

tion, sequential design via asymmetric entropy, and optimization. We build upon a number of
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Cruz, CA 95064 (E-mail: herbie@soe.ucsc.edu)
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earlier works that look at pieces of this problem. Emulation is the approximation of a complex

function with a statistical model, typically a Gaussian process. Santner et al. (2003) provides

a good overview of emulation, including its use for optimization, and considers simple convex

constraints. Jones et al. (1998) introduces expected improvement as the statistical approach

to unconstrained optimization. Optimization subject to unknown constraints is a well-studied

problem. Schonlau et al. (1998) offers an initial probability adjusted attempt, seeking to find

the optimum at a location with high probability of being valid. This method hence tends to

push the exploration into the valid region. However, in most real problems, the optimum will

occur along the boundary, which increases the difficulty of the problem. If the solution is far

from a boundary, finding the unconstrained solution may work just as well, and is a simpler

problem. Thus we focus here on finding an optimum on the constraint boundary. Parr et al.

(2012) propose a method that treats the objective and constraint functions separately, using

a Pareto front approach to control the trade-off, but does not specifically look for optimum

points on the boundary. Sasena et al. (2002) propose a penalty adjusted method as an al-

ternative to the probability adjusted method, but focuses on objective functions that can be

evaluated even when the constraint is not satisfied. Gramacy and Polson (2011) propose the

use of entropy during active learning to hone in on the boundary, however entropy alone does

not tend to fully incorporate learning behavior, and when combined with optimization tends

to push the exploration too much into the invalid region.

Recognizing both the strengths and the issues with using entropy, we incorporate the idea

of asymmetric entropy (Marcellin et al., 2006) to focus our exploration close to the constraint

boundary but with a bias of staying inside the valid region, which improves the efficiency

of the optimization and is particularly important when the function cannot be evaluated in

the invalid region. Asymmetric entropy was originally developed in the context of growing

decision trees when one class is rare compared to the dominant class. We believe our approach
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is the first to use statistical emulation to focus on an optimum along a constraint boundary for

hidden constraints, and the first to incorporate asymmetric entropy in statistical emulation to

focus on an optimum along a constraint boundary. This approach also leads to a convergence

criterion.

Our focus here is on derivative-free optimization (Kolda et al., 2003), where function

evaluations do not provide derivative information, a fairly common situation for computer

experiments. We note our approach is applicable to both deterministic simulators as well as

stochastic simulators or functions observed with noise, and it can deal with noisy constraint

boundaries. In this paper we focus on deterministic simulators only.

Building off of this context from the literature, we next review Gaussian process emulation

and classification. We then discuss the key concepts and innovations in sequential design

under hidden constraints, and finally we examine simulated and real examples.

2. GAUSSIAN PROCESS MODEL FOR REGRESSION

The typical model for statistical emulation is a Gaussian process (GP) (Sacks et al., 1989;

Kennedy and O’Hagan, 2001; Santner et al., 2003), which provides a good combination of

nonparametric flexibility and structure induced through correlation. Suppose we have n

observed data points X = (x1, . . . ,xn) and y = (y1, . . . , yn)
′ where xi ∈ R

m are input vectors

and yi = f(xi) ∈ R are observed scalar outputs from an unknown deterministic output

function f . We model f by a GP surrogate model:

Y (x) = β′h(x) + Z(x) + ǫ. (2.1)

Here Y is the modeled output function, β ∈ R
l is a regression coefficient parameter, h(x) =

(h1(x), . . . , hl(x))
′ is a known transformation {hk(x) : Rm → R : k = 1, . . . , l}, Z(·) is a

zero-mean GP with spatial covariance kernel C(·, ·), and ǫ ∼ N(0, σ2
ǫ ) is a possible white
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noise term.

While our approach is quite general, in this paper we use a linear regression mean with

intercept, i.e., l = m + 1, hk(x) = xk for k = 1, . . . , m and hm+1(x) = 1, however other

choices would work as well. Hence, Y (x) is a GP with mean β′h(x) and covariance kernel

C(·, ·) + σ2
ǫ In.

If interpolation is desired, σ2
ǫ can be set to zero. In practice, this term can account for

possible noise as well as making the algorithms more numerically stable, and can be advan-

tageous even for deterministic simulators (Gramacy and Lee, 2012). Following the computer

modeling literature, we use the nugget effect parameterization (rather than a replication error

parameterization), resulting in a covariance function parameterization

C(xi,xj) = σ2 × [K(xi,xj) + gδij] .

Here g > 0 is the nugget parameter, δij is the delta function, and σ2 is a covariance scale

parameter. We choose to model the correlation structure K(·, ·) by a Gaussian correlation

function, which is the standard in the computer modeling literature (Santner et al., 2003):

K(xi,xj) = exp

{

−
m
∑

k=1

(xik − xjk)
2

dk

}

,

where d = (d1, . . . , dm) are smoothing parameters. See also Abrahamsen (1997) for an

excellent review on correlation functions. The resulting n×n matrix with entries K(xi,xj)+

gδij is denoted K.

When all parameters are known, the predictive distribution of the unknown output value

y∗ = y(x∗) for some input x∗ is Gaussian p(y∗|y,β, σ2,K) = N(ŷ(x∗) , σ̂2(x∗)) where

ŷ(x∗) = β′h(x∗) + k′

∗
K−1(y − β′h(X)) , σ̂2

y(x
∗) = σ2 ×

[

1 + g − k′

∗
K−1k∗

]

(2.2)

is the prediction mean and variance. Here

k∗ = k(x∗) : ki(x
∗) = K(x∗,xi), i = 1 . . . , n . (2.3)
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We can thus represent the unknown response surface f by our statistical surrogate model

ŷ with necessary confidence bounds available through σ̂y. Hence, GP modeling provides

simultaneous prediction and uncertainty quantification in an easy interpretable fashion.

We take a Bayesian approach, which allows full estimation of uncertainty, but also requires

specification of priors. We use an improper uniform prior for β ∝ 1, and an inverse gamma

prior for the covariance scale σ2 ∼ IG (ασ/2, qσ/2). The matrix K is defined by d and g

for which we choose independent exponential priors, p(d) = p(g) = Exp(λ) assuming equal

priors for the smoothness parameters p(dk) = p(d) ∀ k. The hyperparameters ασ, qσ, λ are

assumed known. We choose to do parameter estimation by particle learning, which is a

better inferential method for sequential design than Markov chain Monte Carlo (MCMC)

(Gramacy and Polson, 2011). Implementation details are in the Appendix.

3. GAUSSIAN PROCESS MODEL FOR BINARY

CLASSIFICATION

Suppose we have n observed data points X = (x1, . . . ,xn) and t = (t1, . . . , tn) where xi ∈ R
m

are input vectors and ti = f(xi) ∈ {−1, 1} are observed binary categorical outputs from an

unknown function f . When modeling f in the surrogate classification GP (CGP) framework,

we introduce latent variables z ∈ R through a link function on t (Neal, 1998). We thus turn

the classification problem for the binary output variable t into a regression problem on z and

assign a GP prior to z according to Eqn (2.1). We choose a linear logistic regression link

function

p(t|z) = exp{tz}
1 + exp{tz} . (3.1)

The purpose of the latent variable z is just to allow a convenient formulation of the model,

we are interested in p(t|x, z) through the link function and not the actual values of z. As
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we consider binary classification problems, we can solve for one class only. For the latent

variable GP model, there is little benefit in allowing a linear mean (Gramacy and Polson,

2011), so we use a zero-mean GP prior, simplifying the computations.

In order to fit a binary CGP surrogate model, training samples from both categories

t ∈ {−1, 1} need to be present in the initial data set (X, t). Given the data (X, t) we do

inference for a new input x∗ in two steps, first computing

p(z∗|X, t,x∗) =

∫

p(z∗|X,x∗, z)× p(z|X, t) dz , (3.2)

where z = (z1, . . . , zn) are the unobserved latent variables which we integrate out, zi corre-

sponding to the observation (xi, ti). The posterior distribution of the latent variables given

the data is

p(z|X, t) ∝ p(t|z)× p(z|X) , (3.3)

where p(t|z) has conditional independent marginals given in Eqn (3.1) and p(z|X) is the GP

prior. Second, we compute the probability of interest, i.e. the probability that the unknown

class f(x∗) is 1, by

p(t∗ = 1|X, t,x∗) =

∫

p(t∗ = 1|z∗)× p(z∗|X, t,x∗) dz∗ . (3.4)

Here, p(z∗|X, t,x∗) is the posterior predictive distribution given by Eqn (3.2). The parameters

are estimated by particle learning as for the regression problem, see the Appendix.

The integrals in Eqn (3.2) and (3.4) are analytically intractable, but simple numerical

integration is possible for the last integral which is in one dimension. For the first integral,

we solve it by Monte Carlo integration, sampling a set of latent variables from the posterior

distribution in Eqn (3.3) and passing the samples through the predictive distribution, see

Neal (1998) for more details.
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4. SEQUENTIAL DESIGN UNDER HIDDEN CONSTRAINTS

We consider here (unsupervised) sequential design, in particular optimization of an expensive

black-box output function f subject to hidden constraints. Lee et al. (2011) provide an early

attempt at this difficult problem, but do not capitalize on the fact that in most constrained

optimization problems, the solution lies along the constraint boundary. Suppose we have n

inputs X = (x1, . . . ,xn) where xi ∈ R
m are input vectors for which we define Ω ⊂ R

m as the

part of the input space where the response function f(x) ∈ R is defined. Introducing binary

constraint variables (t1, . . . , tn) : ti ∈ {−1, 1}, for which t = −1 if constraints are violated

and t = 1 if not, the outputs are defined as

yi =











f(xi) , xi ∈ Ω : ti = 1

undefined , xi /∈ Ω : ti = −1

.

We model the unknown output function f by a GP as described in Section 2, and the prob-

ability of meeting the constraints, i.e. p(t = 1), by a CGP as described in Section 3. We

begin by describing the expected improvement statistic for unconstrained global optimiza-

tion. Next, we describe how to employ the entropy measure for classification problems. We

then combine asymmetric entropy with expected improvement for an efficient algorithm for

constrained optimization.

4.1 Global Optimization

We describe here a sequential updating algorithm for unconstrained optimization as intro-

duced by Jones et al. (1998). From here onwards, we focus on minimization for concrete-

ness, but maximization can be obtained by minimizing the negative of the response func-

tion. From an initial design (X,y) to which we fit a GP, we sequentially add a point to

our design that optimizes the improvement statistic I(x) = max {ymin − Y (x) , 0} where
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ymin = min{y1, . . . , yn}. This improvement statistic thus favors points with output value

lower than the current minimum, hence searching for a global minimum. But since the true

value of f is unknown at points that have not yet been evaluated, we use the posterior ex-

pectation from our statistical model. The expected improvement (EI) can be computed by

EI(x) = (ymin − ŷ(x))× Φ

(

ymin − ŷ(x)

σ̂y(x)

)

+ σ̂y(x)× φ

(

ymin − ŷ(x)

σ̂y(x)

)

,

where ŷ and σ̂y is the prediction mean and variance given in Eqn (2.2), and Φ(·) and φ(·) are

the normalized Gaussian cdf and pdf respectively.

4.2 Binary Classification Boundary Detection

Suppose we want to focus on detecting the true classification boundary through a sequential

design algorithm. From an initial data design, we want the updates in our algorithm to add

a point to our design that gives us maximal information about the boundary. For a binary

classification problem, the Shannon entropy is defined as

S(x) = −p1(x)× log(p1(x))− (1− p1(x))× log(1− p1(x)),

where p1(x) = p(t(x) = 1). Entropy is thus non-negative with minimum entropy when

p1 = 0 ∨ 1, and maximum entropy at the boundary where p1 = p−1 = 0.5. Hence entropy, as

a measure of uncertainty, is minimized when we are 100% sure of the class and maximized

when we are most unsure. A sequential algorithm for boundary detection could thus add

a point with maximum entropy at each update, i.e. a point at the predicted boundary.

Sequential design by entropy is however a greedy algorithm, and it tends to select new points

in areas which have already been explored (Gramacy and Polson, 2011), thus making it less

efficient for either a global understanding of the boundary or for optimization.
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4.3 Combining EI and Asymmetric Entropy

Consider an optimization problem subject to hidden constraints. A natural idea would be

to maximize a statistic of the form T (x) = EI(x)α1 × S(x)α2 . Here α1 and α2 are specified

weights with the property that for α1 = 0 we put all of the emphasis on trying to explore the

constraint boundary, while for increasing α1 we put more emphasis on locating the global

maximum, similarly for α2.

For output functions where the solution is expected to be located on the constraint bound-

ary, the unconstrained global optimum is likely located outside the constrained region. Hence

the EI statistic will often favor regions outside the constraints, while the entropy weighs points

symmetrically across the boundary. The proposed statistic T (x) will thus tend to favor points

outside the constrained region, which will be a waste of computational resources because the

function is not defined there. A natural solution would be to put more emphasis on the

entropy by setting α2 > α1, but the entropy part would still be symmetric. We address

this problem by using the asymmetric entropy measure proposed in Marcellin et al. (2006)

in the rather different context of growing decision trees when one class is rare compared to

the dominant class, and thus one class needs to be favored over another. For our binary

constraint classification problem, the asymmetric entropy is defined as

Sa(x) =
2p1(x)(1− p1(x))

p1(x)− 2wp1(x) + w2
, (4.1)

where w is a mode location parameter. Here maximum uncertainty (maximum entropy) is

reached when p1 = w instead of p1 = 0.5 for the standard Shannon entropy measure. In

order to favor points inside the valid region while not pushing exploration too far from the

boundary, we need a w which is larger than 1/2, but not too much larger. Our empirical

results have found w = 2/3 to work consistently well. The scaled asymmetric entropy is

compared to the scaled Shannon entropy in Figure 4.1 for our choice of w = 2/3. The
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statistic we want to maximize in each update, with weights α1 and α2, is thus

T (x) = EI(x)α1 × Sa(x)
α2 , (4.2)

where the weights can be defined as dynamic parameters, changing throughout the algorithm.
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Figure 4.1: Comparison of the scaled standard entropy S and the asymmetric entropy Sa

for w = 2/3.

5. TEST STUDY: CONSTRAINED OPTIMIZATION

In this empirical study, we consider optimization by sequential design of a simple constrained

output function. For a m-dimensional input x = (x1, . . . , xm), consider the function f(x) =

∑m

j=1 xj/m. We set as constraints a circular boundary centered in (c1, . . . , cm) with radius

r, hence the valid region in higher dimensions is a hypersphere. The deterministic output is

then defined as

f(x) =











∑m

j=1 xj/m ,
∑m

j=1(xj − cj)
2 ≤ r2 : t = 1

undefined ,
∑m

j=1(xj − cj)
2 > r2 : t = −1

. (5.1)

In particular, we set cj = 0.5 ∀j and r = 0.5. It is trivial to show that the true minimum

keeping the constraints is for identical inputs xj = (1− 1/
√
m)/2 ∀j. An example for m = 2

is displayed in Figure 5.1, with grey circular constraint boundary and true minimum as a

black point.
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Figure 5.1: Original function with circular constraint, true global minimum as black point.

Our training sets will thus constitute X = (x1, . . . ,xn), y = (y1, . . . , yn), t) = (t1, . . . , tn)

where xi ∈ [0, 1]m are the inputs, yi = f(xi) are the outputs defined by Eqn (5.1) only

valid within the constrained region and ti(xi) ∈ {1,−1} is a binary constraint class variable.

Hence we discard outputs outside the feasible region. We follow the ideas described in

Section 4, declaring a GP model on (X,y) and a CGP model on (X, t) to obtain constraint

probability estimates p̂(t = 1). As hyperparameters we set (ασ, qσ) = (5, 1) for p(σ2) and

λ = 5 for p(d) = p(g) which we believe should work well in general with unity range on the

input and output. Uniform sliding windows are set as correlation parameter proposals, e.g.

q(d∗|d) = U [ld/u, ud/l], with (u, l) = (4, 3).

5.1 Constrained Optimization for Increasing Dimension

We here consider three test studies, for dimensions m = 2, 4, 6 respectively. Due to the

curse of dimensionality, the volume V of the valid input space rapidly decreases for higher

order problems (e.g., V = 0.0807 for m = 6). Starting with an initial design of size n0, we

therefore ensure that it contains at least m + 1 data points in each class t; if our sampled

design does not, then we resample until it does. Throughout this paper we choose designs

by Latin Hypercube (LH) random samples, although other designs as maximin or minimax
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would apply as well. We choose to do PL updates with N = 1000 particles, setting the

nugget to g = 0.00001 for numerical stability. In the sequential update results presented

we compare the updates for the test statistic in Eqn (4.2) for α1 = 1 and for the six values

α2 = {1, 3, 5, 7, 9, 11}, and we set w = 2/3 in the asymmetric entropy Sa in Eqn (4.1). The

resulting powered asymmetric entropies gets more focused around w when α2 increases. For

all six runs, we use the same initial LH design with equal initiated particles.

For each update, we sample a LH candidate set of size 10000 and select the points that

optimize the test statistics. In the plots presented, we keep track of log[T (x∗)] : x∗ =

argmaxx {T (x)} for the statistics in each update, see for example the upper plot in Figure 5.2,

which we expect to decrease with the updates due to the learning. In the plots of log[T (x∗)],

a grey marker indicates that the computed output violates the constraints, while a larger

black marker indicates that they are met. We also keep track of the corresponding computed

minimum output value fmin = min{f(x1), . . . , f(xn)} in each update, see the lower plot in

Figure 5.2 where it is compared to the true global minimum plotted in dashed black.

When updating by PL, for each candidate point we could compute the heuristic T (·)

for each particle and average (Gramacy and Polson, 2011). We choose instead to set the

correlation matrix in each update to K(d̂, ĝ) where we have averaged the parameters over

the particles, e.g. ĝ =
∑N

t=1 g
(t)/N . In our experience, this works just as well, providing a

very close approximation and reducing the computational time to a single evaluation of T (·)

for each candidate point.

Results for problems of dimension m = 2, 4, 6 are shown in Figures 5.2, 5.3, 5.4 respec-

tively, with minimum values computed and the ratio of the computed outputs located within

the valid region presented in Table 5.1. Consider the results for m = 2 in Figure 5.2, we

notice how T (x∗) tends to decrease with the updates as expected. In the run for the first

order statistics, the learning algorithm seems to emphasize the expected improvement over
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the entropy, selecting more inputs outside the valid region, and locate the optimum slower

than higher order statistics. For m = 4 in Figure 5.3, the first order run did not even return

any valid outputs, showing clearly the need for additional emphasis on asymmetric entropy.

The selected points for higher orders of α2 however, seem to behave more as desired, concen-

trated in the region around the boundary optimum when this is located. We notice how the

runs for higher orders of α2 are almost identical, as the statistics often favor the same input

(out of 10000 candidates). The runs for higher orders also identify the constrained minimum

quite quickly. As a result of this study, as well as additional simulations, we choose α1 = 1

and α2 = 5 for use in the rest of this paper.
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Figure 5.2: Updates for test case m = 2, n0 = 21. The top plot shows the objective function

and the bottom plot shows the output function being minimized, with dark symbols for points

meeting the constraint and light points not meeting the constraint.

5.2 Variability and Convergence

We here consider the test statistic T (x) = EI(x)×Sa(x)
5 for inputs of order m = 4, and we

explore the variability that can be inherent in our algorithm. From the same initial design,

we have run the sequential design algorithm ten times, with independent LH candidate sets

13



0 5 10 15 20 25 30 35 40 45 50
−30

−25

−20

−15

−10

−5

0

Update

lo
g(

T
(x

* ))

 

 

EI*S
a
1

EI*S
a
3

EI*S
a
5

EI*S
a
7

EI*S
a
9

EI*S
a
11

0 5 10 15 20 25 30 35 40 45 50
0.24

0.26

0.28

0.3

0.32

Update

f m
in

Figure 5.3: Updates for test case m = 4, n0 = 43.
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Figure 5.4: Updates for test case m = 6, n0 = 65.

in each update between the runs. The ten runs are displayed in Figure 5.5, and they show that

the Monte Carlo variability is relatively small, with a few larger deviations. The minimum

computed during the algorithm has a smaller range, from 0.2514 to 0.2535, indicating stability

of our proposed algorithm in finding the optimum. From the plots of log[T (x∗)], we observe

how the statistic converges towards 0, although not necessarily monotonically. Figure 5.6

displays the distribution of T (x) = EI(x) × Sa(x)
5 over the candidate set for the updates

5, 10, 15, 20, 25, 30 for a single run of dimension m = 4. Only values T (x) > 10−12 are

included. We again observe how the distribution converges towards 0. Thus we can use
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α2 m = 2 m = 4 m = 6

fmin ratio fmin ratio fmin ratio

1 0.1467 24% - 0% 0.3234 2%

3 0.1467 38% 0.2575 10% 0.3070 16%

5 0.1467 50% 0.2523 22% 0.3047 10%

7 0.1467 46% 0.2523 26% 0.3070 24%

9 0.1467 50% 0.2550 20% 0.3173 12%

11 0.1467 54% 0.2523 34% 0.3070 32%

True minimum 0.1464 - 0.2500 - 0.2959 -

Table 5.1: Computed minimum values fmin and the ratio of valid outputs.

T to create a convergence criterion, looking at either the full distribution or the maximum

value. Typical optimization convergence criteria have a tolerance threshold δ, and declare

convergence when the criterion goes below the threshold. Here we can declare convergence

when max{T (x)} < δ, where δ = 10−4 would be a logical choice. This approach makes

intuitive sense because we stop our search when we predict that there is little potential for

noticeable improvement in the objective function.
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Figure 5.5: Updates from ten runs for the MC variability test study, m = 4.
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Figure 5.6: Distribution of T (x) for m = 4, displayed for the updates 1, 2, 3, 4, 5, 10, 15,

20, 25, 30 with change of scale at updates 10 and 25. Dashed line is max{T (x)}.

5.3 Comparison study

We here compare the three alternative statistics

T1(x) = EI(x)× p1(x) T2(x) = EI(x)× p1(x)
5 T3(x) = EI(x)× S(x)5

to our proposed statistic denoted by T4(x) = EI(x) × Sa(x)
5. Here T1(x) corresponds

to the original probability adjusted statistic of Schonlau et al. (1998), T2(x) is its powered

adjustment and T3(x) is the symmetric entropy version of our proposed statistic. We expect

the powered alternatives T2(x) and T3(x) to be more comparable to T4(x) due to their larger

emphasis on learning the hidden constraints.

We have run the sequential algorithm 100 times with 15 updates for the problem of

dimension m = 2, with different initial LH designs of size n0 = 10. The resulting average

value of fmin and average ratio of valid outputs for the four statistics are displayed in Figure

5.7, where the last 10 updates are enlarged in the middle plot. The final ratio of valid outputs

were 21.67%, 64.20%, 30.27%, 44.53%. Observe how T1(x) selects the fewest valid outputs,

and locates the minimum the slowest. Its powered adjustment T2(x) puts most emphasis

on selecting valid points as expected, and fmin decreases fast in the early updates, but then

16



slower as the selected inputs are likely well within the constrained region further away from

the boundary. The symmetric entropy statistic T3(x) selects quite few valid outputs as

expected, but fmin decreases quite well. Our proposed statistic T4(x) seems to hone in on

the minimum the best, and has a fairly high ratio of valid outputs.
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Figure 5.7: Average fmin and ratio of valid outputs for the first 15 updates over 100 runs.

True minimum as dashed line.

6. CASE STUDY: HYDRAULIC CAPTURE PROBLEM

We consider here sequential design for the hydraulic capture problem from the community

problems in Mayer et al. (2002). Up to four wells can be drilled to control a plume of

contaminated groundwater. The objective is to find the lowest installation and operation

cost configuration (location and pumping rates) of the wells while avoiding spread of the

contamination. It turns out that only a single well is necessary to contain the plume, and the

installation costs of additional wells dominate the cost function, so we focus on the single-well

version of the problem. Thus our input vector x contains the location coordinates (x1, x2)

and the pumping rate x3. The cost objective function is computed from the hydraulic head

necessary to maintain the specified pumping rate, where the relationship is highly nonlinear.

Thus the simulator needs to be run to evaluate the cost. The constraint combines restrictions

on the hydraulic head and the need to contain the plume. We expect the solution to be located

on the constraint boundary and hence use the statistic in Eqn (4.2) with α1 = 1 and α2 = 5.
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The physical setup determines bounds of 10 ≤ x1, x2 ≤ 990 on the coordinates and

−0.0064 ≤ x3 ≤ 0.0064 on the pumping rate, where negative and positive rates indicate ex-

traction and injection respectively. The total cost is computed by the deterministic simulator

MODFLOW (McDonald and Harbaugh, 1996), http://water.usgs.gov/ogw/modflow/, re-

turning the total cost as the output value if the constraints are met, and a constraint violation

indicator otherwise, a classic hidden constraints problem. Each simulation run in about 1.1s

on a 2.80 GHz CPU.

Initial experiments gave very low ratios (less than 2%) of valid outputs in the runs,

because the constraint boundary is extremely complex. Thus we focused our efforts on the

region with 235 ≤ x1 ≤ 270, 580 ≤ x2 ≤ 680, and −0.0064 ≤ x3 ≤ −0.0051. Updates from

an initial LH design of size n0 = 65 are displayed in Figure 6.1, where we have run 300 PL

updates, thus we run the simulator a total of 365 times. While most of the selected inputs

still returned invalid outputs, the ratio of valid outputs is 4.7%, a large improvement. The

minimum found over all runs had coordinates (x1, x2) = (259.65, 638.03) and extraction rate

x3 = −0.0053 with total cost 22952.78. Lee et al. (2011) found this same minimum, but

required several thousand simulator calls. The direction provided by asymmetric entropy

appears to significantly improve the efficiency of the search.
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Figure 6.1: Updates for the hydraulic capture problem. Darker points are the valid runs.

18



7. CONCLUSION

Finding an optimum along a constraint boundary is a difficult problem. In this paper, we

introduced an algorithm that uses statistical modeling for emulation of both the response

function and the classification function, and brings in a new use for an asymmetric entropy

measure. Asymmetry is the key for efficient exploration, because we need to focus our efforts

where the function can be successfully evaluated, rather than wasting computational effort

on unsuccessful runs.

Based on numerous experiments, we have fixed the entropy mode parameter w = 2/3 and

the weights α1 = 1 and α2 = 5. One could look further into the optimality of these choices,

including the possibility of allowing them to change dynamically during the algorithm. Future

research could explore an automated dynamical approach for determining these parameters.

The functions considered in this paper are deterministic, where standard EI is applied in

the optimization. An extension to noisy computer simulators should be investigated further,

for example with a modified EI in the fashion of Huang et al. (2006) or Picheny et al. (2013),

or by the approach of Gramacy and Lee (2011).

One potential extension would be to move beyond the standard assumption of stationarity

in the GP model, for example with a treed Gaussian process emulator (Gramacy and Lee,

2008). Our approach is clearly extensible in this way, although the computational efficiencies

of particle learning will no longer be available.

Another extension would be to improve optimization by use of a hybrid algorithm that

incorporates a local direct method running in parallel with the statistical model, along the

lines of Taddy et al. (2009) for unconstrained optimization. The statistical model guides both

understanding of the constraint boundary and global exploration to locate smaller regions of

interest, whereas the numerical direct method simultaneously explores more efficiently within
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these local regions.
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APPENDIX: PARTICLE LEARNING

Here we describe a particle learning approach for GPs (PLGP) in regression and binary clas-

sification problems, as introduced by Gramacy and Polson (2011) with R software available

(Gramacy, 2012). The main advantage of PLGP is that it updates online, whereas MCMC

needs to be restarted and reiterated every time a new data point is added, which would be

computationally burdensome in a sequential design or optimization setting.

For the regression problem described in Section 2, assume we have an initial set of corre-

lation matrices Pn = {K(h)
n }Nh=1 simulated from the posterior model given the data (Xn,yn)

and all other parameters. The superscript n is included here to keep track of the data dimen-

sion, i.e. the number of data points. This could be obtained by storing N sampled values

of K after burn-in from an MCMC algorithm. In the regression setting, for each particle h,

we set as point estimates of β̂
(h)
n and σ̂

(h)
n their posterior means, which only depend on K

(h)
n .

Hence Pn contains the sufficient information about all uncertainties given the data. When
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adding a new data point (xn+1, yn+1) to our design, the idea is to update the particles Pn

only to account for it, which will be approximated samples from the posterior distribution

p(K|yn+1). We proceed by the two-step update through resampling and propagation as de-

scribed in Gramacy and Polson (2011). First we resample the particles from a multinomial

pdf with weights vh ∝ p
(

yn+1|yn,K
(h)
n

)

, which is a Student-t predictive distribution. Next,

the propagation step updates the particles to account for the new data by

K
(h)
n+1 =







K
(h)
n k(h)(xn+1)

k(h)′(xn+1) K
(h)
n (xn+1,xn+1)






,

where k(h)(xn+1) is defined in Eqn (2.3). The new output yn+1 is accounted for through

β̂
(h)
n and σ̂

(h)
n . In practice, the predictive Student-t distribution is well approximated by a

Gaussian distribution, as the degrees of freedom are typically large enough, particularly as a

sequential algorithm progresses.

For the binary classification problem described in Section 3, given data (Xn, tn) all suf-

ficient information is contained in K, but we should also store the latent variables zn =

{z1, . . . , zn}. We thus let our initial particle set be {K(h)
n , [zn](h)}Nh=1 which can be sampled

by MCMC. When adding a new data point (xn+1, tn+1) to our design, we proceed by a

two-step update through resampling and propagation. In the resampling step, we compute

weights which depend on the latent variable zn+1:

vh ∝ p
(

tn+1 = 1
∣

∣[zn](h),K(h)
n

)

=

∫

p (tn+1 = 1|zn+1)× p
(

zn+1

∣

∣[zn](h),K(h)
n

)

dzn+1.

Here, p
(

zn+1

∣

∣

∣
[zn](h),K

(h)
n

)

is the Student-t predictive distribution. To approximate this

weight integral, we simulate S samples of zn+1 from its predictive distribution, next pass

the samples through the link likelihood function and then average. We thus resample the

indices with replacement from a multinomial pdf with these approximated weights, obtaining

new indices for the particles. According to Gramacy and Polson (2011), S = 100 should
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suffice. In the propagation step, we need to update the particles to account for the new data.

For each resampled particle h, we first sample z
(h)
n+1 from its predictive distribution and set

[zn+1](h) =
(

[zn](h), z
(h)
n+1

)

. Next, we update the latent variables in a MH-step as described in

Section 3. The correlation matrices are propagated and rejuvenated as described above for

the regression problem.

To avoid particle depletion in future resample steps, we choose to rejuvenate the particles

(Gramacy and Polson, 2011). We then resample the updated correlation matrix particles in

a MH-step from the posterior distribution, where we have to recompute all N correlation

matrices. This recomputation negates some of the traditional computational advantages of

PL over MCMC, but we still benefit from the online updating, eliminating the need for

burning-in MCMC after each new data point is collected.
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