Title
Environmental controls on the geochemistry of Globorotalia truncatulinoides in the Gulf of Mexico: Implications for paleoceanographic reconstructions

Permalink
https://escholarship.org/uc/item/43s6346d

Journal
Marine Micropaleontology, 142

ISSN
0377-8398

Authors
Reynolds, CE
Richey, JN
Fehrenbacher, JS
et al.

Publication Date
2018-06-01

DOI
10.1016/j.marmicro.2018.05.006

Peer reviewed
Environmental controls on the geochemistry of *Globorotalia truncatulinoides* in the Gulf of Mexico: Implications for paleoceanographic reconstructions

Caitlin E. Reynolds, Julie N. Richey, Jennifer S. Fehrenbacher, Brad E. Rosenheim, Howard J. Spero

1. Introduction

The most widely used sedimentary paleoceanographic proxies for sea-surface temperature (SST) in the subtropical Atlantic Ocean (e.g., *Globigerinoides ruber* Mg/Ca, TEX86 and U^13C) have been shown to reflect mean annual surface conditions in the northern Gulf of Mexico (nGoM) (Richey et al., 2007; Richey and Tierney, 2016). Whereas seasonal biases in proxy recorders can present problems for paleoclimate reconstructions (Schmidt et al., 2006), exploiting well-defined ecological differences (i.e., seasonal or depth habitat) between different proxy recorders can be used to better understand seasonality or water column structure changes in the paleoceanographic record. Previously published nGoM sediment trap time series data demonstrate that the asymbiotic, non-spinose bearing planktic foraminifer, *Globorotalia truncatulinoides*, is exported from the water column nearly exclusively in the winter (Spear et al., 2011; Poore et al., 2013; Reynolds and Richey, 2016). A well-constrained winter proxy (not just a winter-biased proxy) will help discern how changes in seasonality play into past climatic events in the nGoM, and provide insights into the oceanographic response to both forced and internal climate variability.

Globorotalia truncatulinoides has most commonly been interpreted as a deep dwelling foraminifer, and used as a proxy for tracking the seasonal and permanent thermocline in the subtropical ocean (Lohmann and Schweitzer, 1990; McKenna and Prell, 2004; Cléroux et al., 2007; Cléroux et al., 2009; Feldheier et al., 2015). Modern plankton tow and core-top studies have suggested geochemical gradients between *G. truncatulinoides* and intermediate to shallow dwelling planktic foraminifera can be used to reconstruct upper water column structure in the past (Steph et al., 2009; Wilke et al., 2009; Cléroux et al., 2008; Cléroux et al., 2013; Rebotim et al., 2016). Oxygen isotopes in *G. truncatulinoides* have been used to infer lateral density gradients at intermediate depths using core top transects across the Florida Straits (LeGrande et al., 2004), and to reconstruct upper ocean flow in downcore records in the Gulf Stream region (LeGrande and Lynch-Stieglitz, 2007). In the South China Sea and Okinawa Trough, *G. truncatulinoides* abundance has been used to track the upper ocean thermal structure over the past 1.5 Ma (Jian et al., 2000). The measured δ¹⁸O of down core records from the encrusted form of this species have also
been used to reconstruct the separation latitude of the Gulf Stream (Matsumoto and Lynch-Stieglitz, 2003).

Globorotalia truncatulinoides, a keeled non-spinose species of planktic foraminifera, has a cosmopolitan distribution in subtropical to tropical marine environments. As individuals sink into colder, denser waters they add a thick calcite crust which doubles the total mass of the test, but not the overall size of the test (Lohmann and Schweitzer, 1990). Constraint on the depth of encrustation would improve both the ability to track changes in the deep subsurface ocean and reconstruct water column structure over glacial-interglacial cycles (Feldmeijer et al., 2015), and provide estimations of the heat transport during these cycles in the global oceans (Mulitza et al., 1997).

Spatial distribution differences have been reported for the right coiling (dextral) and left coiling (sinistral) forms of *G. truncatulinoides*. The dextral form has been linked to warmer temperatures and a shallower thermocline (Feldmeijer et al., 2015) as well as nutrient-rich waters associated with gyres and coastal margins (Renaud and Schmidt, 2003; Ujiï et al., 2010; Billups et al., 2016). Kennett (1968) cited morphometric differences in *G. truncatulinoides*, with highly conical forms versus a more compressed form linked to average surface water temperatures. A lower ratio of width to height is associated with warmer tropical waters whereas the more compressed form, with a higher ratio of width to height, suggests colder subtropical temperatures. This is corroborated by isotopic studies showing that the highly conical morphotype is significantly more depleted in δ18O than the compressed morphotype (Healy-Williams et al., 1985; Williams et al., 1988).

Previously published observations of *G. truncatulinoides* from stratified plankton tows indicate a variable depth habitat in the tropical to sub-tropical North Atlantic Ocean. Fairbanks et al. (1980) found living *G. truncatulinoides* throughout the upper 200 m of the water column, with peak population between 125 and 175 m during a November MOCNESS tow in the western subtropical North Atlantic Ocean. They note that the oxygen isotopic composition of specimens from the upper 200 m of the water column indicate a bi-modal distribution, with one population in isotopic equilibrium with the surface mixed layer, and the other from 125 to 200 m. A spring MOCNESS plankton tow from the upper 100 m in the eastern equatorial Atlantic Ocean found living *G. truncatulinoides* only in 80–100 m water depth (Ravelo and Fairbanks, 1992), and a spring tow in the Caribbean found maximum abundance from 100 to 200 m (Schmucker and Schiebel, 2002). Rebotim et al. (2016) synthesized results from 43 plankton tows from the eastern North Atlantic spanning the annual cycle, and found that the average habitat depth of *G. truncatulinoides* shifts from ~30 m in winter to 250 m in the spring. Plankton tow data from the eastern subtropical South Atlantic Ocean indicate the presence of living *G. truncatulinoides* throughout the upper 400 m, with maximum shell concentrations below 300 m water depth (Loncaric et al., 2006).

Depth habitat of *G. truncatulinoides* has also been estimated by comparing foraminiferal δ18O with the predicted δ18O of calcite in equilibrium with seawater. For example, using this approach with sediment trap material in the Sargasso Sea, Anand et al. (2003) reported a depth habitat for *G. truncatulinoides* of 200–500 m. Cléroux et al. (2013) estimated depth habitat between 300 and 535 m using core-top measurements spanning the mid-Atlantic. In a network of core-top samples spanning the subtropical to sub-polar North Atlantic, Cléroux et al. (2007) determined that *G. truncatulinoides* inhabits the base of the seasonal thermocline, with a preference for water temperatures cooler than 16 °C. These results, which suggest that *G. truncatulinoides* is in isotopic equilibrium within or below the seasonal thermocline (~100–400 m), are consistent with studies spanning the Atlantic Basin (Mortyn and Charles, 2003; Loncaric et al., 2006; Regenberg et al., 2009; Steph et al., 2009; summarized in Table 1).

Table 1

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Collection Type</th>
<th>Depth (m)</th>
<th>δ18O equation used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cléroux et al. (2009)</td>
<td>Western Atlantic Ocean</td>
<td>cores</td>
<td>200–300</td>
<td></td>
</tr>
<tr>
<td>Cléroux et al. (2013)</td>
<td>mid-Atlantic</td>
<td>core top measurements</td>
<td>420 ± 115</td>
<td>Kim and O'Neil (1997)</td>
</tr>
<tr>
<td>Fairbanks et al. (1980)</td>
<td>subtropical North Atlantic</td>
<td>MOCNESS plankton tow</td>
<td>125–175</td>
<td></td>
</tr>
<tr>
<td>Mulitza et al. (1997)</td>
<td>Atlantic Ocean</td>
<td>sediment surfaces</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Rebotim et al. (2016)</td>
<td>eastern North Atlantic</td>
<td>plankton tow</td>
<td>30 (winter) to 250 (spring)</td>
<td>Bemis et al. (1998)</td>
</tr>
<tr>
<td>This study</td>
<td>northern Gulf of Mexico</td>
<td>Sediment Trap</td>
<td>66 ± 9 (NC)</td>
<td>see Table 2</td>
</tr>
<tr>
<td>Salmon et al. (2016)</td>
<td>Sargasso Sea</td>
<td>Sediment Trap</td>
<td>44 (NC)</td>
<td>O'Neil et al. (1969) and Shackleton (1974)</td>
</tr>
<tr>
<td>Steph et al. (2009)</td>
<td>Caribbean, West and East Atlantic</td>
<td>core tops</td>
<td>208 ± 50 to 424 ± 80</td>
<td>Shackleton (1974)</td>
</tr>
<tr>
<td>Spear et al. (2011)</td>
<td>northern Gulf of Mexico</td>
<td>Sediment Trap</td>
<td>120</td>
<td>Bemis et al. (1998)</td>
</tr>
</tbody>
</table>

Note: The δ18O equation used includes: O'Neil et al. (1969), Shackleton (1974), Bemis et al. (1998), Kim and O'Neil (1997), Shackleton (1974), and see Table 2.
Globorotalia truncatulinoides is assumed to be a deep, subsurface dweller because studies inferring a depth habitat from shell geochemistry do so without discriminating between encrusted and non-encrusted G. truncatulinoides. Spear et al. (2011) suggested that G. truncatulinoides encrusted (C) and non-encrusted (NC) forms occupy distinct depth habitats in the nGoM and argued that NC G. truncatulinoides in the nGoM calcifies no deeper than 120 m (the base of the winter mixed layer). Salmon et al. (2016) also separated the two forms and found a similar shallow (~44 m) depth habitat for NC in winter in the Sargasso Sea. Two additional studies used electron microprobe analysis to compare the Mg/Ca of the lamellar (early ontogenic) calcite versus the secondary crust; both concluded that the lamellar calcite formed in the mixed layer, above the thermocline (Duckworth, 1977; McKenna and Prell, 2004).

We demonstrate in this study that due to the complex life history of G. truncatulinoides, the C and NC forms have geochemical signals that reflect distinctly different calcification depths, with the latter representing winter surface mixed layer conditions, and the former representing deep subsurface conditions. By not discriminating between the two forms in down core studies, geochemical changes recorded by G. truncatulinoides may reflect changes in the relative proportion of the surface and deep-dwelling forms, rather than paleoceanographic changes in upper ocean hydrography.

2. Proxy approach

The relatively low abundance of NC G. truncatulinoides specimens in both sediment trap and down core samples in the nGoM precludes solution-based Mg/Ca analysis. Therefore, we test the efficacy of using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on individual foraminiferal chambers to approximate the mean Mg/Ca of the whole test. LA-ICP-MS has become a powerful tool to investigate the heterogeneity in trace elements within foraminiferal tests (e.g., Eggins et al., 2003). This high precision elemental analysis allows many discrete measurements to be taken in a continuous profile through a chamber wall, providing insights into the calcification process that are obscured by solution-based bulk shell analyses. LA-ICP-MS has been used to analyze non-spinose planktic foraminiferal species such as Neogloboquadrina dutertrei, Globorotalia scultula, and Pseudarca obliquiloculata to investigate differences between the trace metal composition of lamellar calcite and secondary crust (e.g., Jonkers et al., 2012; Steinhardt et al., 2015). Other studies have used LA-ICP-MS to analyze sediment trap samples to explore relationships between the foraminiferal geochemistry and water column hydrography (Gibson et al., 2016), and to identify and avoid potential contamination, diageneis, and dissolution (Vetter et al., 2013). Recently, Vetter et al. (2017) highlighted the potential for paired δ¹⁸O and LA-ICP-MS (Mg/Ca and Ba/Ca) analysis on individual foraminifera shells in a study that reconstructed deglacial Mississippi River meltwater geochemistry.

Here we present paired isotopic (δ¹³C and δ¹⁸O) and Mg/Ca data obtained from individual Globorotalia truncatulinoides specimens from a weekly-resolved sediment trap time series in the nGoM. Using this approach, we are able to take a detailed investigation of the geochemical differences between encrusted and non-encrusted forms. We use this information to (1) validate the Mg/Ca-calcification temperature relationship for G. truncatulinoides, (2) demonstrate that the non-encrusted form calcifies in the surface mixed layer, whereas the crust forms well below the seasonal thermocline, and (3) demonstrate that LA-ICP-MS analyses of single foraminifera can be used to yield comparable elemental ratios to that obtained from solution-based analyses.

3. Oceanographic setting

The GoM is a semi-enclosed basin surrounded by the Gulf Coast of the United States, Mexico, and Cuba (Fig. 1). Climatic sea-surface temperatures (SST) at the sediment trap site (27.5° N and 90.3° W) range from 20.7 ± 0.6 degrees Celsius (°C) in winter to 30.0 ± 0.3° C in summer (HadISST 1 × 1 gridded data 1870–2013). The winter mean temperature (JFM) from the HadISST gridded data set for the sampling period in this study (2010–2014) is 20.6 ± 1.1°C (Rayner et al., 2003). Sea-surface salinity (SSS) ranges from a climatic monthly winter maximum of 36.5 practical salinity units (psu) to a summer minimum of 34.5 psu (World Ocean Atlas, 2009, Antonov et al., 2010), although sporadic low salinity events are observed at the sediment trap site that result from interaction with Mississippi River discharge and/or entrainment of lower salinity coastal waters in mesoscale eddies (Walker et al., 2011 and Huang et al., 2013).

The GoM is connected to the Caribbean and tropical North Atlantic by the Loop Current. The Loop Current is a surface current that enters the GoM from the Caribbean Sea between Cuba and the Yucatan Peninsula and typically loops to the east and south before exiting through the Straits of Florida (Vukovich, 1988). Portions of the Loop Current often break off and form anticyclonic or warm-core eddies that propagate northward and westward (Poore et al., 2013), impacting the sediment trap site. The warm-core eddies are the fundamental mechanism for incursion of warm Caribbean waters over our site, and satellite altimetry has been used to discern a periodicity of approximately 6–10 months for these eddy events (Dukhovskoy et al., 2015). Although SSS variability at the sediment trap site is dominated by the seasonal cycle, mesoscale eddies associated with the loop current eddy shedding process may be responsible for short-term (sub-annual) anomalies.

4. Materials and methods

4.1. Foraminifera collection and cleaning

A McLane PARFLUX Mark 78 automated sediment trap was deployed in January 2008 in 1150 m of water in the nGoM (Figs. 1, 27.5° N and 90.3° W). The trap was positioned in the water column at a depth of 700 m on the mooring cable to enable the collection of deeper dwelling species of planktic foraminifera. The trap was equipped with...
21 collection cups mounted on a rotating plate, programmed to rotate every 7 to 14 days. Details of the sediment trap sampling can be found in Reynolds and Richey (2016).

Once collected, one quarter split of each cup was wet sieved over a 150\(\mu\)m sieve and wet picked for all foraminifera and identified to species. One hundred and thirty-four \textit{G. truncatulinoides} specimens were picked based on availability from January 2010 through March 2014 (40 encrusted specimens, collected January to April, and 94 non-encrusted specimens, collected January to December). The most common size fraction for NC individuals is 300–425\(\mu\)m in JFM (Fig. S1, Supplementary materials). Three of the 134 individuals were sinistral (left-coiling) whereas the remaining 131 were dextral (right-coiling), the most common morphotype in the GoM (Billups et al., 2016). Whole shell \textit{G. truncatulinoides} were cleaned according to modified procedures for laser ablation (Vetter et al., 2013; Fehrenbacher et al., 2015). Samples were cleaned by ultrasonication in methanol followed by triple-rinsing in Milli-Q water (18.2 M\(\Omega\)cm). Shells were then oxidatively cleaned at 60 °C for 30 min in a buffered hydrogen peroxide solution (1:1 mix of 30% hydrogen peroxide and 0.1 N sodium hydroxide) to remove remnant organic matter. Finally, the shells were again triple rinsed in Milli-Q water. Once dry, each individual’s length was measured across the diameter of the umbilical side, from the tip of the final chamber to the opposite side (ranging 295–738\(\mu\)m) and weighed (4.5–94.5\(\mu\)g) on a microbalance. 1\(\sigma\) error on length measurements (± 16\(\mu\)m) and weight measurements (± 0.6\(\mu\)g) are based on repeated measurements by separate analysts. Because there is a gradient between the completely encrusted and non-encrusted forms of \textit{G. truncatulinoides} (Fig. 2), visual discrimination between the two forms can be somewhat

Fig. 2. Scanning electron microscope (SEM) images of encrusted \textit{Globorotalia truncatulinoides} (A–D) and the non-encrusted form (E–H). Panels D and H show differences in encrustation near the aperture.
subjective under the binocular microscope. Pustules, which may appear like early encrustation, are present on every individual, even on juvenile forms (150 μm). Hemleben (1975) pointed out that these features are present on other Globorotaliids (e.g., G. menardii and G. inflata), and are larger/more concentrated around the keel and the aperture of fossil specimens. He postulates that they serve as attachment points for the pseudopodia, which would imply that they are independent of a crust that forms at a later ontogenetic stage. Using scanning electron microscope (SEM) imaging is more definitive. The length-weight relationship (Fig. 3) shows that the morphometric differences can be used to distinguish between C and NC G. truncatulinoides when visual distinction is ambiguous. The width-to-height ratios were 1.26 ± 0.14 and 1.29 ± 0.09 for NC and C, respectively. These ratios put the GoM G. truncatulinoides on the most highly conical end of the spectrum, identified by Kennett (1968) as tropical to northern sub-tropical morphotypes, and suggest that both the C and NC are the same morphotype in the nGoM, varying only in degree of encrustation.

4.2. Foraminifera laser ablation techniques

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was conducted at The University of California, Davis Stable Isotope Laboratory, using Photon Machines 193 nm ArF UV excimer laser with an ANU HelEx dual-volume laser ablation cell coupled to an Agilent 7700× quadrupole-ICP-MS (Table S1, supplementary materials). G. truncatulinoides specimens were placed on double sided carbon tape spiral side up to ensure a horizontal sampling surface for each chamber (Fig. 4, inset). Laser spot size of 44 × 44 μm in diameter was used with a repetition rate of 6 Hz (non-encrusted forms) and 8 Hz (encrusted forms). Due to the thickness of the calcite in the encrusted form, a higher repetition rate was needed to ablate through the shell. For the smallest foraminifera, the spot size was decreased to 30 × 30 μm to ensure ablation within a single chamber. Depth profiles were obtained on each chamber (F through up to F7). If chambers were large enough, up to 3 repeat spot analyses were obtained to assess reproducibility. Masses measured were 24Mg, 25Mg, 27Al, 44Ca, 55Mn, 88Sr, 89Y, and 138Ba. SRM NIST 610, 612, and 614 glass standards were run before and after each batch of samples as an external standard. An Orbulina universa shell, which is demonstrated to have highly reproducible trace element profiles throughout, was analyzed before and after each run as an internal working standard (7.0 ± 0.7 mmol/mol Mg/Ca, 2σ, Fehrenbacher et al., 2015). Outliers in the Mg/Ca profiles that were greater than ±6 standard deviations from a 3-point rolling mean were removed from raw LA-ICP-MS signals, then data were reduced using Iolite Software (Paton et al., 2011).

4.3. Determining a whole shell Mg/Ca value from LA-ICP-MS analyses

Using an inductively coupled plasma optical emission spectrometer (ICP-OES), solution-based Mg/Ca analysis requires ~200 μg of calcite
R4, R3, R2, R1 and R) represent the adult ontogenetic stage in Caromel et al., 2016, and every foraminifer had at least the final three chambers (F, F1, and F2) represent the adult ontogenetic stage in G. truncatulinoides (Caromel et al., 2016), and every foraminifer had at least the final three chambers (F, F1, and F2) analyzed. For a subset of foraminifera, we ablated back to F7. We determined that the weighted mean of the final three chambers can be used to approximate the mean Mg/Ca of chambers F–F7 within 0.2 mmol/mol. We use 0.2 mmol/mol as a benchmark for the acceptable level of uncertainty, as it is the average intra-sample standard deviation from our solution-based Mg/Ca analyses (Fig. S2, Supplementary materials).

There is considerable Mg/Ca heterogeneity both within a single chamber wall and between chambers in an individual foraminifer. For example, Mg/Ca varies between 1.4 and 8.1 mmol/mol for all profiles measured on an individual G. truncatulinoides collected in January of 2010 (Fig. 4). One option to approximate the whole shell Mg/Ca is to simply take the mean of all Mg/Ca determinations, which is 3.09 mmol/mol for this shell. Instead, we account for the relative contribution of each chamber to the overall test composition by weighting the chambers according to ablation time, which is proportional to calcite thickness. For this individual the weighted mean (2.80 mmol/mol) is lower than the unweighted mean (3.09 mmol/mol), which is equivalent to a 1.1 °C difference in the resulting temperature estimate. Another example of weighting Mg/Ca for greater accuracy for all February NC individuals is shown in Fig. S3 (Supplementary materials).

To order to estimate uncertainty on the weighted Mg/Ca, we generated a combined error term (Root Mean Square, RMS) based on 1) analytical error (SD1 = 0.35 mmol/mol, based on 1σ of replicate measurements of O. universa internal working standard), 2) intra-sample variability (SD2 = 0.81 mmol/mol based on nine individual NC G. truncatulinoides specimens from the same sediment trap samples), and 3) uncertainty in analytical technique (SD3 = 0.30 or 0.34 mmol/mol 1σ between solution-based and laser ablation-based Mg/Ca for NC and C, respectively) (Eq. (1)). Using this estimate of total Mg/Ca uncertainty the RMS error on weighted Mg/Ca is 0.93 mmol/mol and 0.95 mmol/mol, for NC and C respectively.

\[\text{RMS} = \sqrt{(SD1)^2 + (SD2)^2 + (SD3)^2} \]

(1)

5. Results and discussion

5.1. Globorotalia truncatulinoides flux in the nGoM

The six-year (2008–2014) sediment trap time series of G. truncatulinoides flux in the nGoM displays a clear seasonality, with 92% of annual flux (tests m$^{-2}$ day$^{-1}$) occurring in the winter months of January, February, and March (Fig. 5). Weekly JFM flux, for both encrusted and non-encrusted forms, ranges from 3 to 932 tests m$^{-2}$ day$^{-1}$, with a mean flux of 130 tests m$^{-2}$ day$^{-1}$ whereas the remaining months (April–December) have weekly fluxes ranging 0 to 85 tests m$^{-2}$ day$^{-1}$, with a mean flux of 4 tests m$^{-2}$ day$^{-1}$. Total planktic foraminiferal assemblage data for the nGoM sediment trap can be found in Poore et al. (2013) and Reynolds and Richey (2016).

The encrusted and non-encrusted forms of G. truncatulinoides have not been differentiated for the majority of the 2008–2014 sediment trap faunal analysis. However, for 2011 we counted the two forms separately, and plot the relative percentage of C and NC for each month. The data show the encrusted form totaling at least 61% of the G. truncatulinoides population for each month and 100% of the population in the low-flux months of July, August, October and November (Fig. 5). The absence of the non-encrusted form in the non-winter months supports the hypothesized annual reproduction of G. truncatulinoides, however, the mechanism is not clear.

The literature suggest that encrusted individuals return to the surface from below the thermocline to release gametes (Hemleben et al., 1985; Deuser and Ross, 1989; Schiebel and Hemleben, 2005). This is unlikely, given the absence of significant upwelling and the fact that the abundance of encrusted individuals approaches zero in the non-winter months as well. With the exception of G. truncatulinoides, ten of the most common foraminiferal species in the nGoM exhibit lunar periodicity in their shell flux, suggesting synchronization between reproduction and lunar phase (Jonkers et al., 2015). This further suggests that the annual reproductive strategy of G. truncatulinoides is unique in

![G. truncatulinoides flux (tests m$^{-2}$ day$^{-1}$) from all sediment trap samples 2008–2014. Red bars indicate gaps in sampling and missing sample cups from the trap. Inset panel is the relative percentage of non-encrusted versus encrusted G. truncatulinoides for each month in 2011. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image_url)
this environment. It is possible that *G. truncatulinoides* is being transported from the Caribbean via the Loop Current. However, Loop Current incursion into the nGoM peaks in late summer (Lindo-Atichati et al., 2013), which is inconsistent with the winter flux spike. This is also an unlikely explanation given that other parts of the North Atlantic experience similar winter weighted seasonal flux (Tolderlund and Be, 1971). Another possibility is that the residual population during the non-winter months is sufficient to support a flux increase of 2 orders of magnitude in response to an environmental stimulus, like temperature.

5.2. *Globorotalia truncatulinoides* encrustation

All *G. truncatulinoides*, both C and NC, start their life cycle in the upper water column as non-encrusted individuals. Lohmann (1995) states secondary calcite is added only at depth to the fully-formed adult whereas the lamellar calcification occurs near the surface during growth and chamber formation. If we assume that the lamellar calcite is formed within the surface mixed layer, and that encrustation occurs after the final chamber is formed, we can use the length-weight relationships determined for C and NC *G. truncatulinoides* to estimate the relative contribution of mixed layer calcite to an encrusted specimen. Over the typical size range of individuals found in nGoM sediments (400–700 μm), we estimate that 68–71% of the calcite is coming from the secondary crust, with lamellar calcite secreted in the mixed layer accounting for the other 29–32%. We calculated the difference between predicted C and NC weight at lengths of 400 and 700 μm using the ln (length) versus weight equations from Fig. 3. For example, based on our length-weight regressions for C and NC, an encrusted specimen at a length of 400 μm weighs 123 ± 12 μg and a non-encrusted specimen of the same length weighs 39 ± 14 μg, implying 32% of an average 400 μm encrusted individual is comprised of lamellar calcite. We used a second independent method to calculate the relative percentage of lamellar versus secondary calcite in encrusted individuals; we identified the secondary crust in laser ablation profiles and compared its ablation time to that of the lamellar calcite on the inner part of the shell. The crust can be identified in laser ablation profiles because it is homogenous and much lower in Mg/Ca and Ba/Ca than the lamellar calcite (Fig. S4, Supplementary materials). The secondary crust accounts for 71% (± 10) % of the total shell, on average, validating our estimate using length/weight relationships. LeGrande et al. (2004) estimated that 44% of surface calcification is incorporated into the total shell. Sadekov et al. (2005) concluded that the outer crust accounts for 40% of the chamber wall thickness. If we assume 29% of the calcite of an encrusted specimen originates in the winter mixed layer, then δ18Oc of encrusted specimens underestimates the depth at which the crust is added.

For this reason, we correct δ18O, δ13C, and Mg/Ca measurements on encrusted *G. truncatulinoides* to remove the contribution of lamellar calcite. This allows for more accurate estimates of water column conditions during encrustation. For δ18O and δ13C we use the mean isotopic values of the entire NC dataset (−0.16 ± 0.32‰ and −0.34 ± 0.24‰, respectively) as the lamellar calcite end-member values. The percent secondary crust was determined for each individual foraminifer via ablation time, then a simple mixing model between the measured isotopes on encrusted individuals and the assumed contribution from lamellar calcite was used to calculate the isotopic composition of the crust. To correct for the contribution of lamellar calcite to Mg/Ca of C individuals, the homogenous zone (crust) Mg/Ca value was determined for each chamber and then a weighted average “crust” Mg/Ca was derived for every encrusted individual. For the remainder of the paper the δ18O, δ13C, and Mg/Ca values we give for encrusted individuals will be corrected for the contribution of mixed layer calcite.

5.3. Isotopic composition of *G. truncatulinoides* in the nGoM

Stable carbon and oxygen isotopic analyses were performed on individual foraminifer tests, after they were analyzed via LA-ICP-MS. Although flux outside of JFM is low, effort was made to sample individuals from all months to determine whether the isotopic composition of *G. truncatulinoides* varies with the annual cycle in SST and SSS. The δ18O of *G. truncatulinoides* is not significantly correlated with the seasonal cycle in monthly SST in the nGoM. In fact, the lowest (warmest) monthly median δ18O values in *G. truncatulinoides* occur in the coldest months (December–January). The δ18O ranges from −0.66‰ to −0.24‰ for 7 individuals in a single sample from one week in February 2013. This intra-sample range in δ18O variability represents 2/3 of the annual range in monthly median δ18O values. The flux-weighted mean δ18Oc for NC *G. truncatulinoides* is −0.32 (± 0.07)‰, with an overall range of 2.02‰ (−1.13‰ to 0.89‰). The flux-weighted mean δ13C of NC *G. truncatulinoides* is 1.30 (± 0.27)‰, with a range of 1.56‰ (0.37‰ to 1.48‰) (Fig. 6) (Fig. S5, Supplementary materials).

There is no apparent seasonal cycle in the δ13C of *G. truncatulinoides*.
The $\delta^{13}C$ ranges from -0.49% to -0.22% for 7 individuals in a single sample from 1 week in February 2013. This intra-sample range in $\delta^{13}C$ variability is nearly double the range in monthly median $\delta^{13}C$ values. The flux-weighted mean $\delta^{13}C$, for NC G. truncatulinoides is -0.42 (± 0.07)‰, with an overall range of 1.14% (-0.76% to $0.38\%)$. The flux-weighted mean $\delta^{13}C$, for C G. truncatulinoides is 0.96 (± 0.20)‰, with a range of 1.39% (0.49% to $1.88\%)$ (Fig. 6) (Fig. S5, Supplementary materials).

5.4. Determining depth habitat

Globorotalia truncatulinoides is typically treated as a deep-dwelling planktic foraminifer for the purposes of downcore paleoceanographic studies (Matsumoto and Lynch-Stieglitz, 2003; Cléroux et al., 2009; Schmidt et al., 2003), with inferred depth habitat ranging from 100 to 800 m in the Atlantic Ocean. Direct observations of living specimens in plankton tow samples are sporadic, and thus conclusions regarding their depth habitat are based primarily on geochemical data. We demonstrate in this study that C and NC forms of *G. truncatulinoides* in the nGoM occupy distinct depth habitats, with the former reflecting deep subsurface waters, and the latter reflecting the surface mixed layer. It is important to remember that we assume 29% of the calcite of an encrusted specimen originated in the surface mixed layer.

We determine the calcification depths for both C and NC *G. truncatulinoides* in the nGoM using individual foraminiferal analyses (IFA) of $\delta^{18}O$ by comparing the IFA $\delta^{18}O$ with monthly vertical profiles of predicted $\delta^{18}O$ in equilibrium with seawater (Fig. 7 and Fig. S6, Supplementary materials). In order to do this, we use a suite of published $\delta^{18}O$ paleotemperature equations to predict the foraminiferal $\delta^{18}O$ at different depths in the water column (Table 2). Vertical profiles of temperature and salinity from 18 CTD casts taken between 2008 and 2014 during sediment trap deployment/recovery cruises are available for each month, except December. For the month of December, we used the climatic mean profile from the Levitus et al. (2009) dataset (Antonov et al., 2010 and Locarnini et al., 2010), which is within 1σ standard deviation of our CTD measurements for all other months. For months where multiple CTD casts were taken throughout the 9-year study period, temperature and salinity were averaged. Salinity was converted to $\delta^{18}O$ of seawater ($\delta^{18}O_{sw}$) using the equation, $\delta^{18}O_{sw} = (0.59 (\pm 0.01) \times S) - 20.27 (\pm 0.30)$ ($r^2 = 0.76, p < .000001$), from paired measurements of salinity and $\delta^{18}O_{sw}$ at the nGoM sediment trap site (Fig. S7a and S7b, Supplementary materials). Our results indicate that the NC form calcifies primarily within the surface mixed layer in JFM, during which 92% of *G. truncatulinoides* flux occurs. The flux-weighted mean depth determined for all NC *G. truncatulinoides* exported to the sediment is $66 (\pm 9)$ meters, within the winter surface mixed layer. During the months of April through December, which only accounts for 8% of the NC annual flux, individuals have $\delta^{18}O$ values that indicate a slightly deeper calcification depth, within the seasonal thermocline (50-170 m). The $\delta^{18}O$ of the C form indicates the crust is added at a much deeper depth in the water column, with a flux-weighted average depth of $379 (\pm 76)$ meters (Fig. 8). Without accounting for the contribution of mixed layer calcite, average flux weighted depth for an encrusted individual is only
250 ± 52 m, 129 m shallower. Corresponding depth ranges with CTD temperature is shown in Fig. S8, Supplementary materials. The total range of inferred calcification depths for individual C. G. truncatulinoides is 170–700 m, indicating that they are adding their calcite crust within or below the seasonal thermocline.

5.5. Mg/Ca-SST relationship

Using LA-ICP-MS to approximate Mg/Ca of an entire foraminiferal test presents the challenge of inferring a whole test Mg/Ca value from necessarily finite subsampling of a heterogeneous test. We demonstrate that values of Mg/Ca representative of the whole shell can be calculated from the weighted mean of LA-ICP-MS data for the final three chambers of an individual foraminifer (see Section 3.3 and Fig. S2, Supplementary materials). We also demonstrate that the LA-ICP-MS Mg/Ca values based on individual NC foraminifera are within 1σ of solution-based Mg/Ca within the sediment trap sample set (Fig. 11). Therefore, we suggest that using the weighted mean Mg/Ca based on LA-ICP-MS of at least the final three chambers of G. truncatulinoides is an appropriate representation of whole foraminifer Mg/Ca in this section.

Existing Mg/Ca-temperature relationships for G. truncatulinoides are based on a sediment trap data set from the Sargasso Sea (Anand et al., 2003), and core-top studies from the Indian Ocean (McKenna and Prell, 2004), the mid-Atlantic Ocean (Cléroux et al., 2013), and the Caribbean and Tropical Atlantic Ocean (Regenberg et al., 2009). Only McKenna and Prell, 2004 analyzed encrusted and non-encrusted individuals separately, whereas other studies did not discriminate.

We generate a new Mg/Ca-temperature equation for G. truncatulinoides using 123 paired Mg/Ca-δ18O IFA from a 4-year sediment trap time series. We do so by regressing weighted mean Mg/Ca (with Mg/Ca of encrusted specimens corrected for contribution of lamellar calcite) against δ18O calcification temperature for the entire data set over a temperature range of 6–27 °C. We use the Spero et al. (2003) G. meandrii equation to derive δ18O calcification temperature and assume distinct δ18Osw for C and NC at their respective mean depth habitats of 400 m and 75 m (0.46 ± 0.22 for C and 1.16 ± 0.09 for NC).

Fig. 8. Monthly depth habitats of non-encrusted (red) and encrusted (blue) G. truncatulinoides based on calculated and measured δ18Oc. The triangle markers indicate the average depth for each month. The blue line represents the average thermocline depth based on our CTD profiles in the nGoM. Also plotted below (black bars) is the percentage of flux of both NC and C G. truncatulinoides in the sediment trap. Note there were no C measurements in May, June, July, August, October, and December and no NC measurements in November. The flux weighted average depth for NC is 66 ± 9 m and 379 ± 76 m for the C form. Note the C depths in January, April, and September were truncated at 700 m to align with the depth of our sediment trap. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Weighted Mg/Ca (mmol/mol) vs. calcification temperature (°C) plot of encrusted (black triangles) and non-encrusted (black circles) G. truncatulinoides. Encrusted Mg/Ca in this figure has been corrected for the contribution of lamellar calcite. All reported temperature values were calculated using δ18O calcification temperature equation from Spero et al. (2003), and assuming a δ18Osw of 1.16 ± 0.09 for NC and 0.46 ± 0.22 for C. Mg/Ca temperature equations plotted are: McKenna and Prell (2004) exponential equation (green), Anand et al. (2003) G. truncatulinoides (yellow), Anand et al. (2003) ten planktonic species (black), Cléroux et al. (2013) (dark blue), Regenberg et al. (2009) +0.2 (light blue), Regenberg et al. (2009) ±0.0 (pink), Regenberg et al. (2009)–0.3 (orange), and our own calculated exponential equation (grey). Mg/Ca errors are ±0.95 and ±0.93 mmol/mol, for C and NC respectively RMS errors detailed in Section 5.5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
There is evidence from culture studies (Davis et al., 2017) and sediment trap studies (Jonkers et al., 2016) that Mg/Ca-SST estimates are given. However, truncatulinoides and we use it to calculate temperature from Mg/Ca for encrusted and to the limited calcification temperature ranges for C and NC. An alternative would be to make two separate equations, for C and NC, but this did not yield significant exponential or linear relationships between Mg/Ca and calcification temperature for this data set (r² = 0.007 (NC) and 0.0059 (C) for exponential equations). This is due, in part, to large scatter in the single foraminifera Mg/Ca data and to the limited calcification temperature ranges for C and NC. Because NC G. truncatulinoides is of far greater interest than C for paleoceanographic reconstruction of winter mixed layer temperatures, we focus now on the best Mg/Ca-temperature relationship for NC. We compared the Mg/Ca residuals between this data set and the three best fit exponential equations on our data: Anand et al., 2003, based on ten planktonic species (hereafter, Anand-All), McKenna and Prell (2004), and Eq. (2) (this study) (Fig. S9, Supplementary materials). Whereas Eq. (2) has the lowest residuals overall, the Anand-All (Mg/Ca (mmol/mol) = 0.38 (± 0.02) e(0.09 (± 0.003)°C)) has equally low residuals for the non-encrusted data set (95% of Mg/Ca determinations for NC fall within 2σ of predicted Mg/Ca using both equations). In terms of mean flux-weighted Mg/Ca-SST estimates for the sediment trap time series, Eq. (2) and Anand-All return nearly identical values (21.5 ± 3.4 °C and 21.3 ± 1.5 °C from January, February, and March (JFM) at the NC depth range 0–150 m. The dark red shaded area is average JFM temperature, 22.2 ± 4.0 °C from 66 m (the average flux weighted depth for NC G. truncatulinoides). The light blue shaded area is the average JFM temperature, 10.3 ± 3.0 °C from January, February, and March (JFM) at the C depth range 170–700 m. The dark blue shaded area is average JFM temperature, 10.4 ± 0.1 °C at 379 m (the average flux weighted depth for C. G. truncatulinoides). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3

<table>
<thead>
<tr>
<th>Reference:</th>
<th>Species:</th>
<th>Mg/Ca (mmol/mol) =</th>
<th>Temperature Range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anand et al. (2003)</td>
<td>ten planktonic species</td>
<td>0.38 (± 0.02) e(0.09 (± 0.003)°C)</td>
<td>13–28</td>
</tr>
<tr>
<td>Anand et al. (2003)</td>
<td>G. truncatulinoides</td>
<td>0.359 (± 0.008) e(0.09 (± 0.003)°C)</td>
<td>16–18</td>
</tr>
<tr>
<td>Cléroux et al. (2013)</td>
<td>G. truncatulinoides (d.)</td>
<td>0.938 (± 0.03) e(0.066 (± 0.007)°C)</td>
<td>8–16</td>
</tr>
<tr>
<td>Regenberg et al. (2009)</td>
<td>G. truncatulinoides (d.) + 0.2 disequilibrium (‰)</td>
<td>1.69 (± 0.11) e(0.020 (± 0.008)°C)</td>
<td>9–15</td>
</tr>
<tr>
<td>Regenberg et al. (2009)</td>
<td>G. truncatulinoides (d.) ± 0.0 disequilibrium (‰)</td>
<td>1.32 (± 0.12) e(0.055 (± 0.009)°C)</td>
<td>9–15</td>
</tr>
<tr>
<td>Regenberg et al. (2009)</td>
<td>G. truncatulinoides (d.) -0.3 disequilibrium (‰)</td>
<td>1.84 (± 0.09) e(0.024 (± 0.007)°C)</td>
<td>9–15</td>
</tr>
<tr>
<td>Eq. (2), this study</td>
<td>G. truncatulinoides</td>
<td>0.818 (± 0.01) e(0.054 (± 0.006)°C)</td>
<td>6–27</td>
</tr>
</tbody>
</table>

![Fig. 10. Mg/Ca-temperature (°C) reconstructed using Eq. (2), this study, for encrusted (closed blue triangles) and Anand et al., 2003 (ten planktonic species) for non-encrusted (closed red circles). The open blue triangles indicate Mg/Ca-SST that included lamellar calcite also calculated with Eq.(2), this study. The grey dotted line is monthly averaged HadISST 1 × 1 gridded data at 27.5° N 90.3° W. Error bars represent the pooled average 95% confidence interval calculated using PSU Solver (Thirumalai et al., 2016). Error bar values are NC (+1.32 and –1.19), C (+1.32 and –1.19), and C including lamellar calcite (+2.29 and –2.30). The light red shaded area is the average CTD temperature 21.3 ± 1.5 °C from January, February, and March (JFM) at the NC depth range 0–150 m. The dark red shaded area is average JFM temperature, 22.2 ± 4.0 °C from 66 m (the average flux weighted depth for NC G. truncatulinoides). The light blue shaded area is the average CTD temperature 10.3 ± 3.0 °C from January, February, and March (JFM) at the C depth range 170–700 m. The dark blue shaded area is average JFM temperature, 10.4 ± 0.1 °C at 379 m (the average flux weighted depth for C. G. truncatulinoides). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image-url)

The new exponential Mg/Ca-temperature relationship (Eq. 1, r² = 0.66, p < .0001) for this study, with all published relationships shown for reference (Table 3).

\[
\text{Mg/Ca (mmol/mol) = 0.818 (± 0.01) e}^{0.043 (± 0.005)°C}
\]

Eq. (2) is, by far, the best fit for the encrusted data from this study, and we use it to calculate temperature from Mg/Ca for encrusted G. truncatulinoides wherever Mg/Ca-SST estimates are given. However, there is evidence from culture studies (Davis et al., 2017) and sediment trap studies (Jonkers et al., 2016) that in other non-spinose foraminifera the Mg/Ca of the crust is lower than that of lamellar calcite formed at the same temperature. Therefore, it may not be appropriate to formulate a single equation based on both NC and C G. truncatulinoides. An alternative would be to make two separate equations, for C and NC, but this did not yield significant exponential or linear relationships between Mg/Ca and calcification temperature for this dataset (r² = 0.007 (NC) and 0.0059 (C) for exponential equations). This is due, in part, to large scatter in the single foraminifera Mg/Ca data and to the limited calcification temperature ranges for C and NC.
but additional proxies in the same sediment core (TEX86-SST and Mg/Ca-SST G. ruber) also show larger trends (1.1 °C and 1.4 °C, respectively) than HadISST over the past century (Richey et al., 2011; Richey and Tierney, 2016). Winter SSTS, which G. truncatulinoides is reflecting, have much larger (by a factor of 3) inter-annual variance than summer or mean annual SST in the nGoM. Given the unrealistically large down core temperature variations implied by Eq. (2), we recommend using Anand-All for NC Mg/Ca-paleotemperature reconstructions. Throughout the remainder of this paper, Anand-All is used to convert NC Mg/Ca to temperature.

The flux-weighted mean Mg/Ca-derived temperature exported from the water column over the 4-year sampling interval for NC individuals is 21.3 ± 3.4 °C (using Anand-All), and for encrusted individuals is 8.8 ± 1.6 °C (using Eq. (2)). These estimates are within 1σ of the observed flux-weighted temperatures for their respective depth ranges: 0–150 m mean temperature (21.3 ± 3.3 °C) and 170–700 m mean temperature (10.6 ± 1.6 °C) (Fig. 10). Some studies have concluded that temperatures dropping below 16 °C triggers crust formation (Hemleben et al., 1985; Cléroux et al., 2007; Regenberg et al., 2009), which is consistent with our mean encrusted calcification temperature of 8.8 °C (± 1.6 °C). We also do not observe Mg/Ca-temperature estimate below 16 °C for any NC individual in this study. Despite the excellent agreement between the mean Mg/Ca-derived temperature and the observed winter mixed layer temperature in the nGoM, NC G. truncatulinoides Mg/Ca does not vary with the annual cycle. This could simply result from under sampling the extremely low-flux summer months. More likely, it is due to the subsurface depth habitat of the NC population in non-winter months (April–December, Fig. 8). Another subsurface temperature proxy from our sediment trap time series, TEX86, correlates well to mean annual SST but does not vary with SST seasonally (Richey and Tierney, 2016). This is not surprising given the muted seasonal cycle in the subsurface (e.g. annual temperature range at 75 m 2 °C) (Levitus et al., 2009).

Paired Mg/Ca-δ18O determinations on G. truncatulinoides have not been used to calculate both temperature and δ18Osw in previous studies, most likely because of the ambiguous depth habitat of this species. Since we have paired measurements on individual foraminifera here, we derive δ18Osw using the Spero et al. (2003) eq. (G. menardii) and the Mg/Ca-derived temperatures using the Anand-All Mg/Ca-temperature equation. The resulting flux-weighted δ18Osw for NC individuals is 1.08‰ (± 0.18‰), which is nearly identical to flux-weighted δ18Osw measurements (1.10 ± 0.17‰) from water samples in the upper 150 m from 18 CTD casts at the sediment trap site. This suggests that this combination of equations may be used to derive temperature and δ18Osw from paired Mg/Ca-δ18O in NC G. truncatulinoides for down core reconstructions of winter mixed layer conditions.

Overall, the flux-weighted mean Mg/Ca data derived from LA-ICP-MS analyses on individual NC G. truncatulinoides yields values that are consistent with solution-based Mg/Ca measurements in co-occurring samples. For example, 34 aliquots of G. truncatulinoides (15–30 individuals, 300–425 μm size fraction) from this sediment trap time series (including data from Spear et al., 2011) have been analyzed via solution-based ICP-OES. These solution-based analyses were exclusively from winter sediment trap samples (Jan–Mar, 2008–2014), and resulted in a mean Mg/Ca of 3.01 (± 0.30, 1σ) mmol/mol. The mean Mg/Ca of 76 individual NC G. truncatulinoides (> 300 μm), determined via weighted LA-ICP-MS analyses from the same sediment trap time series is 2.75 (± 0.56, 1σ) mmol/mol. We did paired solution-based and laser ablation analyses on six winter sediment trap samples with sufficient number of individuals (Fig. 11). Whereas the mean solution-based and laser ablation Mg/Ca values for the six NC samples are within 1σ error of one another (3.08 ± 0.27 and 2.65 ± 0.25 mmol/mol, respectively), the solution-based mean Mg/Ca values for C samples are higher than laser ablation-derived mean Mg/Ca (2.02 ± 0.16 and 1.54 ± 0.23 mmol/mol, respectively). The observed lower Mg/Ca for LA-ICP-MS derived measurement may result from under sampling the lamellar calcite when using the laser. We used a higher laser repetition rate and longer dwell time on encrusted individuals, resulting in a loss of sampling resolution of the inner test wall (lamellar calcite), and failure to capture high Mg/Ca banding that we observed in the test wall of NC individuals.

Although LA-ICP-MS and solution-based Mg/Ca analysis yield comparable results, we must emphasize that laser based analysis for paleoceanographic reconstruction needs to be applied to a large sample size (> 10 individuals) in order to obtain meaningful environmental information on a population. The pooled standard deviation among all Mg/Ca determinations where multiple NC individuals were analyzed from the same sample cup is 0.37 mmol/mol, which is slightly higher than the standard deviation of all winter solution-based measurements (0.30 mmol/mol).
6. Conclusions

Using the geochemistry of individual foraminifera from a sediment trap time series in the nGoM, we determined that the encrusted and non-encrusted forms of *G. truncatulinoides* calcify in distinct depth habitats in the upper ocean. If care is taken to discriminate between the two forms for down core studies, the non-encrusted form can be used to reconstruct winter surface mixed layer conditions in the nGoM. Oxygen isotopes of individual foraminifera indicate a mean calcification depth for NC *G. truncatulinoides* of 66 ± 9 meters, within the surface mixed layer. The mean depth represented by encrusted specimens is 379 ± 76 meters, assuming 29% of the calcite of an encrusted specimen originates in the winter mixed layer.

LA-ICP-MS Mg/Ca values based on the weighted mean for an individual foraminifer are not significantly different from solution-based Mg/Ca, 2.75 ± 0.56 mmol/mol and 3.01 ± 0.30 mmol/mol, respectively. When using LA-ICP-MS, the weighted mean of the final three chambers (F, F1, and F2) is an acceptable method for approximating the Mg/Ca of a whole foraminifer test. NC *G. truncatulinoides* have a flux-weighted temperature 21.3 ± 3.4°C using Anand et al., 2003 (ten planktonic species) equation, which is identical to the 0–150 m flux-weighted temperature at the sediment trap site (21.3 ± 3.3°C) from CTD observations.

Acknowledgements

We thank Eric Tappa, Kaustubh Thirumalai, and the LUMCON crew of the RV Pelican for ongoing maintenance of the sediment trap mooring. Thanks to Jennifer Flannery and Edward Chu for assistance with geochemical analysis, and Oscar Branson for data analysis assistance. We thank two anonymous reviewers for their constructive comments on this manuscript. This research was supported by the USGS Climate and Land Use Research and Development Program. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. All new data presented in this study can be accessed in the USGS Data Release (Reynolds et al., 2018), https://doi.org/10.5066/F72806W4.

Appendix A. Supplementary data

Supplementary data to this article can be found at https://doi.org/10.1016/j.marmicro.2018.05.006.

References

Supplementary material for Environmental Controls on the geochemistry of *Globorotalia truncatulinoides* in the Gulf of Mexico: Implications for paleoceanographic reconstructions

Caitlin E. Reynolds¹,²*, Julie N. Richey¹, Jennifer S. Fehrenbacher³, Brad E. Rosenheim², Howard J. Spero⁴

¹ U.S. Geological Survey, St. Petersburg, FL 33701, USA
² College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
³ College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
⁴ Department of Earth and Planetary Sciences, University of California Davis, Davis, CA 95616, USA

Supplementary LA-ICP-MS Analyses of individual *G. truncatulinoides* in the nGoM

It would be prohibitively expensive and time consuming to perform LA-ICP-MS analyses on every chamber in the final whorl for down core studies involving hundreds or thousands of individual foraminifera. We test the relative impact of analyzing all accessible chambers (F through F⁷) versus only analyzing the largest and final three chambers (F through F²). Although more thinly calcified, the final three chambers comprise 60 (±7) % of the total shell weight, as determined by weighing a subset of NC individuals before and after amputating the final 3 chambers. To perform this test, we use a subset of 39 *G. truncatulinoides* specimens in which 5 or more chambers were analyzed. For each foraminifer, we took the standard deviation of the weighted mean Mg/Ca of all chambers analyzed (either F–F₄, F–F₅, F–F₆ or F–F⁷) and the weighted mean of a subset of those chambers (i.e., only F, F–F₁, F–F₂, and so on). The results of this exercise are shown in Supplementary Figure 2. As one would expect, the standard deviation between the mean Mg/Ca of just the final chamber and the weighted mean of all chambers is largest. The average standard deviation drops below 0.2 mmol/mol between the final three chambers and the mean of the final whorl. We use 0.2 mmol/mol as the benchmark, since this is the average standard deviation between separate solution-based ICP-OES analyses on aliquots of foraminifera from the same sample. In
Supplementary description of homogenous zone in encrusted *G. truncatulinoides*

Due to the extremely thick test wall of encrusted individuals, different laser parameters were used to analyze C versus NC (i.e., longer dwell time and faster repetition rate), so the inner test wall (representing the non-encrusted ontogenetic stage) is not well represented in the Mg/Ca profiles of the encrusted individuals. This makes it difficult to identify the lamellar calcite in the LA-ICP-MS data of encrusted *G. truncatulinoides*. However, we determined a method to calculate the relative percentage of lamellar versus secondary calcite in encrusted individuals. We identified the secondary crust in laser ablation profiles and compared the ablation time of that to the lamellar calcite on the inner part of the shell. The crust is generally homogenous and much lower in Mg/Ca and Ba/Ca than the lamellar calcite. We identified the homogenous zone as seen in Figure S4 for one spot on every chamber (F–F4) of each encrusted individual. We identified the boundary between the crust and the lamellar calcite by identifying the point at which Mg/Ca values were higher than two standard deviations from the mean Mg/Ca of the homogenous zone. In a few cases (11% of the individual chambers), there was structure in the Mg/Ca of the crust. In those cases, we used the Ba/Ca profiles to identify the crust, as Ba/Ca is always homogenous and distinctly lower than the lamellar calcite. LA-ICP-MS profiles demonstrate that the outer crust is relatively homogenous with lower weighted mean Mg/Ca (1.37 ± 0.36 mmol/mol) than the weighted Mg/Ca of the whole shell (1.53 ± 0.27 mmol/mol), average values for all encrusted individuals. Further work on the encrustation and complex life cycle of *G. truncatulinoides* needs to be done to explain the heterogeneity within each shell.
Supplementary Figure 1. Percentage of size fractions for each month in 2011 for non-encrusted (top panel) and encrusted (bottom panel) *G. truncatulinoides*. The smallest size fraction, at the top of each bar graph, increases with size downwards, 150–212 µm (green), 212–300 µm (blue), 300–425 µm (yellow), 425–500 µm (grey), 500–600 µm (orange), and >600 µm (teal). Note there were zero non-encrusted individuals in July, August, October, and November.
Supplementary Figure 2. Standard deviation (STDEV) from the total weighted Mg/Ca of the entire shell to the weighted Mg/Ca from various chambers analyzed on thirty-nine non-encrusted *G. truncatulinoides*. Data from individuals ablated on 5 to 8 chambers (F–F4 (yellow), F–F5 (purple), F–F6 (red), F–F7 (green)). The black line represents the average STDEV for each number of chambers analyzed. The dashed line, 0.2 is the benchmark of error used in solution based measurements. Our data are more precise when the average falls below the benchmark. When at least the final 3 chambers are analyzed, F, F1, and F2, the average STDEV ≤ 0.2 from the total weighted Mg/Ca of the entire shell.
Supplementary Figure 3. (A) All February non-encrusted *G. truncatulinoides* individual Mg/Ca (mmol/mol) measurements per chamber (blue circles) (trendline is blue dashed line). (B) The ablation time (s) per chamber measurements (green circles) and trendline (green dashed line). (C) The orange line represents the mean Mg/Ca of all chambers and individuals 2.82 ± 0.73 mmol/mol (error is the orange shaded region). (D) The purple line is the mean weighted Mg/Ca 2.66 ± 0.41 mmol/mol (error shaded in purple region).
Supplementary Figure 4. Panel A shows the homogenous zone (yellow rectangles) of Mg/Ca (blue circles) on three different laser ablation spots from three different encrusted G. truncatulinoides individuals. Panel B shows three different Mg/Ca (red circles) laser ablation spots from three different non-encrusted G. truncatulinoides individuals with no evidence of a homogenous zone.
Supplementary Figure 5. Stable isotopes of individual *G. truncatulinoides* tests. (A.) $\delta^{18}O_c$ and (B.) $\delta^{13}C_c$. The blue triangles represent the encrusted *G. truncatulinoides* and the red circles are the non-encrusted form. Analytical precision for isotopic measurements ± 0.04 ‰ and ± 0.05 ‰ for $\delta^{13}C_c$ and $\delta^{18}O_c$, respectively. The average measured $\delta^{18}O_c$ for non-encrusted *G. truncatulinoides* is -0.16 ± 0.32 ‰ and the average measured $\delta^{13}C_c$ is -0.34 ± 0.24 ‰ (closed red circles). The average measured $\delta^{18}O_c$ for encrusted individuals is 0.97 ± 0.20 ‰ and 0.65 ± 0.14 ‰ for $\delta^{13}C_c$ (open blue triangles). The average derived $\delta^{18}O_c$ and $\delta^{13}C_c$ for encrusted assuming 29% lamellar calcite and 71% secondary calcite is 1.45 ± 0.40 ‰ and 1.09 ± 0.32 ‰, respectively. HADiSST is plotted for reference. The open red circles indicate a 1-week sample cup from which 7 individuals were analyzed to assess intra-sample variability.
Supplementary Figure 6. April to December calculated δ¹⁸Oₙ profile comparisons of commonly used calcite-temperature relationship equations: Shackleton1974 (benthic foraminifera) (grey), Kim and O’Neil 1997 (Inorganic) (light green), Bemis et al. 1998 (O. universa HL) (green), Bemis et al. 1998 (O. universa LL) (blue), Mulitza et al. 2003 (G. bulloides) (yellow), Spero et al. 2003 (G. menardii) (light blue), and Bouvier-Soumagnac and Duplessy 1985 (G. menardii) (dark red). Depth habitats of non-encrusted (red rectangles) and encrusted (blue rectangles) G. truncatulinoides based on calculated δ¹⁸Oₙ are indicated. The colored circles (red = NC and blue = C) represent the measured δ¹⁸Oₙ plotted with the median, IQR, and range for all measurements. Note the scale difference for each month.
Supplementary Figure 7a. Plotted $\delta^{18}O_{sw}$ with depth calculated using $\delta^{18}O_{sw} = (0.59 \pm 0.01) \times S - 20.27 \pm 0.30$ ($r^2 = 0.76$, $p > 0.00001$) where S equals in-situ salinity (psu) measurements from CTD casts. The circles indicate measured $\delta^{18}O_{sw}$ values from the CTD casts. Yearly CTD casts colored 2008 (red), 2009 (light blue), 2010 (green), 2011 (yellow), 2012 (purple), 2013 (light green), 2014 (dark red), 2015 (grey), and 2016 (blue). Error bars on each measurement are indicated.
Supplementary Figure 7b. Plotted $\delta^{18}O_{sw}$ with depth calculated using $\delta^{18}O_{sw} = (0.59 \pm 0.01)*S - 20.27 \pm 0.30$ ($r^2 = 0.76, p>0.00001$) where S equals in-situ salinity (psu) measurements from CTD casts. The circles indicate measured $\delta^{18}O_{sw}$ values from the CTD casts. Yearly CTD casts colored 2008 (red), 2009 (light blue), 2010 (green), 2011 (yellow), 2012 (purple), 2013 (light green), 2014 (dark red), 2015 (grey), and 2016 (blue). Error bars on each measurement are indicated.
Supplementary Figure 8. Monthly temperature median, IQR, and ranges of non-encrusted (red rectangles) and encrusted (blue rectangles) *G. trunculoinoides* at designated depth habitats based on averaged CTD profiles in the nGoM. Note there were no C measurements in May, June, July, August, October, and December and no NC measurements in November.
Supplementary Figure 9. Mg/Ca residuals plotted against δ^{18}O calcification temperature, where residuals = ABS (measured Mg/Ca - predicted Mg/Ca, of the three best fit exponential equations for non-encrusted (A) and encrusted (B) G. truncatulinoides. Plotted are Anand et al., (2003), ten planktonic species (blue), McKenna and Prell (2004), (grey), and our newly created equation (orange) for both NC and C individuals.
Supplementary Figure 10. Non-encrusted G. truncatulinoides Mg/Ca converted to temperature from Pigmy Basin box core (PBBC-1) in the northern GoM (from Spear et al., 2011). Comparison between the Anand et al., (2003), ten planktonic species equation (blue) and Equation 2, this study (orange).
ICPMS: Agilent 7700x

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Power</td>
<td>1500 W</td>
</tr>
<tr>
<td>Argon (carrier) gas flow</td>
<td>0.95–1.05 l/min (tuned daily)</td>
</tr>
<tr>
<td>Ar coolant gas flow</td>
<td>15 l/min</td>
</tr>
<tr>
<td>Ar auxiliary gas flow</td>
<td>1 l/min</td>
</tr>
<tr>
<td>Dwell time per mass</td>
<td>20 ms (non-encrusted) 40 ms (encrusted)</td>
</tr>
</tbody>
</table>

Laser-ablation system UV excimer laser

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy density (fluence)</td>
<td>1–4.5 J/cm² (variable)</td>
</tr>
<tr>
<td>He gas flow</td>
<td>1.05 l/min</td>
</tr>
<tr>
<td>Laser repetition rate</td>
<td>6 Hz (non-encrusted) 8Hz (encrusted)</td>
</tr>
<tr>
<td>Laser spot size</td>
<td>44 µm (30 µm when needed)</td>
</tr>
<tr>
<td>ThO⁺/Th⁺</td>
<td><0.5%</td>
</tr>
<tr>
<td>U⁺/Th⁺</td>
<td>~1</td>
</tr>
</tbody>
</table>

Supplementary Table 1. Summary of operating conditions for the LA-ICP-MS.