Lawrence Berkeley National Laboratory
Recent Work

Title
THERMODYNAMICS OF ASSOCIATED SOLUTIONS. HENRY’S CONSTANTS FOR NONPOLAR SOLUTES IN WATER

Permalink
https://escholarship.org/uc/item/44j6j7qk

Author
Hu, Y.

Publication Date
1983-10-01
Submitted to Fluid Phase Equilibria

THERMODYNAMICS OF ASSOCIATED SOLUTIONS. HENRY'S CONSTANTS FOR NONPOLAR SOLUTES IN WATER

Y. Hu, E. Azevedo, D. Lüdecke, and J. Prausnitz

October 1983

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THERMODYNAMICS OF ASSOCIATED SOLUTIONS.
HENRY'S CONSTANTS FOR NONPOLAR SOLUTES IN WATER

Ying Hu†, Edmundo Azevedo*, Dorothea Lüdecke**, and John Prausnitz

Materials and Molecular Research Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

October 1983

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
THERMODYNAMICS OF ASSOCIATED SOLUTIONS.
HENRY'S CONSTANTS FOR NONPOLAR SOLUTES IN WATER

Ying Hu,† Edmundo Azevedo,* Dorothea Lüdecke** and John Prausnitz

Molecular and Materials Research Division
Lawrence Berkeley Laboratory and
Chemical Engineering Department
University of California
Berkeley, CA 94720

ABSTRACT

A systematic derivation is presented for the Helmholtz energy of a van der Waals fluid mixture whose nonideality is ascribed to both chemical and physical interactions; this derivation, applicable to all fluid densities, leads to an equation of state which contains chemical equilibrium constants in addition to the customary physical van der Waals constants a and b. Attention is given to the need for simplifying assumptions and to the variety of simplifying assumptions that can lead to useful results. A particular equation of state is used to correlate Henry's constants of nonpolar solutes in water over a wide temperature range. The correlation, however, is only partially successful because as yet we do not have a truly satisfactory theory for thermodynamic properties of mixtures containing molecules that differ appreciably in size.

† East China Institute of Chemical Technology, Shanghai, China
* Instituto Superior Tecnico, Lisbon, Portugal
** Institut für Metallphysik, Göttingen, W. Germany
Many authors have explained fluid nonideality by supposing that a fluid contains not only the apparent molecular species but, in addition, polymers of such species which are in chemical equilibrium; for example, for acetic acid vapor, deviations from ideal-gas behavior at low or moderate pressures are readily explained by assuming that acetic acid dimerizes, in part, to form acetic acid dimers in addition to acetic acid monomers. Similarly, thermodynamic properties of liquid solutions of hydrocarbons and alcohols can be correlated by postulating that alcohols polymerize, in part, to form dimers, trimers etc. in addition to alcohol monomers; finally, thermodynamic properties of liquid solutions of chloroform and acetone are readily interpreted by assuming that these two species solvate to form a 1:1 chloroform-acetone complex.

When these "chemical" theories of nonideal fluids were first proposed early in this century (Dolezalek, 1908), it was customary to assume that the "true" species form an ideal solution; in other words, all deviations from ideal behavior were ascribed to chemical effects. It was not until (about) 1950 that some authors took into account also physical interactions between the true species (Scatchard, 1949; Kretschmer and Wiebe, 1954). However, theories which used both chemical and physical contributions to nonideality were confined either to gases at moderate densities (second virial coefficients) or to liquid solutions containing only subcritical components at conditions remote from critical.

It was only in 1976 that Heidemann (1976) proposed an equation of state, applicable to all fluid densities, for fluids which exhibit chemical and physical contributions to nonideal behavior. Since then, other authors, notably Gmehling and Liu (1979), Baumgaertner et al. (1980) and Wenzel et al. (1982) have proposed similar equations of state based on a variety of simplifying assumptions. However, to the best of our knowledge, for such equations of
state no systematic derivation has been presented which clearly gives the fundamental ideas and which also indicates why simplifying assumptions are necessary and what choice of assumptions may be available. In this work we present such a derivation, applicable to all fluid densities; we then illustrate the applicability of a chemical-physical equation of state toward correlation of Henry's constants of nonpolar solutes in water over a wide temperature range.

Thermodynamic Framework

Consider a binary mixture of components A and B. In the absence of any association or solvation, the number of moles of A is \(n_{A0} \) and the number of moles of B is \(n_{B0} \).

We assume that both components A and B can continuously associate to form linear polymers: dimers, trimers, etc. according to

\[
\begin{align*}
A_1 + A_1 & \rightleftharpoons A_2 \\
A_2 + A_1 & \rightleftharpoons A_3 \\
& \vdots \\
A_i + A_1 & \rightleftharpoons A_{i+1}
\end{align*}
\]

\[
\begin{align*}
B_1 + B_1 & \rightleftharpoons B_2 \\
B_2 + B_1 & \rightleftharpoons B_3 \\
& \vdots \\
B_i + B_1 & \rightleftharpoons B_{i+1}
\end{align*}
\]

where index \(i \) goes from unity to infinity. As indicated by the double arrows, we assume that the indicated molecular species are in chemical equilibrium, characterized by equilibrium constants \(K_{A2}, \ldots, K_{A_{i+1}} \) and \(K_{B2}, \ldots, K_{B_{i+1}} \) which depend only on temperature. For simplicity, we assume that, for each component, all association constants are equal, independent of \(i \), designated by \(K_A \) and \(K_B \), respectively.

For solvation, there are many stoichiometric possibilities: the general formula for a solvated species is \(A_n B_m \) where indices \(n \) and \(m \) can be
any integer between one and infinity. To simplify, we assume that solvation equilibria are of the form

\[\begin{align*}
A_1 + B_1 & \rightleftharpoons AB \\
AB + AB & \rightleftharpoons (AB)_2 \\
& \vdots \\
(AB)_i + AB & \rightleftharpoons (AB)_{i+1}
\end{align*}\]

where index \(i\) goes from one to infinity. Further, we assume that one equilibrium constant \(K'_{AB}\), applies to all solvation equilibria, except the first one; its equilibrium constant is \(K''_{AB}\).

Given this physical picture, our aim is to establish an expression for the Helmholtz energy \(A\) of a mixture at temperature \(T\) and volume \(V\) containing monomers, associated species and solvated species which are in chemical equilibrium. Unlike other authors, we do not assume that this mixture is ideal; subject to simplifying assumptions, we take into account physical interactions (repulsion and attraction) between the chemically-equilibrated molecular species.

To obtain the desired expression for \(A\) we consider four steps, all at temperature \(T\). Our reference states are pure component A and pure component B, each at \(T\) and 1 bar, in the ideal-gas state. In this reference state, pure components A and B exist only as monomers.

Step I - Formation of Pure Associated and Solvated Species in the Ideal-Gas State at \(T\) and 1 bar:

\[
\Delta A_I = \sum_{i=1}^{\infty} n_{A_{i+1}} \left[\Delta g_A^{i+1} + i \, RT \right] + \sum_{i=1}^{\infty} n_{B_{i+1}} \left[\Delta g_B^{i+1} + i \, RT \right] + \sum_{i=1}^{\infty} n_{(AB)_{i+1}} \left[\Delta g^{i+1}_{(AB)} + (2i-1) \, RT \right]
\] (1)
where $\Delta g_{A_{i+1}}^\circ$ = standard Gibbs energy of formation of one mole of species A_{i+1}. Similar definitions hold for $\Delta g_{B_{i+1}}^\circ$ and $\Delta g_{(AB)_i}^\circ$. The number of moles of species j is designated by n_j.

Step II - The Pure Monomers and the Pure Associated and Solvated Species

at T and 1 bar in the Ideal-Gas State are Mixed to Form an Ideal-Gas Mixture at T and V:

$$\Delta A_{\text{II}} = \sum_j n_j RT \ln \frac{n_j RT}{V}$$

where gas constant R in the logarithm is chosen to give units of bars.

We now introduce n_T, the total number of moles

$$n_T = \sum_{i=1}^{\infty} n_{A_i} + \sum_{i=1}^{\infty} n_{B_i} + \sum_{i=1}^{\infty} n_{(AB)_i}$$

We then obtain for ΔA_{II}

$$\Delta A_{\text{II}} = RT \left[-n_T \ln V + n_T \ln RT + \sum_{i=1}^{\infty} n_{A_i} \ln n_{A_i} + \sum_{i=1}^{\infty} n_{B_i} \ln n_{B_i} \right.$$

$$\left. + \sum_{i=1}^{\infty} n_{(AB)_i} \ln n_{(AB)_i} \right]$$

Step III - Each Molecule in the Ideal-Gas Mixture at T and V (a Point)

is Inflated to a Hard Sphere to Form a Hard-Sphere Mixture:

$$\Delta A_{\text{III}} = n_T RT \hat{A}^*(\xi)$$

where $\xi = \frac{n_T \hat{b}}{V}$ is the reduced density with \hat{b} a size parameter for the mixture and $\hat{A}^*(\xi)$ is obtained from a suitable hard-sphere equation of state. [Equation (4) uses a one-fluid approximation. While some other approximation could be used, only the one-fluid approximation gives a
feasible algebraic form. For example, if we use the original van der Waals equation,

$$\Delta^*(\xi) = -\ln(1-4\xi)$$

(5)

or, using the Carnahan-Starling equation,

$$\Delta^*(\xi) = -\frac{\xi(3\xi-4)}{(1-\xi)^2}$$

(6)

Step IV - The Hard Spheres at T and V are Charged with an Attractive Potential to Form a Real Mixture:

$$\Delta_{IV} = n_T \frac{\hat{a}}{b} \Delta^{**}(\xi)$$

(7)

where $\frac{\hat{a}}{b}$ is a parameter characterizing the attractive potential energy of the mixture and $\Delta^{**}(\xi)$ is obtained from a semi-empirical equation of state of the van der Waals form. For example, if the original van der Waals equation is used,

$$\Delta^{**}(\xi) = -\xi$$

(8)

If we adopt the Redlich-Kwong equation of state,

$$\Delta^{**}(\xi) = -\frac{1}{4}\ln(1+4\xi)$$

(9)

The desired Helmholtz energy Δ of the real mixture is given by

$$\Delta = n_A \Delta^o_A + n_B \Delta^o_B + \Delta_{AI} + \Delta_{II} + \Delta_{III} + \Delta_{IV}$$

(10)

where Δ^o_A is the molar Helmholtz energy of pure A in the standard state; a similar definition holds for Δ^o_B.
The equation of state for pressure \(P \) follows from

\[
P = -\frac{\partial A}{\partial V} \frac{1}{T} \frac{1}{n_j}
\]

\(P = n_T \frac{RT}{V} - RT \frac{\partial A^*(\xi)}{\partial V} - \frac{\hat{a}}{b} \frac{\partial A^{**}(\xi)}{\partial V} \)

(12)

The chemical potentials for components \(A \) and \(B \) are, respectively, equal to those for monomers \(A_1 \) and \(B_1 \). [For a simple proof of this general result see Prigogine and Defay (1954)]

\[
\mu_A = \mu_{A_1} = \left(\frac{\partial A}{\partial n_{A_1}} \right)_{T,V,n_j(j \not= A_1)}
\]

(13)

\[
\mu_B = \mu_{B_1} = \left(\frac{\partial A}{\partial n_{B_1}} \right)_{T,V,n_j(j \not= B_1)}
\]

(14)

For \(\mu_A \), we obtain

\[
\mu_A = \hat{a}^* - RT \ln(V/RT) + RT(1 + \ln n_{A_1})
\]

\[+ RT A^*(\xi) + n_T \frac{\partial A^*(\xi)}{\partial \xi} \cdot \frac{\partial \xi}{\partial n_{A_1}}
\]

\[+ \hat{a} A^{**}(\xi) + n_T \hat{a} \frac{\partial A^{**}(\xi)}{\partial \xi} \cdot \frac{\partial \xi}{\partial n_{A_1}} + n_T A^{**}(\xi) \frac{\partial \hat{a}/\hat{b}}{\partial n_{A_1}}
\]

(15)

There is a similar relation for \(\mu_B \).

In Equation (15), the first three terms are ideal-gas contributions; the fourth and fifth terms are hard-sphere contributions; the remaining terms are contributions from attractive forces.
We consider four types of chemical equilibria:

Association of A:

\[K_A = \frac{\phi_{A_1+1}}{\phi_{A_1} \phi_{A_1}} \cdot \frac{\delta_{A_1+1}}{\delta_{A_1} \delta_{A_1}} \] (16)

Association of B:

\[K_B = \frac{\phi_{B_1+1}}{\phi_{B_1} \phi_{B_1}} \cdot \frac{\delta_{B_1+1}}{\delta_{B_1} \delta_{B_1}} \] (17)

Solvation:

\[K'_{AB} = \frac{\phi_{AB}}{\phi_{A_1} \phi_{B_1}} \cdot \frac{\delta_{AB}}{\delta_{A_1} \delta_{B_1}} \] (18)

\[K''_{AB} = \frac{\phi_{(AB)_{m+1}}}{\phi_{(AB)_m} \phi_{AB}} \cdot \frac{\delta_{(AB)_{m+1}}}{\delta_{(AB)_m} \delta_{AB}} \] (19)

Here \(\delta \) is the true mole fraction \((\delta_j = n_j/n_T) \), and \(\phi \) is the fugacity coefficient given by the well-known thermodynamic relation

\[RT \ln \phi_k = \int_{n_k}^{\infty} \left(\frac{\partial P}{\partial n_k} \right)_{T,V,n_j} dt - \frac{RT}{V} \] dV - RT ln z (20)

where \(z = PV/n_TRT \) is the compressibility factor.

The four chemical equilibria [Equations (16), (17), (18) and (19)] contain ratios of fugacity coefficients. In general, these ratios depend on temperature, density and composition. In that event, we have tremendous mathematical complexity. However, as shown by Heidemann (1976), this complexity can be greatly reduced by a proper choice of mixing rules for \(\hat{v} \) and \(\hat{b} \). Several choices are available such that the ratio of fugacity coefficients is independent of \(i \) (the degree of association and/or solva-
tion) and further, is the same for all four equilibria, as shown below.

For example, Heidemann assumed

\[a_i = i^2 a_i \quad b_i = i b_i \] \tag{21}

and then derived the mixing rules

\[\hat{a} = \left(\frac{n_o}{n_T} \right)^2 \left(x_A a_{A1} + 2x_A x_B \sqrt{a_{A1} a_{B1}} + x_B^2 a_{B1} \right) \] \tag{22}

and

\[\hat{b} = \left(\frac{n_o}{n_T} \right) (x_A b_{A1} + x_B b_{B1}) \] \tag{23}

where \(n_o = n_{AO} + n_{BO} \). However, experimental values of \(a_i \) for normal alkanes indicate that Eq. (21) overestimates the effect of \(i \) on \(a_i \).

In this work, we suggest a generalized mixing rule to replace Eq. (22):

\[\hat{a} = \left(\frac{n_o}{n_T} \right)^{1+w} \left(x_A a_{A1} + 2x_A x_B \sqrt{a_{A1} a_{B1}} (1+k_{AB}) + x_B^2 a_{B1} \right) \] \tag{24}

where \(0 < w \leq 1 \) and \(k_{AB} \) is a binary interaction parameter. Eq. (23) is unchanged.

With these mixing rules, we obtain

\[a = \frac{\phi_{A1}}{\phi_{A1+1}} \frac{\phi_{A1}}{\phi_{A1+1}} = \frac{\phi_{B1}}{\phi_{B1+1}} \frac{\phi_{B1}}{\phi_{B1+1}} = \frac{\phi_{AB}}{\phi_{AB}} \frac{\phi_{AB}}{\phi_{AB}} \frac{\phi_{AB}}{\phi_{AB}} \]

\[\frac{\xi}{b} \exp \left\{ - \frac{\partial A^* (\xi)}{\partial \xi} - \frac{(1-w)}{kT} \cdot \frac{\hat{a}}{b} \frac{\partial A^{**} (\xi)}{\partial \xi} \right\} d\xi \] \tag{25}

The detailed derivation is presented in Appendix I. Note that when \(w = 1 \) (as in Heidemann's work), only repulsive forces contribute to \(a \).

To obtain \(n_{A1} \), \(n_{B1} \) and \(n_o/n_T \), we must simultaneously solve the chemical equilibria and material balances, as discussed in Appendix II.
Henry's Constant for a Nonassociating Solute in an Associated Solvent

The most sensitive test for a theory of solutions is in the dilute region. Therefore, we now turn attention to Henry's constants. To obtain an expression for $H_{A,B}$, Henry's constant of nonassociating solute A in associated solvent B, we first recall the definition

$$H_{A,B} = \lim_{x_A \to 0} \left(\frac{f_A}{x_A} \right)$$

(26)

where f_A, the fugacity of the solute, is related to the residual chemical potential μ_{A}^{R} by

$$\ln f_A = \frac{\mu_{A}^{R} + RT \ln (P_x A / z)}{RT}$$

(27)

where z is the compressibility factor of the liquid mixture; the residual chemical potential is defined by

$$\mu_{A}^{R} = \mu_A (T, x, V) - \mu_A^{ideal \ gas} (T, x, V)$$

(28)

For Henry's constant, we obtain

$$H_{A,B} = \lim_{x_A \to 0} \left[P \exp \left(\frac{\mu_{A}^{R}}{RT} - \ln z \right) \right]$$

In the limit $x_A \to 0$, z is the compressibility factor of pure liquid B.

Because A is nonassociating, $K_A = 0$, and the general formula for solvated species is AB_1.

Data Reduction

To apply Eq. (29), we take water for solvent B in the temperature range 20-300°C. At any temperature, we must obtain parameters a and b and
association constant K_B. To do so, we use experimental data for vapor pressures and for liquid densities over a range of temperature (Bain, 1964). Since it is difficult to obtain 3 unique parameters, we use in addition, experimental Henry's constants for a particular nonassociating solute A, viz. methane (Crovetto et al., 1982) and experimental PVT and vapor-pressure data for pure methane (IUPAC, 1976). We use mixing rules Eqs. (23) and (24) with $w = 0$ and for methane-water we arbitrarily set $k_{AB} = 0$.

Table 1 shows results of data reduction for water. True mole fractions (up to Θ_b) are also shown at each temperature for saturated liquid water. Figures 1 and 2 indicate that, with the parameters indicated, we obtain an excellent fit. To facilitate calculations, the parameters for pure water are represented by

$$a = \frac{-612.42 + 67.545T}{T^{1.4}} \text{ (bar} \cdot \text{mol}^{-2})$$

$$b = \frac{0.13672 + 2.7457 \times 10^{-5}T}{T^{0.5}} \text{ (mol}^{-1})$$

$$\ln K = \frac{-H + S}{RT}$$

where $H/R = -5.890 \times 10^3 K$ and $\Delta S/R = -18.22$ for temperatures below 200°C. (For temperatures greater than 200°C, we use the association constants shown in Table 1.) Parameters a and b for methane (and other nonassociating solutes) are given in Appendix III.

Figure 3 shows calculated and experimental Henry's constants for methane in water. Also shown are Henry's constants calculated with the Carnahan-Starling-van der Waals model (no association) and different values of k_{AB}. It is evident that if this latter model is used to fit Henry's constants, it is necessary to assign a large empirical temperature dependence to k_{AB}. In this model, a single value of k_{AB} cannot reproduce the observed maximum when Henry's constant is plotted against temperature.
<table>
<thead>
<tr>
<th>$t/^\circ$C</th>
<th>a/bar-1 2mol-2</th>
<th>b/bar-1mol-1</th>
<th>K/bar-1</th>
<th>\mathcal{J}_1</th>
<th>\mathcal{J}_2</th>
<th>\mathcal{J}_3</th>
<th>\mathcal{J}_4</th>
<th>\mathcal{J}_5</th>
<th>\mathcal{J}_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>6.757</td>
<td>0.00946</td>
<td>6.511</td>
<td>7.27×10^{-1}</td>
<td>1.99×10^{-1}</td>
<td>5.42×10^{-2}</td>
<td>1.48×10^{-2}</td>
<td>4.04×10^{-3}</td>
<td>1.10×10^{-3}</td>
</tr>
<tr>
<td>50</td>
<td>6.507</td>
<td>0.00917</td>
<td>0.9830</td>
<td>7.67×10^{-1}</td>
<td>1.79×10^{-1}</td>
<td>4.16×10^{-2}</td>
<td>9.68×10^{-3}</td>
<td>2.25×10^{-3}</td>
<td>5.24×10^{-4}</td>
</tr>
<tr>
<td>100</td>
<td>6.168</td>
<td>0.00881</td>
<td>0.08563</td>
<td>8.20×10^{-1}</td>
<td>1.48×10^{-1}</td>
<td>2.66×10^{-2}</td>
<td>4.79×10^{-3}</td>
<td>8.63×10^{-4}</td>
<td>1.55×10^{-4}</td>
</tr>
<tr>
<td>150</td>
<td>5.884</td>
<td>0.00853</td>
<td>0.01357</td>
<td>8.60×10^{-1}</td>
<td>1.21×10^{-1}</td>
<td>1.69×10^{-2}</td>
<td>2.38×10^{-3}</td>
<td>3.33×10^{-4}</td>
<td>4.68×10^{-5}</td>
</tr>
<tr>
<td>200</td>
<td>5.641</td>
<td>0.00831</td>
<td>0.002881</td>
<td>9.00×10^{-1}</td>
<td>9.00×10^{-2}</td>
<td>9.01×10^{-3}</td>
<td>9.01×10^{-4}</td>
<td>9.02×10^{-5}</td>
<td>9.03×10^{-6}</td>
</tr>
<tr>
<td>250</td>
<td>5.426</td>
<td>0.00814</td>
<td>0.0007025</td>
<td>9.38×10^{-1}</td>
<td>5.84×10^{-2}</td>
<td>3.64×10^{-3}</td>
<td>2.27×10^{-4}</td>
<td>1.41×10^{-5}</td>
<td>8.79×10^{-7}</td>
</tr>
<tr>
<td>300</td>
<td>5.244</td>
<td>0.00805</td>
<td>0.0001998</td>
<td>9.64×10^{-1}</td>
<td>3.50×10^{-2}</td>
<td>1.27×10^{-3}</td>
<td>4.62×10^{-5}</td>
<td>1.68×10^{-6}</td>
<td>6.11×10^{-8}</td>
</tr>
</tbody>
</table>
Fig. 1 Vapor Pressure of Water

- Calc.

☐ (Bain, 1964)

Fig. 2 Pressure-Liquid Density Diagram of Water

- Calc.

Symbols: (Bain, 1964)
Fig. 3 Henry's Constant for Methane in Water. Methane is used as a probe to
determine the chemical equilibrium constant for water. (k_{AB} is arbi-
trarily set equal to zero.)
(Crovetto et al., 1982)

Fig. 4 Henry's Constants for Ar, Kr, Xe in Water.
- ○ (Potter and Clynne, 1978)
- ▲ (Wilhelm et al., 1977)
- ▼ (Crovetto et al., 1982)
- △ (Benson and Krause, 1976)

Fig. 5 Henry's Constants for O_2 and N_2 in Water.
- △ (Wilhelm et al., 1977)
- □ (Himmelblau, 1960)
- ○ (Pray et al., 1952)
Fig. 6 Henry's Constants of CO, CO₂, H₂S in Water
- (Winkler, 1901)
- (Jung et al., 1971)
- (Schulze and Prausnitz, 1981)
- (Gas Processors Association, 1982)
- (Tsonopoulos and Wilson, 1983)

Fig. 7 Henry's Constants of n-C₅H₁₂, n-C₆H₁₄ in Water
- (Gas Processors Association, 1982)
- (Tsonopoulos and Wilson, 1983)

Fig. 8 Henry's Constants of C₆H₆, Cyclo-C₆H₁₂, in Water
- (Tsonopoulos and Wilson, 1983)

Fig. 9 Henry's Constants of He, Ne, H₂ in Water
- (Benson and Krause, 1976)
- (Pray et al., 1952)
- (Potter and Clynne, 1978)
- (Wilhelm et al., 1977)
- (Crovetto et al., 1982)
We also reduced experimental Henry's-constant data in water for 14 non-associating solutes in addition to methane. Results are shown in Figures 4-9. Good fits are obtained for argon, krypton, nitrogen, oxygen, carbon monoxide, carbon dioxide and hydrogen sulfide using a single value of k_{AB}, as given in Table 2. We note that the molecular sizes of these solutes are close to that of water. However, results are not good for xenon, pentane, hexane, cyclohexane and benzene whose molecular sizes are appreciably larger than that of water; results are also not good for hydrogen, helium and neon whose molecular sizes are appreciably smaller than that of water. Our inability to fit Henry's constants for these asymmetric systems is probably due to the use of a one-fluid approximation (Equation 4) and also due to the inadequacy of mixing rules Eqs. (23) and (24). It appears that, while the chemical theory of associated fluids takes into account the effect of strongly oriented intermolecular forces, the one-fluid approximation with simple mixing rules fails to take into account normal intermolecular forces (repulsion and attraction) in mixtures where the molecules differ significantly in size. Our mixing rules are, essentially, generalizations of the van der Waals one-fluid theory of mixtures; the work of Shing and Gubbins (1983) has shown that a one-fluid theory leads to significant error for asymmetric mixtures, especially in the dilute region. To improve the chemical theory of solutions, it will be necessary to focus attention on better relations for calculating $A^*(\xi)$, \hat{a} and \hat{b}.

Proceeding empirically, we can very much improve our fits of Henry's constants by assigning a small linear temperature dependence to k_{AB} as shown in Table 2. We note that for large solutes, k_{AB} increases with temperature while for small solutes, k_{AB} decreases with temperature.

Figures 4 to 9 show calculated results using a temperature-independent k_{AB} (dashed lines) and using a slightly temperature-dependent k_{AB} (solid
lines) according to Table 2. This empirical procedure is clearly not satisfactory but may have some utility for estimating solubilities in water when no experimental data are available.
<table>
<thead>
<tr>
<th>Solute</th>
<th>k_{AB} at 100°C</th>
<th>$\frac{d\ k_{AB}}{dT}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne</td>
<td>0.277</td>
<td>-0.00096</td>
</tr>
<tr>
<td>He</td>
<td>0.082</td>
<td>-0.00284</td>
</tr>
<tr>
<td>H₂</td>
<td>-0.104</td>
<td>-0.00125</td>
</tr>
<tr>
<td>O₂</td>
<td>-0.089</td>
<td>-0.00023</td>
</tr>
<tr>
<td>Ar</td>
<td>0.082</td>
<td>-0.00010</td>
</tr>
<tr>
<td>N₂</td>
<td>-0.100</td>
<td>-0.00019</td>
</tr>
<tr>
<td>Kr</td>
<td>0.070</td>
<td>0.00018</td>
</tr>
<tr>
<td>CO</td>
<td>-0.246</td>
<td>-0.00069</td>
</tr>
<tr>
<td>CO₂</td>
<td>-0.007</td>
<td>0.00009</td>
</tr>
<tr>
<td>H₂S</td>
<td>0.002</td>
<td>-0.00011</td>
</tr>
<tr>
<td>Xe</td>
<td>0.010</td>
<td>0.00032</td>
</tr>
<tr>
<td>C₆H₆</td>
<td>-0.170</td>
<td>0.00057</td>
</tr>
<tr>
<td>n-C₅H₁₂</td>
<td>-0.221</td>
<td>0.00078</td>
</tr>
<tr>
<td>cyclo-C₆H₁₂</td>
<td>-0.309</td>
<td>0.00112</td>
</tr>
<tr>
<td>n-C₆H₁₄</td>
<td>-3.323</td>
<td>0.00061</td>
</tr>
</tbody>
</table>
Conclusion

For associated fluids and their mixtures, it is possible, as shown here, to develop a generalized expression for the Helmholtz energy as a function of temperature, volume and composition. The generalized expression leads to an equation of state for an assembly of molecules that interact chemically to form dimers, trimers, etc., all at chemical equilibrium; this chemical interaction reflects strong orientational forces such as hydrogen bonding. Normal forces of repulsion and attraction are taken into account by application of the classical van der Waals theory of fluids.

If complete generality is to be maintained, mathematical complexity is hopelessly large. To reduce the theory to practice, simplifying assumptions must be made, as discussed here. While the introduction of chemical equilibria is useful for taking into account strong orientational forces of attraction, the chemical theory of real fluids is nevertheless limited at present by our inadequate understanding of mixtures containing molecules of different size. The conventional procedure for such mixtures is to use a one-fluid van der Waals approximation but that is insufficiently precise, especially in the dilute region. Future progress in mixture thermodynamics can only be attained if we can replace the customary one-fluid approximation by a theoretically significant expression for the potential energy and for the configurational entropy of mixtures containing molecules of different size.

Acknowledgment

For financial support, the authors are grateful to the National Science Foundation, to DECHEMA (Frankfurt), to the Donors of the Petroleum Research Fund administered by the American Chemical Society, to Exxon Research and Engineering Company, and to the Alexander von Humboldt Stiftung.
Appendix I. Derivation of Equation (25)

We rearrange Eq.(12) as follows:

\[
P = n_T \frac{RT}{V} - n_T \frac{\partial A^*(\xi)}{\partial \xi} - n_T \frac{1-w}{n_T b^{1+w}} \frac{\partial A^*(\xi)}{\partial \xi} \quad (I-1)
\]

According to Eqs. (23) and (24), \(n_T b \) and \(a/b^{1+w} \) are functions of \(n_{A0} \), \(n_{B0} \) and parameters of monomers only, and \(n_{A0}/\partial A_i \), \(n_{B0}/\partial B_i \), \(n_{A0}/\partial (AB)_i \), \(n_{B0}/\partial (AB)_i \) all equal 1. We obtain the following equations through differentiating Eq. (I-1):

\[
\left(\frac{\partial P}{\partial n_{A_i}} \right)_{T,V,n_j (j \neq A_i)} = \frac{RT}{V} \frac{\partial A^*(\xi)}{\partial \xi} - (1-w) a b^{1+w} \frac{\partial A^*(\xi)}{\partial \xi} - F_A \quad (I-2)
\]

\[
\left(\frac{\partial P}{\partial n_{B_i}} \right)_{T,V,n_j (j \neq B_i)} = \frac{RT}{V} \frac{\partial A^*(\xi)}{\partial \xi} - (1-w) a b^{1+w} \frac{\partial A^*(\xi)}{\partial \xi} - F_B \quad (I-3)
\]

\[
\left(\frac{\partial P}{\partial n_{(AB)_i}} \right)_{T,V,n_j (j \neq (AB)_i)} = \frac{RT}{V} \frac{\partial A^*(\xi)}{\partial \xi} - (1-w) a b^{1+w} \frac{\partial A^*(\xi)}{\partial \xi} - F_{AB} \quad (I-4)
\]

where

\[
F_A = n_T \left[\frac{RT}{V} \frac{\partial A^*(\xi)}{\partial \xi} + n_T (n_T b)^{w} a b^{1+w} \frac{\partial A^*(\xi)}{\partial \xi} \right] / n_{A0} \quad (I-5)
\]

\[
F_B = n_T \left[\frac{RT}{V} \frac{\partial A^*(\xi)}{\partial \xi} + n_T (n_T b)^{w} a b^{1+w} \frac{\partial A^*(\xi)}{\partial \xi} \right] / n_{B0} \quad (I-6)
\]

\[
F_{AB} = F_A + F_B \quad (I-7)
\]

Substituting Eqs. (I-2), (I-3), (I-4) into Eq. (20), we obtain

\[
\alpha = \frac{P \phi_{Ai} \phi_{A1}}{\phi_{A_i+1}} = \frac{P \phi_{Bi} \phi_{B1}}{\phi_{B_i+1}} = \frac{P \phi_{(AB)i} \phi_{AB}}{\phi_{(AB)_{i+1}}}
\]

\[
= P \exp \left[\int \frac{\partial A^*(\xi)}{\partial \xi} - \frac{1-w}{RT} \frac{\partial A^*(\xi)}{\partial \xi} \right] dV \right] / \xi
\]

\[
= \frac{\xi RT}{b} \exp \left[\int \frac{\partial A^*(\xi)}{\partial \xi} + \frac{1-w}{RT} \frac{\partial A^*(\xi)}{\partial \xi} \right] d\xi \quad (25)
\]
Appendix II. Solution for n_{A_1}, n_{B_1} and n_0/n_T.

Substituting Eqs. (25) into Eqs. (16), (17), (18) and (19), we get

$$\alpha = \frac{J_{A_1} + 1}{\frac{J_{A_1}}{K_A} + \frac{J_{B_1}}{K_B}} = \frac{J_{AB} + \frac{J_{A_1} + 1}{J_{AB} + \frac{J_{A_1} + 1}{J_{A_1} + 1}}}{J_{AB} + \frac{J_{A_1} + 1}{J_{AB} + \frac{J_{A_1} + 1}{J_{A_1} + 1}}}$$ \hspace{1cm} (II-1)

Then we can write the following equations from material balance.

$$\sum_{i=1}^{\infty} J_{A_i} + \sum_{i=1}^{\infty} J_{B_i} + \sum_{i=1}^{\infty} J_{(AB)i} = \frac{J_{A_1}}{1 - K_a \alpha_{A_1}} + \frac{J_{B_1}}{1 - K_b \alpha_{B_1}} + \frac{J_{AB}}{1 - K_{AB} \alpha_{AB}} = 1$$ \hspace{1cm} (II-2)

$$n_T \left(\sum_{i=1}^{\infty} i J_{A_i} + \sum_{i=1}^{\infty} i J_{(AB)i} \right) = n_T \left[\frac{J_{A_1}}{(1 - K_a \alpha_{A_1})^2} + \frac{J_{AB}}{(1 - K_{AB} \alpha_{AB})^2} \right] = n_0 x_A$$ \hspace{1cm} (II-3)

$$n_T \left(\sum_{i=1}^{\infty} i J_{B_i} + \sum_{i=1}^{\infty} i J_{(AB)i} \right) = n_T \left[\frac{J_{B_1}}{(1 - K_b \alpha_{B_1})^2} + \frac{J_{AB}}{(1 - K_{AB} \alpha_{AB})^2} \right] = n_0 x_B$$ \hspace{1cm} (II-4)

Solving Eqs. (II-2), (II-3) and (II-4) together with

$$J_{AB} = K_{AB}' \alpha_{A_1} \alpha_{B_1}$$ \hspace{1cm} (II-5)

from Eq. (II-1), we get J_{A_1}, J_{B_1}, J_{AB} and n_0/n_T. Also n_{A_1}/n_0 and n_{B_1}/n_0.
Appendix III.

PARAMETERS a, $b(o)$ AND $b(1)$ FOR PURE COMPONENTS

\(b = \frac{b(o) + b(1)T_r^2}{T_r^2} \) where $T_r = T/T_c$, T_c is critical temperature

<table>
<thead>
<tr>
<th>SOLUTE</th>
<th>$a/\text{bar} \cdot \text{m}^2/\text{K} \cdot \text{mol}^{-2}$</th>
<th>$b(o)/\text{mol}^{-1}$</th>
<th>$b(1)/\text{mol}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne</td>
<td>3.916</td>
<td>0.03594</td>
<td>0.00433</td>
</tr>
<tr>
<td>He</td>
<td>6.470</td>
<td>0.01119</td>
<td>0.00609</td>
</tr>
<tr>
<td>H$_2$</td>
<td>4.228</td>
<td>0.08378</td>
<td>0.00507</td>
</tr>
<tr>
<td>O$_2$</td>
<td>20.73</td>
<td>0.01529</td>
<td>0.00780</td>
</tr>
<tr>
<td>Ar</td>
<td>22.24</td>
<td>0.01685</td>
<td>0.00789</td>
</tr>
<tr>
<td>N$_2$</td>
<td>21.77</td>
<td>0.02067</td>
<td>0.01023</td>
</tr>
<tr>
<td>Kr</td>
<td>43.26</td>
<td>0.01900</td>
<td>0.00970</td>
</tr>
<tr>
<td>CO</td>
<td>17.84</td>
<td>0.01940</td>
<td>0.00990</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>71.95</td>
<td>0.01967</td>
<td>0.01004</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>105.6</td>
<td>0.02052</td>
<td>0.01047</td>
</tr>
<tr>
<td>Xe</td>
<td>86.97</td>
<td>0.02458</td>
<td>0.01254</td>
</tr>
<tr>
<td>C$_6$H$_6$</td>
<td>454.7</td>
<td>0.05371</td>
<td>0.01559</td>
</tr>
<tr>
<td>n-C5H${12}$</td>
<td>419.5</td>
<td>0.06041</td>
<td>0.02693</td>
</tr>
<tr>
<td>cyclo-C6H${12}$</td>
<td>621.9</td>
<td>0.07835</td>
<td>0.01735</td>
</tr>
<tr>
<td>n-C6H${14}$</td>
<td>598.9</td>
<td>0.07587</td>
<td>0.03359</td>
</tr>
</tbody>
</table>
List of symbols

A symbol of component
A Helmoltz energy
a van der Waals attraction parameter
a molar Helmoltz energy
B symbol of component
b van der Waals size parameter
f fugacity
g molar Gibbs energy
H enthalpy
H_{A,B} Henry's constant of A in B
K equilibrium constant
k binary parameter
n number of moles
P pressure
R gas constant
S entropy
T temperature
V volume
x liquid phase mole fraction
z compressibility factor
\bar{\theta} true mole fraction
\phi fugacity coefficient ratio
\phi fugacity coefficient
\xi reduced density
\mu chemical potential

Superscripts:
* standard state
** hard-sphere contribution
\wedge attractive potential contribution
\wedge mixture
r residual

Subscripts:
A,B component index
i,n,m degree of association
I,II,III,IV step of model construction
r reduced property
T total
\circ absence of any association or solvation
References

Shing, K.S., Gubbins, K.E., Molecular Physics (1983), in press.

Winkler, L.W., Chem. Ber., 34 1408 (1901).
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.